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Primary purpose of this lectures I

Assumption: familiar with linear, transverse dynamics
Need to introduce new tools for non-linear dynamics

Avoid mathematical derivations and proofs

rather give "raison d'etre” and "mode d emploi”

Give an overview of the modern* tools used in

accelerator physics
Necessarily brief and incomplete

=P An invitation to further studies ...

*) modern: ”contemporary”, not ”fashionable” !
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Why Beam Dynamics in Rings ? I

Most lectures deal with rings
Rings are periodic systems

Implies stability (at least for some time) and
confinement

=» This restricts the methods and tools applicable
to study of beam dynamics

=»> Applicable to other machine and beam lines !



‘Outline of this lectures I

Motivation, introduction and classical concepts

New concepts and modern techniques
» Maps
» Computation: maps, symplectic integration
» Hamiltonian theory (for our purpose)
» Analysis: Lie transforms, normal forms

» Analysis: Differential algebra
Identify possible traps and pitfalls ...



‘Treatment of LINEAR dynamics in rings'

Standard introduction using Hill’s equation
(for simplicity: show for one dimension first):
d’x(s)

ds?

K (s) periodic, smooth function

+ K(s)z(s) =0

Is that true ?

No, normally not



Arrangement of beam line elements I

no field no field no field

field field field field

Cannot be described by Hill’s equation

Not smooth, not periodic



‘Treatment of LINEAR dynamics in rings'

Used to ”derive” Courant-Snyder ansatz:

2(s) = \/B(s) - € - cos(u(s) + o)

' / (sin(u(s) + po) + - cos(u(s) + o))

H Is the solution to any system that is: confined

and periodic !

Do particles really move like this ?



Trajectories in beam line elements I

/
//
__/’
no field no field no field
B B B B
field field field field
Not a solution of the above .....

What if we put additional elements (distortions ?)



Treatment of DISTORTED dynamics'

Hill’s equation with distortions, we have to re-write

(similar for the other plane):

d?z(s) _ By(z,y,s)
T+ K(ogals) = -2

or in general as (any order) multipoles:

d?z(s)
ds?

+ K(s)z(s) = Z Dijrr(8)zia’l 'y
1,5,k,020

Very non-linear differential equation to solve ...

= Enter the field of non-linear dynamics




Can we deal with that ?I

Under certain circumstances (see lecture by Oliver
Briining):

» All p;jri(s) are perturbations, i.e. (very) small

> Only a few p;;x(s) are non-zero

> You can avoid resonances

> Perturbations are smooth or possibly periodic

> Perturbation treatment to leading order is sufficient

Would you build a 3 billion Euro machine on these

assumptions and approximations 7



What is normally not said I

Hill’s equation, (-function, ...etc.:
> All concepts developped for synchrotrons !
(Courant and Snyder, 1957)

Strictly speaking, not applicable to:
> Beam lines, LINACs, cyclotrons, ....

Computer programs do not use Hill’s equation

Can we find a better framework ?



A disclaimer I

Traditional treatment requires many approximations
Useful to understand and demonstrate concepts
See Oliver Brining’s, Bernhard Holzer’s lectures

For practical work on realistic machine:
> New tools required
> Should exploit modern computing techniques to the

maximum

> It is much easier that you think ( .. and other people
tell you !)



‘A better framework.

Start with the differential equation:

d*x(s .
ds(2 ) + K(s)z(s) = Z Dijrr(8)zia’l 'y
1,7,k,0>0
> Bad news:

Description not very realistic (see above)

We have no global analytical solution

> Good news: An analytical solution is not needed !



‘A better framework.

> Why not ?

> We do not want to know:

=p The particle’s position and momentum at
2h 45min 22.3s ?

(Remember Thermodynamics !)

> We do want to know:
= [s the beam stable for a long time 7
= Is the motion confined 7

= Does the beam hit the target ?




‘An every day example I

> Not important to know trajectory as function of time
> Very important to know trajectory at end of flight

> Can we get a framework to get that (easily) ?



‘An every day example I

I —
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> Not important to know trajectory as function of time
> Very important to know trajectory at end of flight

» Can we get a framework to get that (easily) ?

Yes we can ! Should not go back 50 years !



‘A better framework - go back 100 years I

> ?0ld” to ”New” classical dynamics:

= Topology and properties of phase space (see Oliver’s
lecture)

=» Chaotic motion, non-integrable systems

=P Sensitivity to initial conditions



How 1s an beam line described ? I

/
//
~—/’
no field no field no field
B B
field field field field

Beam line (or ring) made of machine elements and drifts

Described by maps for magnets (M) and drifts (D)



‘HOW can an element really be described ? I

You need to describe what happens to the particle in M

and in the drifts D

. |

In general: z5 # 23

_Z




How i1s an element described ? I

Let z1,z5 describe a quantity (coordinates, beam sizes
...) before and after the element

Take an machine element (e.g. magnet) and build a
mathematical model M
=% In general: z5 = M (z])
=% M is a so-called map
= Very important: no need to know what happens in

the rest of the machine !!

The complete sequence of MAPS connects the pieces

together to make a ring (or beam line)



MAPS transform coordinates through an element I

3 ; . P _ 9 9
Use coordinate vector: 7 = (z, z' = 8—~’§, y, Yy = 8_?;) *)

M3 transforms the coordinates z1(s;) through the
magnet M3 at position s; to new coordinates z5(s2) at

position ss:

(=) (=)

23(82)2 = M3 o = M3 o 3(81)
Y Y

\v /. \v /.

*)  not unique, see later




MAPS transform coordinates through an element I

no field no field no field

field field field field

The MAP fully describes what happens inside the

magnet



What can M be ?

Any ”description” to go from z; to z;

This ”description” can be:
» A simple linear matrix or transformation

» A non-linear transformation (Taylor series,
Lie Transform ...)

» High order integration algorithm

» A computer program, subroutine etc.
Let us look at linear theory first !

Then generalize to non-linear theory




Simple examples (one dimensional)

First a drift space of length L
Two possible descriptions are (there are more):

> 1. Go straight from s; to sy!!
> 2. More formal:

S2 S1



Simple examples (one dimensional)

Focusing quadrupole of length L and strength k:

x cos(L - k) = -sin(L - k) x

x’ —k-sin(L - k)  cos(L - k) x’

S$2 S1

Quadrupole with short length L (i.e.: 1> L-k?)

T 1 0 T
2! B2 L(=1) 1 2!

S9o f S1

They are Maps, describe the movement in an element
(quadrupole)



Interlude: there was already a trap ... !

According to B. Holzer (lectures) or K. Wille (textbook):
1 4B,

-~ Bp dx

According to ”Handbook for Accelerator Physics” ([AC2|):

1 dBy
~ Bp dx

k

k’2

=P The lesson: check what people use !!

(remember Air Canada 143)




Interlude: it can be worse ... !

You also find (and it may even be useful ...):

1 dB,

K? = k = —Y
Bp dx

Often different conventions in simulation programs !

Some programs want fields, not gradients !
Found this construction:

By = g7 k-x-Bp




Interlude: what about 3D ... ? I

Formally extended by adding more variables:
- (x,x”,y, ¥y, As, %)
=» As = cAt: longitudinal displacement with respect to
reference particle

—p> %: relative momentum difference with respect to
reference particle

A Not all programs use this, but rather canonical variables

—> (Xa pm/psa Y py/psa _CAta Pt = %)

AA ps may be: ps=py or ps=po(l+3ds)=mBss

ds: difference between reference momentum and
design momentum




Putting the ”pieces” together

We have to deal with many elements in our
machines
To make a ring or beam line:
» Combine all elements maps together
» Concatenated maps are a map again
» Represents a bigger part of the machine

(or the whole machine ...)



How 1s an beam line described ? I

/
//
J
no field no field no field
B B
field field field field

Mall — M40@3 OM:;OQDZOMZO@]_OM:L

Beam line (or ring) is combination of all elements



Putting the ”pieces” together

Starting from a position s; and applying all maps
(for N elements) in sequence around a ring with
circumference C to get the One-Turn-Map (OTM)

for the position s; (for one dimension only):

T T
( , ) — Ml O MQ o ... O MN O ( / )
T T
so + C
T T
— ( , ) — Mm'ng(SO) O ( , )
€T T
so + C

S0



‘What does M, ,, do ? I

Xl

AN
turn 1 \

X
turn 2 turn 3

Transforms coordinates in phase space once per turn



Analysis of the One-Turn-Map

We have obtained a map for the whole ring

In simplest (linear) case: multiply matrices to get a
One-Turn-Matrix
Have to get now the information we want:

> Optics parameters (Tune, Twiss functions, ..)
> Closed orbit
» Stability

> etc. ...

How to analyse a MAP (first: a matrix) 777

(see also B. Holzer lecture, but practice comes here)



Normal forms
Maps can be transformed into (Jordan) Normal Forms
Original maps and normal form are equivalent, but ...

Easily used to analyse the maps:
> Get parameters (Q, Q’, Twiss function, ..)
> Study invariants, etc.
> Stability

> For resonance analysis

> etc. ...

