Beam instabilities (II)

Giovanni Rumolo
in CERN Accelerator School, Advanced Level, Trondheim
Thursday 22.08.2013

Big thanks to H. Bartosik, G. ladarola, K. Li, N. Mounet, B. Salvant,
R. Tomas, C. Zannini

Acknowledgments: X. Buffat, R. de Maria, A. Huschauer, E. Koukovini-
Platia, E. Métral, A. Oeftiger, G. Papotti, R. Wasef




O

Summary of the first part

* What is a beam instability?
— A beam becomes unstable when a moment of its distribution exhibits an
exponential growth (e.g. mean positions <x>, <y>, <z>, standard deviations o,,
O,, O, etc.) — resulting into beam loss or emittance growth!
* |nstabilities are caused by the electro-magnetic fields trailing behind
charged particles moving at the speed of light

— Origin: discontinuities, lossy materials
— Described through wake functions and beam coupling impedances

= Longitudinal plane

— Energy loss and potential well distortion

— Synchronous phase shift

— Bunch lengthening/shortening, synchrotron tune shift
— Instabilities

* Robinson instability (dipole mode)

* Coupled bunch instabilities

* Single bunch instabilities
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Transverse wake function: definition

O Source, q,
O Witness, q,

In an axisymmetric structure (or simply with a top-bottom and left-right symmetry) a
source particle traveling on axis cannot induce net transverse forces on a witness

particle also following on axis
At the zero-th order, there is no transverse effect

We need to introduce a breaking of the symmetry to drive transverse effect, but at
the first order there are two possibilities, i.e. offset the source or the witness




@ Transverse dipolar wake function: Y

definition
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@J Transverse quadrupolar wake function:
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Transverse dipolar wake function
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— The value of the transverse dipolar wake functions in 0, W, ,(0), vanishes because
source and witness particles are traveling parallel and they can only — mutually —
interact through space charge, which is not included in this framework

— W, (07)<0ssince trailing particles are deflected toward the source particle (Ax, and
Ax ”have the same sign)
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Transverse dipolar wake function
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We(z) = —

— The value of the transverse dipolar wake functions in 0, W, (0), vanishes because
source and witness particles are traveling parallel and they can only — mutually —
interact through space charge, which is not included in this framework

W, ,(07)<0 since trailing particles are deflected toward the source particle (Ax, and
Ax ”have the same sign)

w, (z) has a discontinuous derivative in z=0 and it vanishes for all z>0 because of the
ultra-relativistic approximation
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Transverse quadrupolar wake function
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— The value of the transverse quadrupolar wake functions in 0, W, ,(0), vanishes because
source and witness particles are traveling parallel and they can on’f

y — mutually —
interact through space charge, which is not included in this framework

,(07) can be of either sign since trailing particles can be either attracted or
de%lected even more off axis (depends on geometry and boundary conditions)
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AV Transverse quadrupolar wake function —*
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The value of the transverse quadrupolar wake functions in 0, W, ,(0), vanishes because
source and witness particles are traveling parallel and they can on’fy mutually —
interact through space charge, which is not included in this framework

W, ,(07) can be of either sign since trailing particles can be either attracted or
?’Iected even more off axis (depends on geometry and boundary conditions)

W, ,(z) has a discontinuous derivative in z=0 and it vanishes for all z>0 because of the
ultra-relativistic approximation

AWQX’V(Z)

10



O

Transverse impedance

— The transverse wake function of an accelerator component is basically its Green
function in time domain (i.e., its response to a pulse excitation)

= Very useful for macroparticle models and simulations, because it relates
source perturbations to the associated kicks on trailing particles!

