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Geometry of the ring: 
                                  centrifugal force =  Lorentz force 

p = momentum of the particle, 
ρ = curvature radius 

Bρ= beam rigidity 

Example: heavy ion storage ring TSR 
8 dipole magnets of equal bending strength  

High energy accelerators  circular machines 
                                              somewhere in the lattice we need a number of dipole magnets,                
                                              that are bending the design orbit to a closed ring  



The angle swept out in one revolution  
must be 2π, so 

field map of a storage ring dipole magnet 

ρ 

α 

ds 

 … for a full circle 

is usually required !! Nota bene:  



7000 GeV  Proton storage ring 
     dipole magnets  N = 1232 
                                 l = 15 m 
                                q = +1 e 

Example LHC: 



● 
ρ 

Solution for a focusing magnet 

y 
hor. plane 

vert. plane 

dipole magnet 

quadrupole magnet 

Example: HERA Ring:         
     Bending radius:          ρ = 580 m 
     Quadrupol Gradient: g = 110 T/m 

      k     =  33.64*10-3 /m2 
      1/ρ2  = 2.97 *10-6 /m2 

For estimates in large accelerators the weak focusing term 1/ρ2 can  
in general be neglected  



Hor. focusing Quadrupole Magnet 

Hor. defocusing Quadrupole Magnet 

Drift space 

Or written more convenient in 
matrix form: 



describes the transformation of amplitude x and angle x' through  
a number of lattice elements  

... and can be expressed by the optics parameters  

* we can calculate the single particle trajectories between two locations in the ring,  
   if we know the α β γ at these positions.  
* and nothing but the α β γ at these positions.  

*     …  ! 



In the case of periodic lattices the transfer matrix can be expressed  
as a function of a set of periodic parameters α, β, γ 

ψ = phase advance  
per period: 

In terms of these new periodic parameters the solution of the equation 
of motion is  

For stability of the motion in periodic lattice  
structures it is required that  € 

M(s) =
cosψ period +α s sinψperiod βs sinψperiod

−γ s sinψperiod cosψ period −α s sinψ period
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ψperiod =
ds
β(s)s

s+L

∫



consider two positions in the storage ring: s0  , s 

since ε = const: 

express x0 , x´0 as a function of  x, x´. 
... remember W = m11 m22 – m12 m21 = 1 

inserting into ε   

sort via x, x´and compare the coefficients to get .... 

● ρ 
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M−1 =
m22 −m12
−m21 m11
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x0 = m22x −m12 ′ x 
′ x 0 = −m21x + m11 ′ x 
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ε = β0(m11 ′ x −m21x)
2 + 2α0(m22x −m12 ′ x )(m11 ′ x −m21x) + γ 0(m22x −m12 ′ x )2



The new parameters α, β, γ can be transformed through the lattice via the  
lattice matrix elements defined above. 

the optical parameters depend on the focusing 
properties of the lattice, 
... and can be optimised accordingly !!! 

... and here starts the lattice design !!! 
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Most simple example:   drift space 

particle coordinates 

transformation of twiss parameters: 

Stability ...? 
 A periodic solution doesn‘t  
    exist in a lattice built exclusively  
    out of drift spaces. 
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Mdrift =
m11 m12
m21 m22
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      Arc: regular (periodic) magnet structure:  
   bending magnets  define the energy of the ring 
   main focusing & tune control, chromaticity correction, 
   multipoles for higher order corrections 

      Straight sections:  drift spaces for injection, dispersion suppressors,   
   low beta insertions, RF cavities, etc.... 
  ... and the high energy experiments if they cannot be avoided  



A magnet structure consisting of focusing and defocusing quadrupole lenses in  
alternating order with nothing in between. 
(Nothing = elements that can be neglected on first sight: drift, bending magnets,  
 RF structures ... and especially experiments...) 

Starting point for the calculation: in the middle of a focusing quadrupole 
Phase advance per cell µ = 45°,  
 calculate the twiss parameters for a periodic solution  

s 



Output of the optics program: 

Nr Type Length Strength βx αx φx βz αz φz 
m 1/m2 m 1/2π m 1/2π 

0 IP 0,000 0,000 11,611 0,000 0,000 5,295 0,000 0,000 
1 QFH 0,250 -0,541 11,228 1,514 0,004 5,488 -0,781 0,007 
2 QD 3,251 0,541 5,488 -0,781 0,070 11,228 1,514 0,066 
3 QFH 6,002 -0,541 11,611 0,000 0,125 5,295 0,000 0,125 
4 IP 6,002 0,000 11,611 0,000 0,125 5,295 0,000 0,125 

QX= 0,125 QZ= 0,125 

Periodic Solution of a FoDo Cell 

0.125 * 2π = 450     



strength and length of the FoDo elements          K  = +/- 0.54102 m-2 

     lq = 0.5 m 
     ld = 2.5 m 

Putting the numbers in and multiplying out ... 

The matrix for the complete cell is obtained by multiplication of the element matrices 

matrices 

Can we understand what the optics code is doing ?  



The transfer matrix for 1 period gives us all the information that we need ! 

1.) is the motion stable? 