Idea is to make a transformation to get a simpler form

for the map



Normal forms

Assume the map M, propagates the variables from
location 1 to location 2, we try to find transformations

Aq, A5 such that:
A1M12A2_1 = Riz

The map R, is:

> A ”Jordan Normal Form”, (or at least a very
simplified form of the map)

> Example: R, becomes a pure rotation

The map R, describes the same dynamics as M5, but:
> All coordinates are transformed

> The transformations A, A5 ”analyse” the motion



Normal forms - linear case

M - R

> Pictorial form of the transformation

> Motion on a complicated ellipse becomes motion on a
circle (i.e. a pure rotation)



Normal forms - linear case

NGO

M=AoR(Ap)o A or: R(Ap)=A"roMoA



Normal forms - linear case (1D)

Assume the one-turn-map (here a matrix) M(s) at the

position s is (e.g. lecture on transverse dynamics):

cos(Ap) + afs)sin(Ap) B(s)sin(Awu)

M(s) = | |
—y(s)sin(Ap) cos(Ap) — afs)sin(Ap)

> Describes the motion on a phase space ellipse

> Re-write M such that one part R becomes a pure

rotation (a circle), i.e.:
ARA™Y = M

> How 7?7 Remember lectures on Linear Algebra
(Eigenvectors, Eigenvalues ...)



Normal forms - linear case (1D)

NGO

M=AoR(Ap)o A~ or: R(Ap)=A"toMoA

with

. B(s) 0 o R cos(Ap)  sin(Ap)
_\% \/ﬁ —sin(Ap)  cos(Ap)




Normal forms - linear case (1D)
We had:
M=AoR(Au)o A or: R(Ap) =A"roMoA
with
B(s) 0 cos(Ap)  sin(Ap)

A = N . and R = |
BV ENLT) —sin(Ap)  cos(Ap)

> This is just the Courant-Snyder transformation to get

B, a,... etc., Ap is the tune !

> That is: the Courant-Snyder analysis is just a normal

form transform of the linear one turn matrix

> Works in more than one dimension



Normalized variables:

Please note that:

Tn x

— A_l O
/ /

x, x

is just a variable transformation to new, normalized

variables.

» Tune (Ap) in the normalized map,

stability for real values of phase advance (Apu)

> Optical functions (3, a,...) in the normalizing map

> No need to make any assumptions, ansatz,

approximation, ...




Interlude: action - angle variables

Once the particles ”travel” on a circle:
2 /2
» Radius (say: v2J, with J = 2%1) is constant
(invariant of motion): action J

> Phase advances by constant amount: angle V¥



Another example: coupling (2D)

Assume a one-turn-matrix in 2D:

= v)

M,m,N,n are 2-by-2 matrices. In case of coupling: m # 0,n # 0.

we can try to re-write as:

M n 4
T = = VRV
m N

with:



What have we obtained ?

The matrix R is our simple rotation:

> A and B are the one-turn-matrices for the normal

modes”
> The matrix C' contains the ”coupling coefficients”

> The matrix V transforms from the coordinates
(x,2',y,y") into the ”normal mode” coordinates

(w,w’,v,v") via the expression:
<x7 x,7 y? y/> — V<w7 w,7 /U7 /U,>

The last 2 slides: normally 1 hour lecture



Normal forms - linear case

This is extremely useful when map is applied k£ times (e.g.
k turns):

MF(x,2') = ARF A7 (z,2') = AR*(X, X")
> For multi-turns: study effect of map in normalized
coordinates
> Multiplying a matrix k£ (e.g. 4x4) can be quite a job !

> Easier to apply & times using the simple map ( e.g. a
rotation of ;1 becomes just a rotation £ - )

> The A just transforms back to physical coordinates at
the end (once !)



The general philosophy (linear Systems):l

Describe your elements by a linear map

Combine all maps into a ring or beam line to get the

linear one turn matrix

Normal form analysis of the linear one turn matrix will

give all the information
No need for any assumptions !
No need for any approximations !

Works in more than 1D and with coupling !



‘The general philosophy (non-linear systems):'

Describe your elements by a non-linear map

Combine all maps into a ring or beam line to get the

non-linear one turn map

Normal form analysis of the non-linear one turn map

will give all the information
No need for any assumptions !
No need for any approximations !

Works in more than 1D and non-linearities !



The general philosophy'

Linear elements

i i

Non-linear elements

Linear map Non-linear map
Linear Non-linear
One-Turn—-Map One-Turn—-Map
Linear Non-linear
Normal Form Normal Form

General formalism for all cases !



‘A small complication I

Non-linear maps are not matrices !



‘Various types of non-linear MAPSI

Choice depends on the application
» Taylor maps
» Symplectic integration techniques
» Lie transformations

» Truncated power series algebra (TPSA), can
also generate Taylor map from tracking

> ..



(A key concept: Symplecticity)
Not all possible maps are allowed !

Requires for a matrix M = M' . 5. M =S

with:

[0 )
—1
0 1
\ 0 0 -1 O)

0
0

o O =

0
0
0

It basically means: M is area preserving and

lim M" = finite — det M =1

n—aoao



Introducing non-linear elements

Effect of a (short) quadrupole depends linearly on
amplitude (re-written from the matrix form):

' ' ki - xg,

Y 0

Y
\Y ), \Y ), \ kv

= Z(s9) = M - Z(s1)

=» M 1s a matrix



Non-linear elements (e.g. sextupole)

Effect of a (thin) sextupole with strength k; is:

x! x! %kQ S — ygl)

Y Y 0
\v )., \v ), \ k() )
= Z(s9) = M o Z(s1)

-»> M is not a matrix, i.e. cannot be expressed by

matrix multiplication



Non-linear elements

Cannot be written in linear matrix form !
We need something like:

21(82) =x(s9) = Ryi-x +Rig-2 +Riz-y+ ...
+T11 - 27 + Thag - w2’ + Thag - 27+
+Tig - ay +Tha -2y + ...

+ U111 - 2° + Uqqpo - 222" + ...

and the equivalent for all other variables ...




Higher order (Taylor -) MAPS:
We have (for: j = 1...4):

ZRijk s1) + ZZTgksz s1)z1(51)

k=11=1

Let's call it : Ay = [R,T] (second order map A,)

Higher orders can be defined as needed ...

./43 = [R,T, U] — —|—S: S: S: Ujklmzk(sl)zl(sl)zm(sl)

k=1 l=1 m=1




Higher order (Taylor -) MAPS:

Example: complete second order map for a (thick)
sextupole with length L and strength K (in 4D):

o =x1+Lxy —K (%2(971 i) + & L & (1) — 1Y) + Si (o — i ))
vy =2} ~K (523 - y%> + L (maah — yavh) + B (@ — )
yo =1y + Ly +K (szxlyl + L (95191 +y177) + %(95191))

Y2 =Y +K (Lxlyl + & 21y + ) + %B(x’lyi))

A Definition of K not unique, can differ by some factor !!

2 2 k
e.g. (% = 9.2 Versus % = §x2>



Symplecticity for higher order MAPS

Truncated Taylor expansions are not matrices !!
It is the associated Jacobian matrix [/ which

must fulfil the symplecticity condition:

0z} 023
Oz} (e.g. Jay = 8,2:'1”)

J must fulfil: J¢-5-7=S8

Tik =

In general: J;., # const =» for truncated

Taylor map can be difficult to fulfil for all z



Symplecticity for higher order MAPS

Take the sextupole map (for simplicity in one dimension):

ro =x1+Lxy —K (L—Zx% + %33:133’1 + L—4x’2 + 0(3))

we compute:

0 1+AS
Jr.s. 7 = i # S
—1-AS 0

is non-symplectic with error:

K2
AS = 7—2L4(L2x’2 + 6Lxx’ + 62%)



Symplecticity for higher order MAPS

Take the sextupole map (for simplicity in one dimension):

ro =x1+Lxy —K (L—Zx% + %33:133’1 + L—4x’2 + 0(3))

we compute:

0 1+AS
Jr.s. 7 = i # S
—1-AS 0

is non-symplectic with error:

K2
AS = 7—2L4(L2x’2 + 6Lxx’ + 62%)



‘The way out: thin magnets'

Real magnets have a finite length, i.e. thick
magnets

Thick magnet: field and length used to
compute effect, i.e. the map

Consequence: they are not always linear
elements (even not dipoles, quadrupoles)

For thick, non-linear magnets closed solution
for maps often does not exist




‘Thick versus thin magnets'

Thin ”magnet”: let the length go to zero, but
keep field integral finite (constant)

Thin dipoles and quadrupoles are linear
elements

Thin elements are much easier to use ...



Moving through thin elements'

________ AX’ AX

\\\AX’

No change of amplitudes z and y

The momenta 2’ and 3’ receive an amplitude
dependent deflection (kick)

- ' — 2 + Axand y — ¢ + AY



‘Using thin elements'

Can we approximate a thick element by thin
element(s) ?

» Yes, when the length is small or does not
matter

» Yes, when we can model the thick magnet
correctly

» What about accuracy, symplecticity etc. 77

» Demonstrate with some simple examples



‘Thick — thin quadrupole I

cos(L - K) ~ -sin(L - K)

M3—>s—|—L — .
—K -sin(L-K)  cos(L-K)

> Exact map (matrix) for quadrupole

> What happens when we make it thin ?

> Accuracy 7
> Symplecticity ?