— We can also describe it as a transfer function in frequency domain

— This is the definition of transverse beam coupling impedance of the element
under study
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* linear terms retained, however coupling terms are neglected

m-! refers then to a transverse offset and déiésalbt sepHbdRsymMmetric structures)

a normalization per unit length of the structure 11



m Transverse impedance: resonator

1wz \ dz
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Shape of wake function can be similar to that in longitudinal plane, determined by
the oscillations of the trailing electromagnetic fields

Contrary to longitudinal impedances, Re[Z, ] is an odd function of frequency,
while Im[Z, ] is an even function
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Transverse impedance: kicker

— An example: magnetic kickers are
usually large contributors to the
transverse impedance of a machine

| — ltisabroad band contribution
— No trapped modes
— Losses both in vacuum chamber

Y
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Transverse impedance: kicker

— An example: magnetic kickers are
usually large contributors to the
transverse impedance of a machine

| — ltisabroad band contribution

— No trapped modes
, — Losses both in vacuum chamber
Material Ferrite4ns l and ferrlte (kICker heatlng and
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Transverse impedance: kicker

Type
Monitor
Component
Plane at x
Maximum-2D
Sample
Time

— Evolution of the electromagnetic fields (E,)

in the kicker while and after the beam has
passed

e-field (t=0..end(8.1);x=8) [pb]
Yy
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Type
Monitor
Component
Plane at x
Maximum-2D
Sample
Time

Transverse impedance: kicker

— Evolution of the electromagnetic fields
T (H,) in the kicker while and after the beam
has passed

dB

-12.2
-19.7
-27.2

h-field {(t=0..end{08.1);x=0) [pb] i

X
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Transverse impedance: resistive wall

— Another interesting example: a conductive pipe (e.g. Cu)
— Choose e.g. t =4mm in vacuum

Penetration (or skin) depth:

2
§(w) = 4]
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AV Transverse impedance: resistive wall

Its impedance extends over a very
wide range of frequencies

— Atlow frequencies, d(w) >> t,
the beam can only see the

induced charges on inner
surface
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Its impedance extends over a very
wide range of frequencies

— Atlow frequencies, d(w) >> t,
the beam can only see the
induced charges on inner
surface

— Atintermediate frequencies it
interacts with the conducting
pipe through a decreasing d(w)

Transverse impedance: resistive wall

2
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Transverse impedance: resistive wall

Z,, (Q/m?)

Cu, 4mm, RefZ]
Cu, 4mm, Im[Z]

108 -

Im[Z

)

Its impedance extends over a very

wide range of frequencies .

— Atlow frequencies, d(w) >> t, 1 0'4
the beam can only see the

induced charges on inner
surface

— Atintermediate frequencies it
interacts with the conducting
pipe through a decreasing d(w)

-12

— At high frequency there is a 10 -10
resonance due to EM trapping 10

in the penetration depth
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‘m Transverse impedance: resistive wall

— A conductive pipe (e.g. Cu, t =4mm)
— Corresponding to the different

WX’y (V/pC/mm)
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frequency ranges, the wake field has

— A medium-long range behavior
(coupled bunch and multi-turn)
characterized by a sharp decay

— A short range behavior (single
bunch) dominated by the ac
conductivity resonance
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WX’y (V/pC/mm)

‘m Transverse impedance: resistive wall

— A conductive pipe (e.g. Cu, t =4mm)
— Corresponding to the different
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-0.1

frequency ranges, the wake field has

— A medium-long range behavior
(coupled bunch and multi-turn)
characterized by a sharp decay

wall is proportional to b!

= Transverse effects due to resistive wall are /
usually more severe than longitudinal ones /\ / \

= Transverse resistive wall is responsible for <7 \

coupled bunch instabilities, especially in
machines with small chambers (low b)

— The transverse impedance of a resistive wall |single
is proportional to b3
— The longitudinal impedance of a resistive

€ acC
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@ Single particle equations of the transverse Y

motion in presence of dipolar wake fields

Az)dz
— The single particle in the witness slice

' ; Bunch tail
Mz)dz will feel the external focusing forces
and that associated to the wake in s,
— Space charge here neglected Bunch head

— The wake contribution can extend to < ]z — z’\ >
several turns /
aWAW)
d’z =~ N B
@+K =(8)x (mOCQ)k,_ZOO_C A2+ kC)(x)(s0, 2 + kCYWy(sg,2 — 2" — kC)d2'
d?y N , ,
@ + Ky(s)y = — moc2 25 _C (2" + kC){(y)(s0, 2" + kCYWy(s0,2 — 2" — kC)dz
N\ J
External Focusing Y