2.) Phase advance per cell 

3.) hor β-function  

<  2  

4.) hor α-function  

€ 

M(s) =
cosψcell +α s sinψcell βs sinψcell

−γ s sinψcell cosψcell −α s sinψcell
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cosψcell =
1
2
trace(M) = 0.707
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ψcell = cos−1 1
2
trace(M)
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β =
m12

sinψcell

=11.611m
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α =
m11 − cosψcell

sinψcell

= 0



Matrix of a focusing quadrupole magnet: 

If the focal length f is much larger than the length of the quadrupole magnet, 

the transfer matrix can be aproximated using 


Can we do a bit easier ? 
                We can ... in thin lens approximation ! 



Calculate the matrix for a half cell, starting in the middle of a foc. quadrupole: 

for the second half cell set f  -f 

note:    denotes the focusing strength 
          of half a quadrupole, so  



Now we know, that the phase advance is related to the transfer matrix by 

After some beer and with a little bit of trigonometric gymnastics 

Matrix for the complete FoDo cell 
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cosψcell =
1
2

trace(M) =
1
2

* (2 − 4ld
2

˜ f 2 ) =1− 2ld
2

˜ f 2



we can calculate the phase advance as a function of the FoDo parameter … 

Example:  
            45-degree Cell 

LCell    =    lQF + lD + lQD +lD      =   0.5m+2.5m+0.5m+2.5m = 6m 

1/f   =   k*lQ   =   0.5m*0.541 m-2 = 0.27 m-1 

Remember: 
Exact calculation yields: 

€ 

cosψcell = 1− 2sin2(ψcell /2) = 1− 2ld
2

˜ f 2

sin(ψcell /2) = ld / ˜ f =
Lcell

2 ˜ f 

€ 

sin(ψcell /2) =
Lcell
4 f

€ 

sin(ψcell /2) =
Lcell
4 f

= 0.405

  

€ 

→ ψcell = 47.8

→ β =11.4 m   

€ 

→ ψcell = 45

→ β =11.6 m



Stability requires: 

SPS Lattice 

For stability the focal length  
has to be larger than a quarter  
of the cell length  
... don’t focus to strong ! 



General solution of the equation of motion 

Transformation of the coordinate vector (x,x´)  
expressed as a function of the twiss parameters 
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s1 
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x'(s) = ε
β(s) * α(s)cos(ψ(s) +ϕ) + sin(ψ(s) +ϕ){ }

Transformation Matrix in Terms of the Twiss Parameters  

Transformation of the coordinate vector (x,x´) in a lattice 



In the middle of a foc (defoc) quadrupole of the FoDo we allways have α = 0,  
and the half cell will lead us from βmax to βmin  

Compare to the twiss 
parameter form of M 
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Transfer Matrix for half a FoDo cell: 



Solving for βmax and βmin and remembering that …. 

The maximum and minimum values of  
the β-function are solely determined by  
the phase advance and the length of the cell. 

Longer cells lead to larger β 

typical shape of a proton  
bunch in a FoDo Cell 

! 

! 
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In both planes a gaussian particle distribution is assumed, given by the beam  
emittance ε and the β-function 

In general proton beams are „round“ in the sense that 

So for highest aperture we have to minimise the β-function 
in both planes: 

typical beam envelope, vacuum chamber and pole  
shape in a foc. Quadrupole lens in HERA  

HERA beam size  



search for the phase advance µ that results in  
a minimum of the sum of the beta’s  
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ˆ β +
 
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(1+ sinψcell

2
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2
)L
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2L
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d
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(2L sinψcell
) = 0
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L
sin2ψcell

*cosψcell = 0 → ψcell = 90



electron beams are usually flat,   εy ≈ 2 - 10 % εx   
    optimise only βhor 

red curve: βmax  
blue curve: βmin 
as a function of the phase advance ψ 
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d
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( ˆ β ) =
d
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L(1+ sinψcell

2
)

sinψcell

= 0 → ψcell = 76



field error of a dipole/distorted quadrupole  

the particle will follow a new closed trajectory, the distorted orbit: 

* the orbit amplitude will be large if the β function at the location of the kick is large 
                     indicates the sensitivity of the beam  here orbit correctors should be  
                     placed in the lattice 

* the orbit amplitude will be large at places where in the lattice β(s)  
   is large  here beam position monitors should be installed 

● ● 

o 

●



Elsa ring, Bonn 

* 



leff  effective magnet length, N number of magnets 

for periodic structures within the lattice / at least for the transfer  
matrix of the complete circular machine 

α,β,γ depend on the position s in the ring, µ (phase advance) is  
independent of s 

focal length of the quadrupole magnet  fQ = 1/(kQlQ)  >> lQ 

1.) Dipole strength 

2.) Stability condition 

3.) Transfer matrix for periodic cell  

4.) Thin lens approximation 
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M(s) =
cosψcell +α s sinψcell βs sinψcell

−γ s sinψcell cosψcell −α s sinψcell
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LCell length of the complete FoDo cell, fQ focal length of the  
quadrupole, µ phase advance per cell 

7.) Stability in a FoDo cell 
      (thin lens approx) 

LCell length of the complete FoDo cell, µ phase advance per cell 

Tune = phase advance  
in units of 2π 

          average radius  
and β-function 

5.) Tune (rough estimate) 

6.) Phase advance per FoDo cell 
      (thin lens appro 

8.) Beta functions in a FoDo cell 
      (thin lens approx) 
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Q = N *
ψperiod

2π
=
1
2π
* ds

β(s)
≈∫ 1
2π
* 2πR 

β 
=
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