» (What follows is valid for all elements)




Accuracy of thin lenses I

cos(L - K) ~ -sin(L - K)

M3—>s—|—L —
—K -sin(L-K)  cos(L-K)

> Start with exact map

> Taylor expansion in ”small” length L:



‘Accuracy of thin lenses (B)I

> Keep up to first order term in L

o[ 10 1 0 1
M3—>3—|—L:L . + L -
0 1 —K? 0
1 L ;
Ms—>s—|—L: +O<L)
~K?. L 1

» Precise to first order O(L")
> det M # 1, non-symplectic




‘Accuracy of thin lenses (C)I

1 L ;
Ms—>s—|—L — =+ O(L )
~K*-L 1

1 L

Ms—>s—|—L —
—K?. L 1-K?*L?

» Precise to first order O(L")
> »symplectified” by adding term —K?L?

(it is wrong to O(L?) anyway ...)



Accuracy of thin lenses I

> Keep up to second order term in L

1-tK?L? L

+ O(L?)
~-K?-L 1-1K?L?

M3—>3—|—L —

» Precise to second order O(L?)

> More accurate than (C), but not symplectic



‘Accuracy of thin lenses (D)I

> Symplectification like:

1 1
~IK?1? L-iK?LP

+O(L%)
~K*-L 1-—3K*L?

Ms—>s—|—L —

> Precise to second order O(L?)

> Fully symplectic



Accuracy of thin lenses I

» Looks like we made some arbitrary changes and
called it ”symplectification”

» Is there a physical picture behind the
approximations 7

» Yes, geometry of thin lens kicks ...

» A thick element is split into thin elements with
drifts between them



‘Thick — thin quadrupole I

K* |

< L >

quadrupole of
finite length

options: rrrrrrrrr

Which is a good strategy 7 =% accuracy and speed



Thick quadrupole .. I




\ First order .. I

<L
|
!

L

> One thin quadrupole ”kick” and one drift combined

> Resembles ”symplectification” of type (C)

1 0 1 L 1 L
~K?2.L 1 0 1 ~K?2. L 1—-KZ?L>2




Second order .. I

2

K L

o — | ———— —

L/2 L/2 |

> One thin quadrupole ”kick” between two drifts

> Resembles more accurate, symplectic model of type (D)

1 <L 1 0 1 <L 1-1K?’L* L-3K’L’
0 1 ~K?-L 1 0 1 —K?- L —1K?L?




‘Accuracy of thin lenses'

One kick at the end (or beginning):

=» Error (inaccuracy) of first order O(L')

One kick in the centre:

=» Error (inaccuracy) of second order O(L?)
> It is very relevant how to apply thin lenses

> Aim should be to be precise and fast (and simple to

implement)



0.0004

0.0003

0.0002

0.0001

-0.0001

-0.0002

-0.0003

-0.0004

What is the point 777

T T
exact quadrupole map

1
-1.5

1
-0.5

ot

1
0.5

> Phase ellipse - quadrupole exact solution




‘Quadrupole non-symplectic solution'

0.0004

exact quladrupole mallp
non-symplectic O(1)

0.0003

0.0002

0.0001

-0.0001

&

-0.0002

-0.0003 -

-0.0004
-2

1 1 1 1 1
-1.5 -1 -0.5 (6] 0.5 1 1.5 2

> Non-symplecticity: particles spiral towards outside



Quadrupole symplectic O(L') solution

0.0004

exact quladrupole mzlalp
symplectic map O(1)

0.0003 -
0.0002 -

0.0001

-0.0001
-0.0002

-0.0003

-0.0004

1 1 1 1 1 1 1
-2 -1.5 -1 -0.5 (6] 0.5 1 1.5 2
X

> symplecticity: but phase space ellipse not accurate




Quadrupole symplectic O(L?) solution

0.0004

exact quladrupole mzlalp
symplectic map O(1)
symplectic map O(2

0.0003 e yp T p @

0.0002 -

0.0001

-0.0001
-0.0002

-0.0003

-0.0004

> symplecticity: phase space ellipse accurate enough




Can we do better ?I

> Try more slices, e.g. 3 kicks:
> How to put them ?

» Hope you are already alerted ... | ||

> Allow that they are at differ-
ent positions and have different
strengths | | |

> Minimize the inaccuracy

Question: is one of the options obviously wrong ? If yes,
why 7



Can we do better ?I

> Try a model with 3 kicks:

c2
cl c3

I I
di d2 | d3 d4

= To get best accuracy (i.e. deviation from exact

solution):
> Optimize kicks cl, c2, c3
> Optimize drifts d1, d2, d3, d4



Can we do better ?I

> Try a model with 3 kicks:

2

(o L a KL

alL

alL

e x

bL bL

BK
> with:
a~ 0.6756, b ~ -0.1756, a ~ 1.3512, 0 ~ -1.7024

» we have a O(4) integrator ...

» (a O(6) integrator would require 9 kicks (!) ...)



Can we do better ?I

> Try a model with 3 kicks:

2

a KL a K L

1

> Must track backwards ! Change interpretation !
» Thin lenses not a new sequence of magnets (a la MAD)

> What about space charge calculations 7



Symplectic integration'

What we do is Symplectic Integration

From a lower order integration scheme (1 kick),

construct higher order scheme

Formally (for the formulation of Si(¢) see later):

» From a 2nd order scheme (1 kick) S>(¢) we construct
a 4th order scheme (3 kicks = 3 x 1 kick) like:

S4(t) = Sg(xlt) O SQ(.th) @) S2 (xlt) with:
—21/3 1

rog — 2_21/3 ~ —1.7024 r1 = 2_21/3 ~ 1.3512




Symplectic integration'

Can be considered as an iterative scheme (see e.g.
H. Yoshida, 1990, E. Forest, 19982):

» If S5;(t) is a symmetric integrator of order 2k, then:
Sgk+2(t) = Sgk<x1t) 0 Sgk(ajot) ® Sgk<x1t) with:

. 2k—|—\1/§ 1

To = 9 _ 2k+\1/§ Tl = 9 _ 2k+\1/§

Higher order integrators can be obtained in a similar

way

m 2) E. Forest, ”Beam Dynamics, A New Attitude and Framework”, 1998 mmm



Symplectic integration'

Example: From a 4th order to 6th order
Se(t) = Sa(x1t) o Sy(xot) o Sy(x1t)

We get 3 times 4th order with 3 kicks each, we have the
9 kick, 6th order integrator mentioned earlier



Integrator of order 6'

> Requires 9 kicks
> We have 3 interleaved 4th order integrators

> Can be used in iterative scheme



‘ Some remarks: I

We have used a linear map (quadrupole) to
demonstrate the integration

Can that be applied for other maps (solenoids,
higher order, non-linear maps) ?

» Yes !!
» We get the same integrators !

» Proof and systematic (and easy) extension in
the form of Lie operators? (see later)

—»> Best accuracy for thin lenses !

- 2) H. Yoshida, Physics Letters A, Volume 150 (1990) 262. [



Accuracy of thin lenses I

What about accuracy of non-linear elements ?

assurmnie a general case:

> Disadvantage : usually a closed solution through the element

does not exist, integration necessary
> Advantage : They are usually thin (thinner than dipoles,
quadrupoles ...)
- Dipoles: =~ 14.3 m
- Quadrupole: =~ 2 - 5 m
- Sextupoles, Octupoles: ~ 0.30 m

==p Can try our simplest thin lens approximation first ...



Accuracy of thin lenses - our O(2) model

T 1 % T
1.5tep — o
2! 0 1 !
81—|—L/2 S1



Accuracy of thin lenses I

Assume the general case:

v = f(z) (=A)

> Using this thin lens approximation (type D, O(2)) gives:

L

x/(L) ~ xo+ Lf(xo+ 53:6)
L / /

v(L) = xo+ (w0 + (L))

2

> This is also called ”leap frog” algorithm/integration

> It is symplectic (... and time reversible) !!




\ Interlude ... I

1(0) (W2) () 32 2 62 3 (72 )

For any: 2" = f(x,2',t) we

can solve it by:

/

Tivzn N Tipiyo+ flrip)At

/
Li+1 ~ €I; + ZE,L_H/QAt




Accuracy of thin lenses I

Accuracy of ”leap frog” algorithm /integration”

the (exact) Taylor expansion gives:

1 1
v(L) = xo+xL+ §f($0)L2 — gxaf’(xo)l}‘3 + ...

the (approximate) ”leap frog” algorithm gives:

1 1
v(L) = mo+xyL + §f(x0)L2 + Z:z:f)f’(yco)lf3 + ...

» Errors are O(L?) (of course)

> For small L acceptable, and symplectic, extend to our
symplectic integration



Accuracy of thin lenses I

For bar/coffee discussions:

why did I write:

and not:



Accuracy of thin lenses I

An application, assume a (1D) sextupole with (definition of

k not unique !):
" = k-2* = f(x)

using the thin lens approximation (type D) gives:

1 1 1
r(L) = wzo+xyL+ §k:v(2)L2 + ik:coa:f)LS + ék:cglfl

H\
=
[

1
rh + kxs L + kroxpL? + ZkazazLS

Map for thick sextupole of length L in thin lens
approximation, accurate to O(L?)