Wake fields
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Am The Rigid Bunch Instability

— To illustrate the rigid bunch instability we will use some simplifications:

= The bunch is point-like and feels an external linear force (i.e. it would
execute linear betatron oscillations in absence of the wake forces)

= Longitudinal motion is neglected
= Smooth approximation = constant focusing + distributed wake

— In a similar fashion as was done for the Robinson instability in the longitudinal
plane we want to

= Calculate the betatron tune shift due to the wake
= Derive possible conditions for the excitation of an unstable motion

24




AV The Rigid Bunch Instability

— To illustrate the rigid bunch instability we will use some simplifications:

= The bunch is point-like and feels an external linear force (i.e. it would
execute linear betatron oscillations in absence of the wake forces)

= Longitudinal motion is neglected
= Smooth approximation = constant focusing + distributed wake

2

d?y w3 € N &
ot ( ; ) y=— (moCQ) G k;my(s — kC)W,,(kC)

Ne 2
0 —wj = Z exp (1kQUTp) Wy (kC)
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Y X exp »
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Comes from the definition of Z =



AV The Rigid Bunch Instability

= We assume a small deviation from the betatron tune
= Re(Q - w;) = Betatron tune shift

= Im(2 - wg) - Growth/damping rate, if it is positive there is an
instability!

QQ—W%%2w5°(Q—w5)

1 [ enIm(ze®] 1
Re (Q — wg) Ne?B, &
— Av., ~ Y E Im (Z
Wo Yy 4rmoyycC p=—00 ml y(pWO ‘|‘WB)]
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The Rigid Bunch Instability

Ne?j,
2m0’yC’2

Z Re [Zy(pwo + wp)]

p=—00

Im(Q—w[g):Ty_lm

= We assume the impedance to be peaked at a frequency w, close to
hw, (e.g. RF cavity fundamental mode or HOM)

I L]
10
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The Rigid Bunch Instability

_ Ne?p3
Im (2 —wg) =7, S —2m0752

Z Re [Zy(pwo + wp)]

p=—00

= We assume the impedance to be peaked at a frequency w, close to
hw, (e.g. RF cavity fundamental mode or HOM)

= Defining the tune v, =n_+ A, with -0.5<Ag <0.5, we can easily

express the only two leading terms left in the summation at the
RHS of the equation for the growth rate

=1 N€26y
Y 2m0702

(Re [Z, (hwo + Agywo)] — Re [Z, (hwo — Agywo)])
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The Rigid Bunch Instability
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The Rigid Bunch Instability

_ Ne?p3
Im (2 —wg) =7, S —2m070y2

Z Re [Zy(pwo + wp)]

p=—00

= We assume the impedance to be of resistive wall type, i.e. strongly
peaked in the very low frequency range (= 0)

= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate
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Am The Rigid Bunch Instability

= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate

| |
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0<Apgy, <05 | pwy + wg

4 |
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N 2
Ty_l ~ _me)’y%2 (Re [Zy(Apywo)] — Re[Z,((1 — Agy)wo)]) <0 31



Am The Rigid Bunch Instability

= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate
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Am The Rigid Bunch Instability =

= Using the same definitions for the tune as before, we can easily
express the only two leading terms left in the summation at the
RHS of the equation for the growth rate

| | | |
6,“‘I\“‘I\‘ T - " 1]
—0.5 < Ag, <0 - pwo + wg | Re [Z+] | i
4l L || | | I
I This is the reason why most of the running
21 machines are usually operated with a fractional
i part of the tunes below 0.5!
0l In practice, tunes above the half integer can be
7 used, if the resistive wall instability is Landau
-2} damped (refer to W. Herr’s lectures!) or efficiently
suppressed with a feedback system
Always unstabl | | | | | |
7 | | | | | 1
— u — u -
- | | |

_6 L 1 1 1 ! 1 1 1 —d 1
-6 —4 2 |10 2

_ Ne?p3
T R o (Re(Z((1+ By Jwn)] —Re[Z,(~Agyw0))) >0



The Strong Head Tail Instability
(aka Transverse Mode Coupling Instability)

O

— Toillustrate TMCI we will need to make use of some simplifications:

= The bunch is represented through two particles carrying half the total bunch charge and
placed in opposite phase in the longitudinal phase space

= They both feel external linear focusing in all three directions (i.e. linear betatron focusing +
linear synchrotron focusing).

