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 Lorentz force 

„  ... in the end and after all it should be a kind of circular machine“ 
  need transverse deflecting force  

typical velocity in high energy machines: 

old greek dictum of wisdom: 
if you are clever,  you use magnetic fields in an accelerator wherever  
it is possible. 

But remember:  magn. fields act allways perpendicular to the  velocity of the particle    
 only bending forces,    no „beam acceleration“ 



circular  coordinate system 

condition for circular orbit:   

Lorentz force 

centrifugal force 

The ideal circular orbit 

ρ 

s 

θ ● 

B ρ =  "beam rigidity" 



Dipole Magnets: 

define the ideal orbit  
homogeneous field created  
by two flat pole shoes 

convenient units:  

Example LHC: 

field map of a storage ring dipole magnet 

ρ 

α 

ds 

Normalise magnetic field to momentum: 



  „normalised bending strength“ 

2πρ = 17.6 km  
        ≈ 66%   

rule of thumb: 



required:     focusing forces to keep trajectories in vicinity of the ideal orbit  

    linear increasing Lorentz force 

    linear increasing magnetic field  

normalised quadrupole field: 

gradient of a  
quadrupole magnet: 

what about the vertical plane: 
    ... Maxwell   

LHC main quadrupole magnet 

simple rule: 



Linear approximation: 

 * ideal particle          design orbit  

 * any other particle  coordinates x, y  small quantities 
      x,y << ρ 

                   magnetic guide field: only linear terms in x & y of B  
                       have to be taken into account    

Taylor Expansion of the B field: 

normalise to momentum 
        p/e = Bρ 



Example: 
 heavy ion storage ring TSR 

Separate Function Machines: 

Split the magnets and optimise  
them according to their job:  

bending, focusing etc  

 only terms linear in x, y taken into account   dipole fields    
                                                                           quadrupole fields 

* man sieht nur  
dipole und quads  linear 



Equation of Motion: 

● 
y 

x 

ρ 

s 

θ ● Consider local segment of a particle trajectory 
... and remember the old days: 
(Goldstein page 27)   

radial acceleration: 

Ideal orbit: 

Force: 

general trajectory:   ρ  ρ + x 



y
ρ 

s 
● x 

remember: x ≈ mm , ρ ≈ m …   develop for small x 

1 

1 … as ρ = const 

2 

2 

Taylor Expansion 



guide field in linear approx. 

:  m 

independent variable: t → s 

:  v 2 



m v = p 

normalize to momentum of particle 

Equation for the vertical motion: * 
no dipoles … in general …  

quadrupole field changes sign 

y 

x 



Remarks: 

… there seems to be a focusing even without  
     a quadrupole gradient 

                            „weak focusing of dipole magnets“ 

Mass spectrometer: particles are separated  
                                according to their energy 
                                and focused due to the 1/ρ  
                                effect of the dipole  

* 

even without quadrupoles there is a retriving force  
(i.e. focusing) in the bending plane of the dipole magnets 

… in large machines it is weak.    (!) 



Hard Edge Model: * 
… this equation is not correct !!! 

bending and focusing fields … are functions  
of the independent variable  „s“ 

 ! 
Inside a magnet we assume constant focusing  
properties ! 



Differential Equation of harmonic oscillator   …  with spring  constant K 

Ansatz: 

general solution:  linear combination of two independent solutions  

Define …  hor. plane: 

            … vert. Plane: 

general solution: 



Hor. Focusing Quadrupole  K > 0: 

For convenience expressed in matrix formalism: s = s0 
s = s1 

determine a1 , a2  by boundary conditions: 



hor. defocusing quadrupole:  

drift space:   
                       K = 0  

!     with the assumptions made, the motion in the horizontal and vertical planes are  
       independent  „ ... the particle motion in x & y is uncoupled“   

s = s1 s = 0 

Ansatz: 

Remember from school: 



 Thin Lens Approximation: 

matrix of a quadrupole lens 

in many practical cases we have the situation: 

... focal length of the lens is much bigger than the length of the magnet 

limes: while keeping  

... useful for fast (and in large machines still quite accurate)  „back on the envelope  
    calculations“ ... and for the guided studies ! 



focusing lens  

dipole magnet 

defocusing lens  

Transformation through a system of lattice elements 

combine the single element solutions by multiplication of the matrices 

x(s) 

s 

court. K. Wille 

                          0 

typical values  
in a strong  
foc. machine: 
x ≈ mm, x´  ≤ mrad 



Tune: number of oscillations per turn 

            64.31 
 59.32 

Relevant for beam stability:  
                               non integer part 

LHC revolution frequency:  11.3 kHz 



Question: what will happen, if the particle performs a second turn ?  