Accuracy of thin lenses I

An application, assume a (1D) sextupole with (definition of

k not unique !):
" = k-2* = f(x)

using the thin lens approximation (type D) gives:

1 1 1
v(L) = z9+ x5l + §k:c3L2 + ikazgaszg -+ gkx62L4

H\
=
[

1
rh + kxi L + kroxpL? + Zkaz{)?Lg

Map for thick sextupole of length L in thin lens
approximation, accurate to O(L?)



Some comments: I

We have interleaved kicks with drifts

Is that always necessary ?
» No !
» Can be any map with an exact expression
» In most cases the exact map is a linear map

(matrix)

We have derived element maps for tracking
from the equation of motion using this
technique =» can track now



Simulation and tracking'

We have now sufficient tools for a simulation code

Main purpose of such a code: Propagate particles

around a ring or along a beam line

Results (amongst others):
> Phase space topology (Poincare sections,..)

> Global properties (after some analysis), e.g. stability,

detuning, invariants, frequency map analysis ....

In our terminology: Tracking codes produce maps (i.e.
relate output to the input)!

Can we extract more ”analytical” maps 7
y P



So far ... I

» Concept and representation by MAPS

» Computation and analysis of One-Turn-Maps
» Normal form analysis of LINEAR MAPS

» Introduction of Taylor maps

» Introduction of symplectic integration



Mathematical and Numerical Methods

for Non-linear Beam Dynamics in Rings

(an introduction)

Part 2
Werner Herr, CERN

http://cern.ch/Werner.Herr/CAS2013/lectures/Trondheim _methods.pdf

For many more detalils:
http://cern.ch/Werner.Herr/METHODS

[ | mmm Werner Herr, non-linear methods, CAS 2013, Trondheim s | .



The plan now ... I

Extend all concepts to non-linear dynamics
> Lagrangian and Hamiltonian dynamics
> How to use that =% Lie transforms
> How to analyse that =» Non-linear normal forms
> How to analyse that better =» Differential Algebra
(DA)
Avoid abstract definitions and formulation, but:
» Intuitive (but correct !) treatment
> Useful formulae and examples

» Real life examples and demonstration (DA)



‘ Hamilton principle I

Problem: describe the motion of a system (e.g. 1 or
more particles) between times ¢; and t,

@ 2

Describe by coordinates g¢; (i=1,n)
n are degrees of freedom of the system

(Goldstein convention)




‘ Hamilton principle I

Describe motion by a function L

L(q1, .- Qn,q1y ---Gn,t)
(q1,---Gn) ... generalized coordinates
(¢1,...Gn) ... generalized velocities
The function L defines the Lagrange function
The integral I = [ L(g;, i, t)dt defines the action

Without proof or derivation:
L =T —V = kinetic energy - potential energy




‘ Hamilton principle I

2
I :/ L(q;, g;, t)dt = extremum
1

> Hamiltonian principle: system moves such that the

action / becomes an extremum



‘Extremum principle ?I

Not new:
» Used in optics: Fermat principle
» Quantum mechanics (path integrals)

» General relativity

> ...



‘ Lagrange formalism I

Without proof:
2
I :/ L(q;, g;, t)dt = extremum
1

is fulfilled when:

doL oL __ 0
dt 0q; 0q;

(Euler - Lagrange equation)



From Lagrangian to Hamiltonian ..

Lagrangian L(q1,...qn, q1, ---Gn,t) in generalized
coordinates and velocities

Provides (n) second order differential equations

Try to get:
> Generalized momenta instead of velocities

» First order differential equations (always solvable)

Corresponding (so-called conjugate) momenta p, are:

. OL
pﬂ_aq'j



From Lagrangian to Hamiltonian ..

Lagrangian:
» n second order equations

» n-dimensional coordinate space

Hamiltonian:
» 2n first order equations

» 2n-dimensional phase space



From Lagrangian to Hamiltonian ..

Once we know what the canonical momenta p; are: the

Hamiltonian is a transformation of the Lagrangian:

qjvpja Zquz_ QJ7qj7t)

without proof:
H =T +V = kinetic energy + potential energy

we obtain 2 first order equation of motion:

oH __ s _ _ dpj o __ . _ dgj
dq; Pj = dt ’ 8pj_q3_ dt



Hamiltonian of particle in EM fields

For the Hamiltonian of a (relativistic) particle in a

electro-magnetic field we have (¢ — z):

H(@5.1) = o) (7~ eA(@, 1)) + m3e + (3, )

where A(Z,t), ®(Z,t) the vector and scalar scalar potential

Using canonical variables and the design path length s as

independent variable (bending in x-plane):

z v 20 As(zy)
H=—(14+ —)- 14+6)2—p2 —p2+ 2+ s\

where d = (p — po)/p is relative momentum deviation and A;(z,y)

longitudinal component of the vectorpotential [MB].



Hamiltonian of particle in EM fields

The magnetic fields can be described with the multipole

expansion:

By +iBy = Y (b + iay)(x + iy)" "

n=1

and since B = V x A:
L o
Z —[(by, + Pay ) (x + iy)"]
—n
» n =1 refers to dipole (not always true !)

> For a large machine (z < p) we expand the root and
sort the variables =»



Hamiltonian (for large machine) ..

k:z'ne;r\natic diggle quadrupole sextupole
Py + Py xd T ki, o o ko, 4 9
H = T N LYo
2xe) 5 ooy TR ) y')
~~ ~~

dispersive  focusing

1 0O"B
( using (MAD convention) : k, = B 6’:U”y )

> The Hamiltonian describes exactly the motion of a

particle through a magnet

> Basis to extend the linear to a non-linear formalism

But how do we use it 7?



Poisson brackets

Introduce Poisson bracket for a differential operator:

f: 9] _Z (8%‘ Op;  Op; 8%‘)

1=1

Here the variables z;, p; are canonical variables, f and g are
functions of x; and p;.

We can now write (using the Hamiltonian H for g):

o . . _8H . dpz'
f(ajZaPZ) = Pi = [pZ,H] — By T

Poisson brackets encode Hamiltons’s equations




Poisson brackets

» Poisson bracket [f, H]| describes the time evolution of
the system (the function f)

It is a special case of:

af _
dt

of

L H +

If H does not explicitly depend on time and:
[fv H] =0
implies that f is an invariant of the motion !

Poisson brackets determine invariants



Lie transformations

We can define:

frg=1f4
where : f : is an operator acting on the function g:
= 11.]

The operator : f : is called a Lie Operator
It acts on functions ¢(z,p), special cases:

gz,p) =2z —  :f:z

g(z,p)=p —  :f:p

Lie operators are Poisson brackets in waiting




Useful formulae for calculations

With z coordinate, p momentum, try special cases for f:

x — a . . — PR 8

 Op P = Ox

0> 02

2 e 2

v T op2 P Ox?

0 0
2 _ 2.
T 2x o : T 2p(‘9x
) i
P p@p x&v b= P 0xOp



More useful formulae for calculations

With r coordinate, p momentum, as usual:




Lie transformations

We can define powers as:

CfPg=f:(Gf:9)=[f1f9]] et

in particular:

ef:ZE( f)
1=0 "~
f L2 L3

The operator ¢/ is call an Lie Transformation




Lie transformations - example

Lie operators act on functions like z,p (canonical momentum,

instead of z'), for example:

:p2:x2—2p :p2:p:O
or as a Lie transformation with f = —Lp?/2:
. . 1 1
eIV By r—=L:p’:x+ =L°(:p> )’z +..
oL gl Y
—2p =0
= x+4 Lp
_Lp2 /92 1
e TP/ 2y = p—§L:p p+



Lie transformations - example

Lie operators act on functions like x,p (canonical momentum,

instead of z'), for example:

:p2:a::—2p :p2:p:0
or as a Lie transformation with f = —Lp?/2:
. . 1 1
eIV By r—=L:p°:x+ =L°(:p> )’z +..
A SN
=—2p =0
= x+ Lp
Lp2/2: 1
o Lp/2.p _ p_§L:p2 »+
=0
= P

This is the transformation of a drift space of length L !!



Lie transformations - general

Acting on the phase space coordinates:

€:f:(aj7p)0 — (xvp)l
that is:
€:f:330 = I
ezfzpO = n
> Lie transforms describe how to go from one point to
another [AC1, AD].

> Through a machine element (drift, magnet ...) fully
described by f

> But what is f 7




Lie transformations

» The generator [ is the Hamiltonian of the
element !

» We use the Hamiltonian to describe the motion
through an individual element

» Inside a single element the motion is ”smooth”
(in the full machine it is not !)

» Can track ”thick” elements (and still
symplectic !)



Some formulae for Lie transforms

With a constant, f, g,k arbitrary functions:

ca: = 0 e’ =1



More examples (1D):

For:
f= —§p2
we obtained:
el'z = xz+Lp
elip = p

> Drift space, seen that already



More examples (1D):
For:
f= —g(kz:ﬂ +p°)

we would get (try it !):

G:f:ZU _ 6:—%(k2m2—|—p2):x
ezf:p _ 6:—%(l€2m2—|—p2):p
Remember:
f . .
elg = ), ol



For:

More examples (1D):

f=- L(k2w2+p )

we would get (try it !):

€

o~ L7 +p?)