Zero chromaticity (Q’, ,=0)
Constant transverse wake left behind by the leading particle
Smooth approximation = constant focusing + distributed wake

144

— We will
= Calculate a stability condition (threshold) for the transverse motion
= Have a look at the excited oscillation modes of the centroid

34




O

The Strong Head Tail Instability Y

(aka Transverse Mode Coupling Instability)

To illustrate TMCI we will need to make use of some simplifications:

=

144

The bunch is represented through two particles carrying half the total bunch charge and
placed in opposite phase in the longitudinal phase space

They both feel external linear focusing in all three directions (i.e. linear betatron focusing +
linear synchrotron focusing)

Zero chromaticity (Q', ,=0)
Constant transverse wake left behind by the leading particle
Smooth approximation = constant focusing + distributed wake

A op/pg O Particle 1 (+Ne/2)

Q© Particle 2 (+Ne/2)
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The Strong Head Tail Instability Y

(aka Transverse Mode Coupling Instability)

To illustrate TMCI we will need to make use of some simplifications:

=

144

The bunch is represented through two particles carrying half the total bunch charge and
placed in opposite phase in the longitudinal phase space

They both feel external linear focusing in all three directions (i.e. linear betatron focusing +
linear synchrotron focusing)

Zero chromaticity (Q', ,=0)
Constant transverse wake left behind by the leading particle
Smooth approximation = constant focusing + distributed wake

A op/pg O Particle 1 (+Ne/2)

Q© Particle 2 (+Ne/2)
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The Strong Head Tail Instability
(aka Transverse Mode Coupling Instability)

= During the first half of the synchrotron motion, particle 1 is leading
and executes free betatron oscillations, while particle 2 is trailing
and feels the defocusing wake of particle 1

('
d2y1 w@ 2
il — 0
ds? + ( c ) 91
d*ys n (@)2 [ &€ \ NWy (s)
ds? C 42 moc? ) 2~vC Y115
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The Strong Head Tail Instability
(aka Transverse Mode Coupling Instability)

= During the first half of the synchrotron motion, particle 1 is leading
and executes free betatron oscillations, while particle 2 is trailing
and feels the defocusing wake of particle 1

= During the second half of the synchrotron period, the situation is
reversed

ds? c moc? ) 2~vC T
2 2 -
Y2 W
+(<2) 92 =0
ds? c) 7
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@m The Strong Head Tail Instability Y

(aka Transverse Mode Coupling Instability)

= We solve with respect to the complex variables defined below during
the first half of synchrotron period

= y,(s) is a free betatron oscillation

= y,(s) is the sum of a free betatron oscillation plus a driven oscillation
with y,(s) being its driving term

C
Ne2W, '
(s) = im0 esp (=2 )i | i 0sn (22) 4 n0pemp (22|
u RN ~/
~

Free oscillation term Driven oscillation term
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The Strong Head Tail Instability
Transfer map

)5 (2
) = 72(0) exp (—if‘:ﬁ) +

Ne2Wy C 3 TW
Yy

i
dmoycCwg

S

—2 ) +31(0) (W—C) exp (—m}ﬁ

= Second term in RHS equation for y,(s) negligible if w<<wy

= We can now transform these equations into linear mapping
across half synchrotron period

( ’i?‘(’(x)g) 1 0 f&l \
=exp | — 1 i
s=mc/ws Ws ol Y2 s=0

7TN62W0

T =
dmoyCuwgws Y,
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The Strong Head Tail Instability S

Transfer map

= In the second half of synchrotron period, particles 1 and 2
exchange their roles

= We can therefore find the transfer matrix over the full
synchrotron period for both particles