... or a third one or ... 1010 turns 

s 



Astronomer Hill:   
                differential equation for motions with periodic focusing properties 

 „Hill‘s equation“ 

Example: particle motion with  
periodic coefficient 

equation of motion: 

   restoring force  ≠ const,                                        we expect a kind of quasi harmonic       
          k(s) = depending on the position s                oscillation:  amplitude & phase will depend  
          k(s+L) = k(s),   periodic function                 on the position s in the ring. 



General solution of Hill´s equation: 

β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles  

ε, Φ = integration constants determined by initial conditions 

Inserting (i) into the equation of motion …  

Ψ(s) = „phase advance“ of the oscillation between point „0“ and „s“ in the lattice. 

For one complete revolution: number of oscillations per turn „Tune“ 

(i) 



general solution of 
Hill equation 

 from (1) we get 

Insert into (2) and solve for ε 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 



Beam Emittance and Phase Space Ellipse 

x´ 

x 

●

●

●

●

●

●
x(s) 

s

Liouville: in reasonable storage rings  
area in phase space is constant. 

               A = π*ε=const  

ε  beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter,  
                                 cannot be changed by the foc. properties.  
Scientifiquely speaking: area covered in transverse x, x´ phase space … and it is constant !!!  



particel trajectory: 

max. Amplitude: x´ at that position …? 

… put         into                                                                                              and solve for x´       

In the middle of a quadrupole β = maximum,  
                                                  α = zero 

… and the ellipse is flat 

* 

* A high β-function means a large beam size and a small beam divergence. 
   … et vice versa !!! 

! 



… solve for x´ 

… and determine       via: 

x´ 

x 

●

●

●

●

●

●

shape and orientation of the phase space ellipse  
depend on the Twiss parameters β α γ  



single particle trajectories, N ≈ 10 11  per bunch 

Gauß  
Particle Distribution: 

particle at distance 1 σ from centre ↔ 68.3 % of all beam particles 

aperture requirements:  r 0 =  10 * σ LHC:  



…   yes we had the topic already  

general solution  
of Hill´s equation 

remember the trigonometrical gymnastics:  sin(a + b) = … etc 

starting at point s(0) = s0 , where we put Ψ(0) = 0 

inserting above … 



which can be expressed ... for convenience ... in matrix form 

* we can calculate the single particle trajectories between two locations in the ring,  
   if we know the α β γ at these positions.  
* and nothing but the α β γ at these positions.  

*     …  ! * Äquivalenz der Matrizen 



ψ turn = phase advance  
per period 

„This rather formidable looking  
matrix simplifies considerably if  
we consider one complete revolution …“ 

Tune: Phase advance per turn in units of 2π  

DELTA Electron Storage Ring 



Stability Criterion: 

Question: what will happen, if we do not make too  
                  many mistakes and your particle performs  
                 one complete turn ? 

Matrix for 1 turn: 

1 J 
Matrix for N turns: 

The motion for N turns remains bounded, if the elements of MN remain bounded 



Matrix for 1 turn: 

I J Matrix for 2 turns: 

now … 



consider two positions in the storage ring: s0  , s 

since ε = const (Liouville): 
€ 

M =
m11 m12
m21 m22

 

 
 

 

 
 

Betafunction in a Storage Ring 

... remember W = CS´-SC´ = 1 

• 
• 

… inserting into ε   

sort via x, x´and compare the coefficients to get .... € 

M−1 =
m22 −m12
−m21 m11

 

 
 

 

 
 

€ 

x0 = m22x −m12 ′ x 
′ x 0 = −m21x + m11 ′ x 

€ 

ε = β0(m11 ′ x −m21x)
2 + 2α0(m22x −m12 ′ x )(m11 ′ x −m21x) + γ 0(m22x −m12 ′ x )2



in matrix notation: 

! 

1.)  this expression is important  

2.) given the twiss parameters α, β, γ at any point in the lattice we can transform them and  
     calculate their values at any other point in the ring. 

3.) the transfer matrix is given by the focusing properties of the lattice elements,  
     the elements of M are just those that we used to calculate single particle trajectories. 

4.) go back to point  1.)  