2.2, 2
— L& (k%z%+p ):QZ‘

o (2n)! (2n +1)!

. o0 k2L2 n _k2L2 2n+1
- Z( LRI 5 el

(2n +1)!

_ i ((—k2L2)2n .$+L<_k2L2)2n+1 |

/)



More examples (1D):
For:
f= —g(kz:ﬂ +p°)

we would get (try it !):

el'x = x cos(kL) —l—% sin(kL)
el'p = —kx sin(kL) 4 p cos(kL)

> Thick, focusing quadrupole !



Hamiltonians of some thick machine elements (3D)

dipole:
2 2
H:_—x5+ 2 N Pz + Dy
0 202 2(1+6)
quadrupole:
1 p2 + p?
H =k 2 2 Z Y
M@ =y 9T
sextupole:
2 2
Pz TP
H = —ky(a® — 3ay’) + ——2
2( vy )+2(1—|—5)
octupole:
2 2
Pz TP
H = “fa(zt — 62242 4 x y



Remark:

In many cases the non-linear effects by the
kinematic term is negligible and

1 ps +p;
H=k(z*—y° RS
R =Y+ o0 g
i1s written as:
1 2 4 g2
H = §k1(x2 — yQ) + e 9 py

In 1D it reduces to previous example



Why all that 777

If we know the Hamiltonian of a machine elements

(magnet) then:

€:H:CUO — 1

e'po = p1

This is also true for functions of r and p:

GZH:fO(xap) — fl(xap)
The miracles:

> Poisson brackets create symplectic maps

h:

> Exponential form e is always symplectic

> Better: the exponent is directly connected to the

invariant of the transfer map !!




Many machine elements

> We can combine many machine elements f,, by applying
one transformation after the other:

ezh: _ ezflzezfgznnezf]\r:

> Not restricted to matrices, i.e. linear elements ...

> And arrive at a transformation for the full ring

== a one turn map

> The one turn map is the exponential of the effective

Hamiltonian:



Why all that ???
concatenation very easy:

6:h: _ 6:f:ezg: _ 6:f—i—g:

when f and ¢ commute (i.e. [f,g] = |g,f] = 0)

Otherwise formalism exist



Concatenation
To combine:

e:h: _ 6:fzezgz

We can use the formula (Baker-Campbell-Hausdorff
(BCH)):

h=f + g+ slfigd + w6 1f9] + $5lo1g, f]
+ 9115 19,19, /] — =55l9: 19 [9: (9, FII)]
— ﬁ[f, [f, [f, [f,g]]]] + 3—(150[97 [fv [fv [fag““ T ..



Concatenation

To combine:
e:h: _ 6:fzezgz

if one of them (f or g) is small, can truncate the series and
get a very useful formula. Assume g is small:

ol o9 = ght exp [I f+ (1 —i_f) g—I—O(QQ) :]




General thin lens kick f(z):

ezfo f(z")dz':
gives for the map:
xXr = o
p = po+ f(=)

Example: thin lens multipole of order n (f(x) =a-2"):

: +1,
gives for the map:
T = o
p = po+az”




Monomials in x and p of orders n and m (z"p™)

gives for the map (for n # m):

e:axnpm:x — . [1 4 a(n _ m)xn—lpm—l]m/(m—n)

ezaxnpm:p = p- [1 + a(n . m)xn—lpm—l]n/(n—m)

gives for the map (for n = m):

. n_n, . n—1_ _n—1
e.CLCIZ yo, ‘r — T-e anx D

n, . n, n—1 _n—1

e axr’p p = p.ean:c p



From the Hamiltonian to the map

We have seen that given the Hamiltonian f of a machine
element is known, the Lie operator becomes:

f — :f:
the corresponding map is than:
el (e 7%
This map is always symplectic and we have (in 1D):
eliry = 11
G:f:po = D1
or using Z = (z,pz,Y,Dy,...) (in 2D):

e:f:ZO = Zl



From the map to the Hamiltonian

The other question = assuming we do not have the

Hamiltonian, but a matrix M (from somewhere):

M = cos(u) + asin(p) Bsin(p)
- —sin(u) cos(p) — avsin(p)
i.e.:
MZy = 74

how do we find the corresponding form for [ 7

M PN e:f: (e:—,uf:>



For the linear matrix we know that f must be a quadratic
form in (x, p, ...).

Any quadratic form can be written as:
1 1
f:—iZ*FZ | = —§(a°x2—|—boxp—|—c'p2)]

where [’ is a symmetric, positive definite (why ?7) matrix.
Then we can write (without proof, see e.g. Dragt):

f.Z=5SFZ7

where S is the ”symplecticity” matrix.
Therefore we get for the Lie transformation:

6:f:Z PN €SFZ




Since we have n = 2, we get (using Hamilton — Cayley

theorem):

We now have to find ap and a; !

The eigenvalues of SF' are:




This tells us for the coefficients the conditions:
Ay
e’ =ag+ a1 Ayt

e =ag+ a1 A_
and therefore:
ag = cos(v/ ac — b?)
(

sin(vac — b?)

vac — b?

a1 —

and

SF sin(vac — b?) b ¢
e = cos(v ac — b?) +
( ) vac — b? —a —b




From the map to the Hamiltonian

For a general 2 x 2 matrix:

mi1r Mi2
M =
ma1 M22

we get by comparison:

cos(v ac — b?) = %tr(M)

and

a 2b C vac — b?

—mg1 M1 —Mg2  Mi2  sin(vVac — b?)

for the quadratic form of f:

1
f=—5laa®+b aptep)



From the map to the Hamiltonian

For the example of a drift:

we find:



From the map to the Hamiltonian

For the example of a thin quadrupole:

1
M =
_% 1
we find:
! b=20 0
a = —, — , C =
f
and for the generator:
L,
f= _ﬁ(x )



A very important example ...

COSs | + asin sin
M = p (1) Bsin p
—~sin cos u — asin(u)

corresponds to:

ol — gif2r — gimwg (va?+2awptBp?):
In this form f is: —p - (Courant-Snyder invariant)
eh _ e:fg: _ e—,ue

> We have standard (e/?') for the linear one-turn-matrix (a

rotation)...



A very important example ...

With our linear transformation to normalized variables:

cos u + asin(u) (3 sin cosp  sinp
=
—~y sin cos u — asin(u) —sinp  cos
therefore:

—pi (vz?+2azp+6p?): t—pE (2% +p?):

e = €

and for a 3D linear system we have for f5:

x 1
f2 = — 'LL—(QBQ + ) — &(?f +p§) — ~a.b”
2 2 2
or in action variables J:
1
f2 - - ,LLJ:JJ: — ,LLny — 505052

> A standard (e/?') transformation in 3D



First summary: Lie transforms and integrators
> We have powerful tools to decribe non-linear elements
> They are always symplectic !

> Can be combined to form a ring (and therefore a
non-linear One-Turn-Map)

> Tools and programs are available for their manipulation
and computation

> How do we analyse the maps 7 Guess: Normal Forms



Normal forms non-linear case

Normal form transformations can be generalized for
non-linear maps (i.e. not matrices). If M is our usual

one-turn-map, we try to find a transformation:
N = AMA™!

> where )N is a simple form (like the rotation we had
before)

Of course we now do not have matrices, we use a Lie
transform F' to decribe the transform A:

N _ 6—:h: _ AMA—l _ e:F:/\/le_:F:



Normal forms - non-linear case

> More complicated transformation F' required
> Transform to coordinates where map is just a rotation
> In general better done in action angle variables: J W

> Rotation angle may be amplitude dependent: u =% u(J)



Normal forms - non-linear case
The canonical transformation A:
N = AMA™! = A=¢l
should be the transformation to produce our simple form
» W(Jy, Uy, Jy, Uy, 2,0) = h(Jy, Jy,0) = hepp(Ja,Jy,0)
> Should work for any kind of local perturbation

> Formalism and software tools exist to find F' (see e.g.
Chao') or E.Forest, M. Berz, J. Irwin, SSC-166)

» Once we know hes(Jy,J,,8) we can derive everything !

. 1) A. Chao, Lecture Notes on Topics in Accelerator Physics, 2001



Normal forms - non-linear case

Once we can write the map as (now example in 3D):

N — e—:heff(Jm,Jy,(S):

where h.fs depends only on J;, J,, and J, then we have the tunes:

QalJas Iy, 0) = 21 O0Jy
QulJe. 11:0) = 5 5
and the change of path length:
Ohey g
Az = —
i 96

Particles with different J,,J, and 0 have different tunes:

== Dependence on J is amplitude detuning, dependence on ¢

are the chromaticities !