= We can analyze the eigenvalues of the two particle system

U1 12Twg 1 Y 1
7 - Lo 1 )\
Y2 s=27mc/ws W

. 7TN€2W()
N dmoyCuwgws

0\ ( &
1)\ » ),

T

( Y1 ) ( iQWwB) ( 1—-7_2 T > ( 71 )
_ — eXp — . T 1 . 5
Y2 s=27mc/ws Ws ’ Y2 s=0
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The Strong Head Tail Instability
Stability condition

= Since the product of the eigenvalues is 1, the only condition for
stability is that they both be purely imaginary exponentials

= From the second equation for the eigenvalues, it is clear that
this is true only when sin(¢/2)<1
= This translates into a condition on the beam/wake parameters

)\1 . )\2 =1 e )\1,2 = exp(:l:iqb)

_ o2 AT
)\1—|—>\2—2 T = Sln(2>—2
2
T wiNe W() <9

B dmoyCwgws
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@J The Strong Head Tail Instability 2

N < Nihreshold =

Stability condition

to be more stable

= Proportional to o, = the q
motion within the bunch, t

= Inversely proportional to 3
impedance is enhanced if t
with large beta function

= Proportional to p, = bunches with higher energy tend

uicker is the longitudinal
he more stable is the bunch

- the effect of the
he kick is given at a location

= Inversely proportional to the wake per unit length

along the ring, W,/C = a large integrated wake
(impedance) lowers the instability threshold
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) = (-

Eigenfrequencies:

—-1.0

The Strong Head Tail Instability
Mode frequencies

The evolution of the eigenstates follows:

2
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They shift with increasing
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Mode frequencies

The evolution of the eigenstates follows:

0

Ws

. . w
Eigenfrequencies:

) — exp (_Z.27Tw5 n) | ( exp [—2iarcsin (%) - 1]

wg + lw, £ —2 arcsin

exp [Qi arcsin (%) : n}

The Strong Head Tail Instability

0

They shift with increasing

T intensity
00 F—_ " B | | T
Ws ool \ T—;arcsm;,
02 =0 —_ We 2
0.4 \
J
—-0.6 R4
~0.8 | -1 ,——"// wpa 1 i
That’s the reason why this type of instability is called w—s — 1+ - ArCsii 9
Transverse Mode Coupling Instability! 20 25 30

Unstable region



The Strong Head Tail Instability
Why TMCI?

= For a real bunch, modes exhibit a more complicated shift pattern

= The shift of the modes can be calculated via Vlasov equation or
can be found through macroparticle simulations

& HEADTAIL
MOSES

2 —
Simplified calculation
for a short bunch

MARAAREET I TTT YOS “*ev0gy
L1
’s

0.2 0.3
I, (mA)

Full calculation for a relatively long SPS bunch (red
lines) + macroparticle simulation (white traces)




@ The Strong Head Tail Instability
Experimental observation

e Q26 - stable
e Q26 - unstable

2 3
Intensity (p/b)

4 5

x1011
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The Strong Head Tail Instability =)

Experimental observation
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The Head Tail Instability

To illustrate the head-tail instability we will need to make use of some simplifications:

= The bunch is represented through two particles carrying half the total bunch charge and
placed in opposite phase in the longitudinal phase space

= They both feel external linear focusing in all three directions (i.e. linear betatron focusing +
linear synchrotron focusing).

Chromaticity is different from zero (@', ,#0)
Constant transverse wake left behind by the leading particle
Smooth approximation = constant focusing + distributed wake

144

We can
= Show that this system is intrinsically unstable
= Calculate the growth time of the excited oscillation modes
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@ The Head Tail Instability

Equations of motion

reversed

= As for the TMCI, during the first half of the synchrotron motion,
particle 1 is leading and executes free betatron oscillations, while
particle 2 is trailing and feels the defocusing wake of particle 1

= During the second half of the synchrotron period, the situation is

o

2

|
-

d?y, N [wg(l

+@mw]m

+gy5(s))r _( = )NWO

moc? ) 2~vC n

Difference! = now the frequency of free oscillation

is modulated by the momentum spread, 9(s)