€ 

β

α

γ
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 
  

 

 

 
  
s2

=

m11
2 −2m11m12 m12

2

−m11m21 m12m21 + m22m11 −m12m22

m12
2 −2m22m21 m22

2

 

 

 
 
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 

 

 
 
 
*
β

α

γ

 

 

 
  

 

 

 
  
s1

The Twiss parameters α, β, γ can be transformed through the lattice via the  
matrix elements defined above. 

€ 

β(s) = m11
2 β0 − 2m11m12α0 + m12

2 γ 0
α(s) = −m11m21β0 + (m12m21 + m11m22)α0 −m12m22 γ 0
γ(s) = m21

2 β0 − 2m21m22α0 + m22
2 γ 0





general solution of Hills equation: 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 

equation of motion: 

beam size: 

●

●
●

●
●

●
● ●



x´ 

x 

●

●

●●

Beam Emittance corresponds to the area covered in the  
x, x´ Phase Space Ellipse 

Liouville: Area in phase space is constant. 

But so sorry ...  ε ≠ const ! 

●

Classical Mechanics:  

 phase space = diagram of the two canonical variables  
                  position    &  momentum                                           
                      x                         px 



According to Hamiltonian mechanics:     
phase space diagram relates the variables q and p 

Liouvilles Theorem: 

for convenience (i.e. because we are lazy bones) we use in accelerator theory: 

where βx= vx / c 

the beam emittance  
shrinks during  
acceleration   ε ~ 1 / γ 

q = position = x 
p = momentum = γmv = mcγβx 

ε 



1.)  A proton machine … or an electron linac … needs the highest aperture at injection energy !!! 
      as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes. 

2.) At lowest energy the machine will have the major aperture problems,  
       here we have to minimise  

3.) we need different beam  
    optics adopted to the energy:  
     A Mini Beta concept will only  
     be adequate at flat top.  

LHC injection  
optics at 450 GeV 

LHC mini beta  
optics at 7000 GeV 



Example: HERA proton ring 

injection energy: 40 GeV        γ = 43 
flat top  energy: 920 GeV        γ = 980 

emittance ε (40GeV)   = 1.2 * 10 -7 

                 ε (920GeV) = 5.1 * 10 -9 

7 σ beam envelope at E = 40 GeV  

… and at E = 920 GeV  



Linear Accelerator 

1928, Wideroe 

+  +  +  + -̶  -̶ -̶ 

* RF Acceleration: multiple application of  
  the same acceleration voltage; 
  brillant idea to gain higher energies  
  ... but changing acceleration voltage 

Energy Gain per „Gap“: 

500 MHz cavities in an electron storage ring 

drift tube structure at a proton linac 



Problem: panta rhei !!! 
(Heraklit: 540-480 v. Chr.) 

Bunch length of Electrons ≈ 1cm Example:  HERA RF: 

U0 

t

typical momentum spread of an electron bunch:  



y
ρ 

s 
● x 

remember: x ≈ mm , ρ ≈ m …   develop for small x 

consider only linear fields,  and change independent variable: t → s  

● 

p=p0+Δp 

Force acting on the particle 

… but now take a small momentum error into account !!! 



develop for small momentum error 

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. 
 inhomogeneous differential equation. 



general solution: 

Normalise with respect to Δp/p: 

Dispersion function D(s)  

        * is that special orbit, an ideal particle would have  for Δp/p = 1  

        * the orbit of any particle is the sum of the well known xβ  and the dispersion 

        * as D(s) is just another orbit it will be subject to the focusing properties of the lattice  



. ρ 

xβ 

Closed orbit for Δp/p > 0 

Matrix formalism: 

Dispersion 
 Example: homogeneous dipole field 

xβ 

e.g. matrix for a quadrupole lens: 

€ 

Mfoc =
cos( K s 1

K
sin( K s

− K sin( K s cos( K s

 

 

 
 
 

 

 

 
 
 

=
C S
C' S'
 

 
 

 

 
 



Example HERA  

Amplitude of Orbit oscillation  
                           contribution due to Dispersion ≈ beam size 

           Dispersion must vanish at the collision point  

Calculate D, D´ 

or expressed as 3x3 matrix 

(proof: see appendix) 

! 



Example: Drift 

Example: Dipole 



Example: Dispersion, calculated by an optics code for a real machine 

 *  D(s) is created by the dipole magnets  
                           … and afterwards focused by the quadrupole fields 

D(s) ≈ 1 … 2 m 
s 

Mini Beta Section,  
          no dipoles !!! 