How does h.;¢ look like 7

The effective Hamiltonian can be written (here to 3rd order)
(see e.g. E. Forest, M. Berz, J. Irwin, SSC-166) as:

1
heff = + ,LLJ:J:B + ,LLny + 504052
Cx1dz0 + Cy1l chS —+ 6353
+  Coedi F CoyJady + cnyy2 + Cao e + cyady6° + cad”

and then:

1 Ohe. 1
Q:C(ny Jy7 5) — 27_‘_ anf — % (,U‘ZC + 2C$wl]w + Cmyt]y + nglé —|_ C$252)

1 Ohe 1
Qy(Jz, Jy,0) = o anf T o (Ny + 2¢yyJy + CayJo +Cy10 + Cy252)

Y
Oheyy 2 3

Az = — 95 = el + 3¢c30° 4+ 4ca0” + cp1de + cy1Jy + 2¢02J20 + 2¢y2Jy0



What’s the meaning of it 7

> Uz, Lyt tunes

”momentum compaction”

> %ozc,c;;,ap linear and non-linear
> Cz1,Cy1: first order chromaticities
> Cz2,Cy2: second order chromaticities

> Cax, Cay, Cyy: detuning with amplitude



A linear map followed by a single (weak) sextupole:

3 2.
M = e 1587 HP? + gacd® pifs _ gmida + gacd® ket 4 oy

we get for h.ss (see e.g. [AC1, EF]):
1
heff = pade + 5%52 — kD?*8° — 3kB,J. D
or in 3D:

1
hepr = phade + pyJy + 5%52 — kD?*8° — 3kB,J. DS + 3kB3,J, DS



When we have h.r¢ in 3D we obtain:

1 Ohery 1
T\YT> 75 — — — (Ug — k :ED5
1 Ohery 1
43 75 — —_— 3]43 D(S
and the change of path length:
Oh
As = ——LL — 4.5 — 3kD?6 — 3kD (B, T, — B, J,,)

00



Assume a linear rotation (as always) followed by an
octupole, the Hamiltonian is (1D to keep it simple):
4

T
H:g(x2+p2)—l—k3'z (p = pz)

With the Hamilton’s equation leading to:



The map, written in Lie representation is:

L2 2, . 4. . 4.
M — 6—5.33 —I—p . 6.]63-%. — Rek‘g%

we transform by applying:

24

N _ AMA_l _ 6:F: Re:kg-%: 6—:F: :RR—l 6:F: Re:kg-T: 6—:F:

4 4
_ RG:R_1F+I<;3-“3T—F:—|—O(€2) _ Re:(R—1—1)F+k3-mT:+O(e?)

we have now to choose F' to simplify the expression:

_ (gl z
= (R 1)F—|—/<33°4

and get [EF1, AW]:

1
= o1 { =52 +3p* +62°p° +2°p- (8cot () +4cot (2u))+xp” (8cot () —4cot (2u)) }




We go back to r and p coordinates and with:
J = (2% +p°)/2
we can write the map:

. . 3L..72. ik
M =e¢ B e pJ+gks-J7: e.F.

the term %kg . J? produces the tune shift with amplitude we
know for an octupole (- < 52 > in real space)

Note: the normalized map (our most simple map):
R = ez—p,J—l—%k:g-JQ:

is again a rotation in phase space, but the rotation angle
now depends on the amplitude J



When we have h.sr in 1D for a single octupole (see before):

3
heff = —uJ + gkg-JQ
1 Ohesr 1 3
€T €T — —_— €X k Jx
QulSzy Jy) = o 5. onte T g o

and with normalization in real space (i.e. 7 # 1):

AQ.(Jy, Jy) = ks < 3% > J,

8- 21
Example: g = 300m, k3 = 0.01

AQqy(Jy, ) =53.7- J,




A real life example: beam-beam interaction

IP1

> Localized distortion, very strong non-linearity

> Standard perturbation theory not appropriate



Effect on invariants - start with single IPI

> Look for invariant 5/

i.e.:

> Linear transfer ¢/2° and beam-beam interaction e '
e f2 eF — e h
with (see before):
o= B g2
and (see before):
F = / dx' f(z)
0



‘Eﬂ’ect on invariants I

For a Gaussian beam we have for f(x) (see lecture on
beam-beam effects):

fla) = (1 - e57)

X

as usual go to action angle variables ¥, J:

[2J
x = +\/2J3sinV, p = ?COS\P

and write F(x) as Fourier series:

oo

Flz)= ) cu(J)e™

nN=——oo



We need: I

REMEMBER: with this transform f; becomes very simple:

Ja=—pJ

and useful properties of Lie operators (any textbook?)):

1 faig(J) =0, . fo: eV — z'n,uemq’, g(: f2 e inW _ — g(inp)e inW

and the formula (any textbook?):

6:f2: eiF: _ 6:h: = exp [: f2+( :f2: )F+O(F2) :]

1 —e—if2

m 2) E. Forest, ”Beam Dynamics, A New Attitude and Framework”, 1998 mmm



Single IP I

gives immediately for h:

= —uJ + ch etV

1—e ing

—uJ - (inW4i5)
H +ZC QSm s )6

away from resonance normal form transformation gives:

hy, = —pJ+co(J) = const.
dCO(J)
h k
[ omewor N



Single IP - analysis of h I

pd ch QSm 8 )6
On resonance:
_r_
0= n o 2w
with ¢, # 0O:
sin(?) =sin(pr) =0 V integer p

and h diverges, find automatically all resonance conditions



Invariant from tracking: one IPI

X v =0.31 X w =031

127 .
50.2

' ' *2.65

50.1
12,6 o R t - - -
05T s T o5 i s o
. " .
1255 | 299 t*
| | | o o 498
15 -1 -05 05 1 15 ®+m2

=» Shown for 50, and 100,



‘Invariant versus tracking: one IPI

X yx -0.31

50. 2¢

50. 1t

o+71/2

=» Shown for 50, and 100,



Truncated Power Series Algebra (TPSA)

> Tracking particles is very reliable method

> Simulation can produce maps for complicated
configurations

> How can we analyse the map produced by a tracking
code ?

> Now we put the final nail into the coffin of any other
approach ...




Truncated Power Series Algebra

Input z,
. —=>
(XX.y.y's, 0),

Algorithm

%

Output z

J
zz—jZCj z, * ..

> The tracking of a complicated system relates the output

numerically to the input

> Could we imagine something that relates the output

algebraically to the input ?

> For example a Taylor series ?

2 =3 Ciz =3 fM2]




‘Why are Taylor series useful ?I

Let us study the paraxial behaviour:

AN

> Red line is the ideal orbit
> Blue lines are small deviations

> If we understand how small deviations behave, we
understand the system much better




‘Why are Taylor series useful ?I

Now remember the definition of the Taylor series:

(") (g
fla+ Az) = +Zf
fla+ Azx) = f(a) + fll(f”)Ag;w f”2< ) Ag? fﬂ;“>m3+

=P The coeflicients determine the behaviour of small
deviations Az from the ideal orbit z

=» The Taylor expansion does a paraxial analysis of the

system



‘Why are Taylor series useful ?I

If the function f(x) is represented by a Taylor series:

> f(n) a N
fla+ Az) = f(a) + Zl n!( ) A
if it is truncated to the m-th order:
= (") (q N
fla+ Az) = f(a) + Z_:l n!( ) A

=» There is a equivalence between the function f(z) and the
vector ( f(a), f'(a), f"(a), .. f™(a))

==» This vector is a Truncated Power Series Algebra (TPSA)
representation of f(z) around a

=P How to get these coefficients without extra work 7



Numerical differentiation

The problem getting the derivatives ") (a) of f(z)
at a:

fla+e€)— fla)

€

f(a) =

» Need to subtract almost equal numbers and

divide by small number.

» For higher orders f”, f.., accuracy hopeless !

» We can use Differential Algebra (DA)
(M. Berz, 1988 and [MB])



Differential Algebra

1. Define a pair (qo,q1), with gg,¢; real numbers



Differential Algebra

1. Define a pair (qo,q1), with gg,¢; real numbers
2. Define operations on a pair like:

(90, q1) + (ro,71) = (90 + 70,91 +71)

C - (QO7q1) — (C' qdo, C - Q1)

(QO,(h) ' (7“0,7“1) — (QO *To, o T1+q1 '7“0)



Differential Algebra

1. Define a pair (qo,q1), with gg,¢; real numbers
2. Define operations on a pair like:

(90, q1) + (ro,71) = (90 + 70,91 +71)

C - (QO7Q1) — (C' qdo, C - (]1)

(610,(]1) ' (7“0,7“1) — (CIO *To, o T1+q1 '7“0)

3. And some ordering:

(qo,q1) < (ro,r1) if q<rg or (g=r9 and q <ry)

(qo,q1) > (ro,r1) if qo>rg or (g=r9 and q >ry)



Differential Algebra

1. Define a pair (qo,q1), with qo,q: real numbers
2. Define operations on a pair like:

(qo,q1) + (ro,71) = (g0 + 7r0,q1 +71)

¢ (qo,q1) = (c-qo,c-q1)
(QO,Q1) : (7“0,7“1) — (QO “To, o T1+ q1 '7“0)

3. And some ordering:
(go,q1) < (ro,r1) if q<ro or (g=1r0 and q1 <ri)

(go,q1) > (ro,71) if q>ro or (g=r0o and q1>11)

4. This implies something strange:
(0,0) < (0,1) < (r,0) (for any pos. r)



Differential Algebra
This means that (0,1) is between 0 and ANY real number

=» infinitely small !!!
We call this therefore ”differential unit” d = (0,1) = 9.