TC
D0<s < —

(s)
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The Head Tail Instability Y

Oscillation modes

= Similarly to the solution for the Strong Head Tail Instability,
we obtain the transport map

Y2 s=27mc/ws L 0 Y2 s=mc/ws 3 L Y2 s=0

_ TNe*W, L i4§yw5,€'
4moyCwgws

T

) Complex number!
mTCn

Weak beam intensity: As = exp(+iT)

‘T\ <1 | > + mode is “in-phase” mode > the two

particles oscillate in phase (w)

= mode is “out-phase” mode - the two

particles oscillate in opposition of phase
(g = ) 51
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The Head Tail Instability Y
Growth/damping time

= Inversely proportional to p, = bunches with higher energy
tend to be less affected by impedances

= Proportional to N = the more intense is the bunch, the more
sensitive it is

= Proportional to bunch length = this depends on the chosen
shape of the wake

= Proportional to gy - higher chromaticity enhances the head-
tail effect

= Inversely proportional to n} = faster synchrotron motion
stabilizes (lowest rise times close to transition crossing!)

= Proportional to the wake per unit length along the ring, W,/C
- a large integrated wake (impedance) gives a stronger effect
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@ The Head Tail Instability
Growth/damping time

2 A
! =Im (:I:T-&) = :Fe ' Al (WO

2T 2T Pon C
Mode O (+)
Above transition (n>0) damped unstable
Below transition (n<0) unstable damped
Mode 1 (—)

Above transition (1>0) unstable damped

Below transition (1<0) damped unstable

)
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@ The Head Tail Instability

* The head-tail instability is unavoidable in the two-particle model
— Either mode 0 or mode 1 is unstable
— Growth/damping times are in all cases identical

* Fortunately, the situation is less dramatic in reality

— The number of modes increases with the number of particles we consider in
the model (and becomes infinite in the limit of a continuous bunch)

— The instability conditions for mode 0 remain unchanged, but all the other
modes become unstable with much longer rise times when mode 0 is stable

Mode O
IR
> —=0
Above transition (n>0) damped unstable o Tl
Below transition (n<0) unstable damped

All modes >0

Above transition (1>0) unstable damped

Below transition (n<0) damped unstable




@ The Head Tail Instability Y

 The head-tail instability is unavoidable in the two-particle model
— Either mode 0 or mode 1 is unstable
— Growth/damping times are in all cases identical

* Fortunately, the situation is less dramatic in reality

— The number of modes increases with the number of particles we consider in
the model (and becomes infinite in the limit of a continuous bunch)

— The instability conditions for mode 0 remain unchanged, but all the other
modes become unstable with much longer rise times when mode 0 is stable

— Therefore, the bunch can be in practice stabilized by using the settings that
make mode 0 stable (E<0 below transition and £>0 above transition) and

relying on feedback or Landau damping (refer to W. Herr’s lectures) for the
other modes

 To be able to study these effects we would need to resort to a more
detailed description of the bunch

— Vlasov equation (kinetic model)
— Macroparticle simulations
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A glance into the head-tail modes

Different transverse head-tail modes correspond to different parts of the
bunch oscillating with relative phase differences. E.g.

— Mode 0 is a rigid bunch mode
— Mode 1 has head and tail oscillating in counter-phase

— Mode 2 has head and tail oscillating in phase and the bunch center in
opposition

(b)
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A glance into the head-tail modes
(as seen at a wide-band BPM)
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A glance into the head-tail modes Y

(experimental observations)

Observation in the CERN PSB in ~1974

(J. Gareyte and F. Sacherer) Observation in the CERN PS in 1999

The mode that gets first excited in the machine depends on
— The spectrum of the exciting impedance
— The chromaticity setting

Head-tail instabilities are a good diagnostics tool to identify and quantify the main
impedance sources in a machine
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Macroparticle simulation

We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

We have used parameters at injection (below transition!) and three
different chromaticity values: g, = +0.15, -0.3

PS ring:
Transverse 2 1-turn map M
with chromaticity

Longitudinal = kick from
sinusoidal voltage

Im[Z,,] —

T S H} T R R Lo T T R T S |
0.0 05 1.0 15 20 25 3.0
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Macroparticle simulation