Dispersion is visible  

HERA Standard Orbit 

dedicated energy change of the stored beam 
      closed orbit is moved to a   
         dispersions trajectory 

HERA Dispersion Orbit 

Attention: at the Interaction Points  
                 we require D=D´= 0  



ρ 

ds x 
dl 

design orbit 

particle trajectory particle with a displacement x to the design orbit 
 path length dl ...  

circumference of an off-energy closed orbit 

remember: 

* The lengthening of the orbit for off-momentum  
    particles is given by the dispersion function  
   and the bending radius. 

o 

o 

o 



For first estimates assume:  

Assume:   

Definition: 

αp combines via the dispersion function  
the momentum spread with the longitudinal 
motion of the particle. 



Transfer Matrix from point „0“ in the  
lattice to point „s“:  

For one complete turn the Twiss parameters  
have to obey periodic bundary conditions:  

Matrix in Twiss Form 



Quadrupole Error in the Lattice 

        optic perturbation described by thin lens quadrupole 

rule for getting the tune 

ideal storage ring quad error 

z 
ρ 

s 
● x 



remember the old fashioned trigonometric stuff and assume that the error is small !!!  

and referring to Q instead of ψ:     !     the tune shift is proportional to the β-function  
        at the quadrupole 

  !!    field quality, power supply tolerances etc are  
        much tighter at places where β is large 

  !!!    mini beta quads: β ≈ 1900 m  
        arc quads: β ≈ 80 m  

  !!!!    β is a measure for the sensitivity of the beam 

Quadrupole error  Tune Shift 



a quadrupol error leads to a shift of the tune: 

Example: measurement of β in a storage ring: 
                 tune spectrum 



Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  

   

dipole magnet 

focusing lens 

particle having ...   
          to high energy 
          to low energy 
          ideal energy 



definition of chromaticity: 

in case of a  momentum spread: 

… which acts like a quadrupole error in the machine and leads to a tune spread: 



Problem: chromaticity is generated by the lattice itself !! 

Q' is a number indicating the size of the tune spot in the working diagram,  
Q' is always created if the beam is focussed  
    it is determined by the focusing strength k of all quadrupoles 

k = quadrupole strength 
β = betafunction indicates the beam size … and even more the sensitivity of   
      the beam to external fields 

Example: LHC 

                     Q' = 250  
      Δ p/p = +/- 0.2 *10-3 

        Δ Q = 0.256 … 0.36 

 Some particles get very close to  
    resonances and are lost  

    in other words: the tune is not a point 
                          it is a pancake 

… what is wrong about Chromaticity: 



N 

Sextupole Magnets:  

1.) sort the particles acording to their momentum 

2.) apply a magnetic field that rises quadratically with x (sextupole field)  

linear rising  
„gradient“:  

S 

S N 

corrected chromaticity: 

normalised quadrupole strength:  

o 

quad 
geometry sext 

geometry 



β-Function in a FoDo 

€ 

′ Q =
−1
4π

N * 1
fQ

*
L(1+ sinψcell

2
) − L(1− sinψcell

2
)

sinµ

 

 
 

 
 

 

 
 

 
 

€ 

ˆ β =
(1+ sinψcell

2
)L

sinψcell   

€ 

 
β =

(1− sinψcell

2
)L

sinψcell



remember ... 

putting ...  

contribution of one FoDo Cell to the  chromaticity of the ring: 

using some TLC transformations ... ξ can be expressed in a very simple form: 

€ 

′ Q =
−1
4π

N * 1
fQ

*
2L sinψcell

2
sinψcell

€ 

′ Q =
−1
4π

N * 1
fQ

*
L sinψcell

2
sinψcell

2
cosψcell

2

€ 

′ Q cell =
−1
4π fQ

*
L tanψcell

2
sinψcell

2

€ 

′ Q cell =
−1
π
* tanψcell

2
€ 

sinψcell

2
=

L
4 fQ



question: main contribution to ξ in a lattice … ? 

Chromaticity 

interaction region 

o 



beam rigidity: 

bending strength of a dipole: 

focusing strength of a quadrupole: 

focal length of a quadrupole: 

equation of motion: 

matrix of a foc. quadrupole: 



 beam emittance:  

beta function in a drift: 

… and for α = 0  

particle trajectory for Δp/p ≠ 0 
inhomogenious equation: 

… and its solution: 

momentum compaction:  

quadrupole error:  

chromaticity:  
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