Of course (q,0) is just the real number ¢ and we define ”real
part” and ”differential part” (a bit like complex numbers..):

9 = R(q,q1) and g1 =D(qo,q1)

With our rules we can further see that:

(1,0) - (go.q1) = (go,q1)

_ 1 q1
<QO7Q1) ! — <_7__)
qo C](Z)



Differential Algebra

Of course can let a function f act on the pair (or vector)

using our rules.

For example:
f(z) — f(z,0)
acts like the function f on the real variable x:
f(x) = R[f(x,0)]

What about the differential part D ?



Differential Algebra

For a function f(x) without proof:

D[f(z+d)] = D[f((z,0) + (0,1))] = D[f(z, 1)] = f'(z)
An example instead:

1
f($)=$2+5

then using school calculus:



Differential Algebra

For x in:

1
f(ﬂi):$2+5

we substitute: x — (x, 1) = (2, 1) and use our rules:

f[(271>] — (271)2+<271)_1
— (474)4_(%7_%)
9 15

= G, ) =0, @)

The computation of derivatives becomes an algebraic

problem, no need for small numbers, exact !



. The pair (go,1), becomes a vector of order N:
(q0,1) = (qo,1, 0, 0O, ...,0) o = (0,1, 0,0,0,...)

. (QO7Q17Q27"'QN) + (T07T17T27"°TN) — (807817327"'3N)
with: S; — (; -+ r;

. ¢ (091,92, --qn) = (c-qo,c-qu,¢ G2, ...C- qN)

. (QO7Q1,CI2,---C]N) : (7“0,7°1,7°2,---7“N) = (80,81,82,---8N)
with:

) .
7!
T kz_o S T




If we had started with:
x = (a,1,0,0,0...)
we would get:
fl@)=( fla), f(@), f'(@), f"(a),... f*™(a))
can be extended to more variables z, y:
xr = (a,1,0,0,0...) dr = (0,1,0,0,0,..)
y = (0,0,1,0,0...) dy = (0,0,1,0,0,..)

and get (with more complicated multiplication rules):

of of 0°f 0°
e+ dn)y+ ) = (150 L L T )




What is the use of that:

Input z | Output z
—=> Algorithm ——=>
(f.f, 0 F"17,..)

2

(F.0 057 )

1

Can extract a truncated Taylor map of a beam line or ring
by pushing the identity map f(z) = (a,1,0,0,0...) through the
algorithm as if it is a vector in phase space !

The maps are provided with the desired accuracy and to

any order.



What is the use of that:

Input z | Output z
—=> Algorithm ——=>
(f.f, 0 F"17,..)

2

(F.0 057 )

1

> ” Algorithm” can be a mathematical function
> ” Algorithm” can be a complex computer code

> Easy using polymorphism of modern languages (see
example)

> Normal form analysis on Taylor series is much easier !!

=» We get a Taylor map for a computer code !!!



What is the use of that:

Demonstrate with simple examples (FORTRAN 95):
> First show the concept
> Simple FODO cell

> Normal form analysis of the FODO cell with
octupoles

All examples and all source code in:

Website: http://cern.ch/Werner.Herr/CAS2013/DA

Small DA package provided by E. Forest



Look at this small example:

PROGRAM DATEST1

use my_own_da

real(8) x,z, dx

my_order—3

dx=0.0

x=3.141592653/6.0 4+ dx
call track(x, z)

call print(z,6)

END PROGRAM DATEST1

SUBROUTINE TRACK(a, b)
use my_own_da

real(8) a,b

b = sin(a)

END SUBROUTINE TRACK

PROGRAM DATEST?2
use my_own_da
type(my_taylor) x,z, dx
my_order—=3
dx=1.0.mono.1 ! this is our (0,1)
x=3.141592653/6.0 4+ dx

call track(x, z)

call print(z,6)

END PROGRAM DATEST?2

SUBROUTINE TRACK(a, b)
use my_own_da
type(my_taylor) a,b

b = sin(a)

END SUBROUTINE TRACK

| 2) Courtesy E. Forest for the small DA package used here ... S



Look at the results:

(0,0) 0.5000000000000E-+00
(1,0) 0.8660254037844E-+00
(0,1) 0.0000000000000E—+00
(2,0) -0.2500000000000E+00
(0,2) 0.0000000000000E—+00
(1,1) 0.0000000000000E—+00
(3,0) -0.1443375672974E+00
(0,3) 0.0000000000000E—+00
(2,1) 0.0000000000000E—+00
(0,0) 0.5000000000000E-+00 (1,2) 0.0000000000000E+00

We have sin(%z) = 0.5 all right, but what is the rest 77




Look at the results:

(0,0) 0.5000000000000E+-00
(1,0) 0.8660254037844E+00
(0,1) 0.0000000000000E+-00
(2,0) -0.2500000000000E+00
(0,2) 0.0000000000000E+-00
(1,1) 0.0000000000000E+-00
(3,0) -0.1443375672974E-+00
(0,3) 0.0000000000000E+-00
(2,1) 0.0000000000000E+-00

(0,0) 0.5000000000000E+-00 (1,2) 0.0000000000000E+-00
1 1
Szn(% + Ax) = Szn(%) + cos(%)Aa:l - isin(%)AUf - écas(%)Afcg




‘What is the use of that:'

We have used a simple algorithm here (sin) but it can be

anything very complex

We can compute nonlinear maps as a Taylor expansion of

anything the program computes

Simply by:
> Replacing regular (e.g. REAL) types by TPSA types
(my_taylor) i.e. variables x,p are automatically replaced
by (z,1,0,..) and (p,0,1,0,..) etc.
> Operators and functions (+, —, x,=, ..., exp, sin, ...)
automatically overloaded, i.e. behave according to new

type



What is the use of that:

Assume the Algorithm describes one turn, then:

Normal tracking:
> X .CU y D5 Y, py78 5) - Xn—i—l — (x7p$7y7py7875)n—|—1

> Coordinates after one completed turn
TPSA tracking:
> X0 = (T, P2y Uy Pys $,0)n = Xpy1 = >.C; X7
> Taylor expansion after one completed turn
> Automatically all X,,;; where it converges
> The C; contain useful information about behaviour

> Taylor map directly used for normal form analysis



Another example:

» Track through a FODO lattice:
QF - DRIFT - QD
Integrate 100 steps in the quadrupoles

Now we use three variables:

X, py Ap = (Z(l)a Z(Z), 2(3))

. 2) Courtesy E. Forest for the small DA package used here ...



Another example:

program fodol

use my_own_da

use my_analysis
type(my_taylor) z(3)
type(normalform) NORMAL
type(my_map) M,id

real(dp) L,DL,k1,k3,fix(3)
integer i,nstep

my_order=4 ! maximum order 4
fix=0.0 ! fixed point

id=1

z—fix-id

LC=62.5 ! half cell length
L=3.0 ! quadrupole length

nstep—=100
DL=L /nstep

k1=0.003 ! quadrupole strength

do i=1,nstep ! track through quadrupole
z(1)=z(1)4+DL /2*z(2)
z(2)=z(2)-k1*DL*z(1)/(1 + z(3))
z(1)=z(1)4+DL/2*z(2)

enddo

z(1)=z(1)4+LC*z(2) ! drift of half cell
length

do i=1l,nstep ! track through quadrupole

z(1)=z(1)4+DL/2*z(2)
z(2)=z(2)-k1*DL*z(1)/(1 + z(3))
z(1)=z(1)4+DL/2*z(2)

enddo

z(1)=z(1)4+LC*z(2) ! drift of half cell
length

call print(z(1),6)

call print(z(2),6)

M=z

NORMAL=—M

write(6,*) normal%tune, normal%dtune_da
end program fodol

i 2) Courtesy E. Forest for the small DA package used here ... mmm



(0,0,0) O.

9442511679729E-01

(0,0,1) -0.9729519276183E-01

(1,0,0) O.
(0,1,0) 0.
(1,0,1) O.
(0,1,1)-0.
(1,0,2)-0.
(0,1,2) 0.
(1,0,3) 0.
(0,1,3)-0.

(1,0,0)-0.
(0,1,0) O.
(1,0,1) O.
(0,1,1)-0.
(1,0,2)-0.
(0,1,2) O.
(1,0,3) 0.
(0,1,3)-0.