We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

We have used parameters at injection (below transition!) a chromaticity
values: §,,=0.15

Signal: - Number of Protons: 1.60e+12

lel6 Vertical offset signal

le12 Horizontal offset signal
1.0 }
0.5
0.5
E €
E E
L 0.0 4 o0
\ \
* *
o o
[ [a
= =
—0.5 }
—0.5 |
—1.0
0 20 40 60 80 100120140160180 60

0 20 40 60 80 100120140160180

dz [ns] dz [ns]
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Macroparticle simulation

 We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

 We have used parameters at injection (below transition!) a chromaticity
values: g, =-0.15

Signal: - Chromaticities: -1.00e+00

1le8 Horizontal offset signal 1el0 Vertical offset signal
' 1.0 | '
0.5
0.5
3 E
E =
L 00 £ o0
M N
o e o | x
a . & a
= - ; =
- -
e < -0.5
—0.5 } ’s’ s
R -1.0 | A
0O 20 40 60 80 100120140160180 61

0 20 40 60 80 100120140160180

dz [ns] dz [ns]
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Macroparticle simulation

We have simulated the evolution of a long PS bunch under the effect of a
transverse resistive wall impedance lumped in one point of the ring

We have used parameters at injection (below transition!) a chromaticity
values: §,,=-0.3

Signal: - Chromaticities: -2.00e+00

Vertical offset signal

1e9 Horizontal offset signal 1el0

0.5 |

0.0

NPR*<x> [mm]
o
NPR*<y> [mm]

0O 20 40 60 80 100120140160180 0O 20 40 60 80 100120140160180 62
dz [ns] dz [ns]
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Conclusions

* A particle beam can be driven unstable by its interaction
with its own induced EM fields

— Longitudinal, transverse
— Multi-bunch, single bunch

* Simplified models within the wake/impedance framework
can be adopted to explain the mechanism of the instability
— Stability criteria involving beam/machine parameters
— Growth/damping times

 More sophisticated tools are necessary to describe in
deeper detail the beam instabilities (kinetic theory,
macroparticle simulations)
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Fortunately ....

= |n real life beam stability is eased by some mechanisms so
far not included in our linearized models
— Spreads and nonlinearities stabilize (Landau damping, refer to
W. Herr’s lecture)
— Longitudinal: momentum spread, synchrotron frequency spread

— Transverse: chromaticity, betatron tune spreads (e.g from machine
nonlinearities)

— Active feedback systems are routinely employed to control/
suppress instabilities

* Coherent motion is detected (pick-up) and damped (kicker) before it
can degrade the beam

* Sometimes bandwidth/power requirements can be very stringent
— Impedance localization and reduction techniques are applied to

old accelerators as well as for the design of new accelerators to
extend their performance reach!
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Thank you for your attention

Again many thanks to H. Bartosik, G. ladarola, K. Li, N.

Mounet, B. Salvant, R. Tomas, C. Zannini
for material, discussions, suggestions, help & support
and to A. Chao for his book!
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The Head Tail Instability
Equations of motion

= Let’s first write the solution without wake field assuming a linear
synchrotron motion and particles in opposite phase (z,=-z,)

= It is already clear that head and tail of the bunch exhibit a phase
difference given by the chromatic term
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The Head Tail Instability
Equations of motion

= The free oscillation is the correct solution for y,(s) in the first half
synchrotron period

= For y,(s) we assume a similar type of solution, allowing for a slowly
time varying coefficient

= Substituting into the equation of motion this yields

71(0) exp [—iwﬁ + igywﬁésin (Eﬂ
c cn c

~

72 (s) exp [—fzwﬁf + i 5 gin (“’8)]
c cn




The Head Tail Instability
Transfer map

= For small head-tail shifts, we can expand the exponential in Taylor

series and find an expression for y,(s)

= We can write a transfer map over the first half of synchrotron period

in the same form as was done for the study of the TMCI

= This time Y is a complex parameter!

Ya(s)

1 — cos
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