6972061935061E-01

1677727932585E403
1266775134236E+4-01
3643444875882E402
160324861 7779E+401
3609522079691 E+402
1939697138318E+401
3575511053483E+402

5300319873866 E-02
1588490329398E+401
1060055415702E-01
5832024543075E-400
1590066005419E-01
5779004431627E+400
2120059477024 E-01
5725843143370E-+400

The result is:

Only linear elements in the Tay-
lor expansion, the result for the

matrix per cell:

Az = 0.06972Ax; + 167.77Ap;
Aps = —0.00530Az; + 1.5885Ap;

The output from the normal
form analysis are (per cell !):
Tune = 0.094425
Chromaticity= -0.097295

i 2) Courtesy E. Forest for the small DA package used here ... S



Modified previous example (with one octupole):

program fodo3

use my_own_da

use my._analysis
type(my_taylor) z(3)
type(normalform) NORMAL
type(my_map) M,id

real(dp) L,DL,k1,k3,fix(3)
integer i,nstep

my_order=4 ! maximum order 4
fix=0.0 ! fixed point

id=1

z—=fix—4id

LC=62.5 ! half cell length
L=3.0 ! quadrupole length

nstep=100

DL=L/nstep

k1=0.003 ! quadrupole strength
k3=0.01 ! octupole strength

do i=1,nstep ! track through quadrupole
z(1)=z(1)4+DL/2*z(2)
z(2)=z(2)-k1*DL*z(1)/(1 + z(3))
z(1)=z(1)4+DL /2*z(2)

enddo

z(2)=z(2)-k3*z(1)**3/(1 + z(3)) ! octupole
kick !!!

z(1)=z(1)4+LC*z(2) ! drift of half cell
length

do i=1,nstep ! track through quadrupole

z(1)=z(1)4+DL /2*z(2)
z(2)=z(2)-k1*DL*z(1)/(1 + z(3))
z(1)=z(1)4+DL/2*z(2)

enddo

z(1)=z(1)4+LC*z(2) ! drift of half cell
length

call print(z(1),6)

call print(z(2),6)

M=z

NORMAL=M

write(6,*) normal%tune, normal%dtune_da

end program fodo3



The result is:

(0,0,0) 0.9442511679729E-01
(0,0,1) -0.9729519276183E-01

(2,0,0) 0.5374370086899E+02
(0,2,0) 0.5374370086899E+02
(0,0,2) 0.1018391758451E+400
(2,0,1) 0.2035776281196E+402

Now non-linear elements in the
(1,0,0) 0.6972061935061E-01

(0,1,0) 0.1677727932585E+03 Taylor expansion,

(1,0,1) 0.1266775134236E+01

(0,1,1)-0.3643444875882E402 The output from the normal
(3,0,0)-0.1586519461687E+01 . |
(2.1.0)-0.1440953324752E+02 form analysis are (per cell !):
1,2,0)-0.4362477179879E+02

(1,2,0) + Tune = 0.094425

""""" Chromaticity= -0.097295
(1,0,0)-0.5300319873866E-02

(0,1,0) 0.1588490329398E+01 The detuning with amplitude is
(1,0,1) 0.1060055415702E-01

(0,1,1)-0.5832024543075E+400 53.74 !

(3,0,0)-0.1519218878892E-01

i 2) Courtesy E. Forest for the small DA package used here ... mmm



Remember the normal form transformation:

AMA™ = R

The type normalform in the demonstration package also

contains the maps A and R !
J2=(x**2+4+p**2)*NORMAL%%A**(-1)

(remember: x**24+p**2 is the tilted ellipse ....
Can get the optical functions out because

B: coeflicient of p**2 of invariant j2
a: coefficient of x*p of invariant j2

~v: coefficient of x**2 of invariant j2

[ T . 2) Courtesy E. Forest for the small DA package used here ... mm



In our code use like :

8 = j2.sub.beta

a = 0.5*j2.sub.twoalpha

v = j2.sub.gamma

we obtain (here at the end of the cell):

beta, alpha, gamma
300.080714 -1.358246 9.480224E-003

i . 2) Courtesy E. Forest for the small DA package used here ...



This was trivial - now a (normally) hard one

The exact map:

p2= sin(zh) =2

r2 = A—R(l—cos(zy)) =A—R(1—+/1—-p3)
— Rpl :RSID(ZIfll)

B= R(1—cos(x}))+x1=R(1—+/1—pF)+x1

A 90° bending magnet ..



How to apply Differential Algebra here ...

> Start with initial coordinates in DA style:
r1 = (0,1,0,...)
p1 = (0,0,1,...)  and have:
A=(0,0,R,0,...)
B=1(0,1,0,0,0,R,0,...)

> After pushing them through the algorithm:

= 5= (0,0,R,—1,0,0,0...) = (0, Q2 Q2 Oz, O

» Ox1’ Op1’ Ox3 ’ Ox10p1’ "

= p2=(0,-£.0,0,0,~1,0.) = (0, 522, 52, ez e

) 8:101’ ap17 (9517% ) 8:618]91 ’ -

> Automatically evaluates all non-linearities to any
desired order ..

)

)



How to apply Differential Algebra here ...

> Start with initial coordinates in DA style:
r; = (0,1,0,...)
p1 = (0,0,1,...)  and have:
A=(0,0,R,0,...)
B=1(0,1,0,0,0,R,0,...)

> After pushing them through the algorithm:

= 5= (0,0,R,—1,0,0,0...) = (0, 222 92 Oy 0w

» Owy? Op1’ Qa3 ’ Ox10p1’ "

= po = (0,—%,0,0,0,—1,0...) — (O Op2 Opz 9°p2  9°pa

> Oxq? Op1? 8:1:% » Ox10p1

> Automatically evaluates all non-linearities to any
desired order ..

)
)



Some we know ...

Transfer matrix of a dipole:

L . L ox ox
A\ B COS(E) Rsm(ﬁ) B 8:5 apf
dipole — I I — Opo Opo
——sm(ﬁ) COS(E) 9 Bn
For a 90° bending angle we get:
0 R
Mdipole — 1
L0

as computed, but we also have all derivatives and

non-linear effects !



What is the use of that:

Although not strictly an analytic method in the
traditional sense:

» TPSA provide analytic expression (Taylor
series) for the one turn map

» Can be used for tracking

» Can be analysed for dynamic behaviour of
the system

» Typical use: Normal Form Analysis discussed
earlier, rather straightforward from a Taylor

expansion



Is there a summary 7

m = 7z

NORMAL = m

» Get the map m somehow (no matter how)

» Analyse this map (Normal form)



And another summary

Perturbation treatment limited to:
» Small perturbations (not in real machines)
> Pedagogical purpose
For realistic machines symplectic, iterative mapping is
appropriate, using:
> Symplectic integration
> Lie transformations and normal form analysis

> Differential algebra



Back up

- backup slides -



Given the Hamiltonian h:

3 sin(3W + %) sin(V + £)
h=—pJ — =k(28J)%?%. 2° 2
S (267) < sin 2L sing

particles move in phase space along constant h.

Back to Cartesian coordinates we get for h:

3 3
h = —g( 2 4 x’2)§uﬁ3/2x[(3x’2 — $2)60t7'u — (z* + x’2)cotg — 4]

Constant h defines the trajectory in phase space !



‘Where to put the elements in an accelerator ? I

d’z
@ + K(S):U = 0

> Usually use s (pathlength) along ”reference path”

» ”"Reference path” defined geometrically by straight
sections and bending magnets



Second order MAPS concatenation

Assume now 2 maps of second order:
A, = [RATA] and By, = [RB,TP]

the combined second order map

CQ — AQOBQ is CQ — [RC,TC] with:
RC _ RA' RB

and (after truncation of higher order terms !!):




Symplecticity for higher order MAPS

try truncated Taylor map in 2D, second order:

/ 2 / /12

X Ri1x0 + Rioxy + 111125 + Th12x07 + 11207
/ / 2 / /2
x Ro1xo + Rosxy + Io112§ + T212707) + 122275

The Jacobian becomes:

Ri1 + 2T11120 + Th12%), Rio + Ti1070 + 211921,
Ro1 + 2151120 + To12%) Rog + To12x0 + 21921,

j:

symplecticity condition requires that:
det J = 1 for all g and all x|



Symplecticity for higher order MAPS

This is only possible for the conditions:

R11Ra2 — Ri12Ro1 =1
Ri11%12 + 2R22T111 — 2R121211 — R211112 =0
2R11T522 + Ro2T112 — Ri2T212 — 2R21 1122 = 0
> 10 coeflicients, but 3 conditions

> number of independent coefficients only 7 !

> Taylor map requires more coefficients than necessary

> e.g. 4D, order 4: coefficients 276 instead of 121



Canonical transformations

With Hamiltonian’s equations, still have to solve (2n)
differential equations
Not necessarily easy, but:

> More freedom to choose the variables ¢ and p
(because they have now ”equal” status)

> Try to find variables where they are easy to solve

Change of variables through ”canonical

transformations”



Why canonical transformations ?

Hamiltonian have one advantage over Lagrangians:

> If the system has a symmetry, i.e. a coordinate g¢;

does not occur in H (i.e. gf =0 — % =(0) = the

corresponding momentum p; is conserved (and the

coordinate ¢; can be ignored in the other equations of
the set).

> Comes also from Lagrangian, but the velocities still

occur in L !



Canonical transformations

Starting with H(q,p,t) get new coordinates:

and new Hamiltonian K (Q, P,t) with:
K . AP, K . do.
a_:_pj:__ﬂ, 8_:sz&
0Q; dt OP; dt

We can two types of canonical transformations



Canonical transformations - type 1

> Ideally one would like a Hamiltonian H and coordinates
with:

OH _ . _ dpj

el S — 0
8qj b dt
> Coordinate ¢; not explicit in H

> p; is a constant of the motion (!) and:

dq; OH (p1,p2,--Pn)
dt ap] ]<p17p27 p )

which can be directly integrated to get ¢;(¢)



Canonical transformations - type 1, example

Harmonic oscillator:

2 2 2
5 MW p° mw* o

1
H:T p— — — [
+V 2mv+ 5 T 2m+ 5 €T

try: z=4/22 -sin(X) and p=V2mwP-cos(X) and we

get:

K = wPcos*(X) + wPsin?(X) = wP

then:
d—X:a—K:w - X =wlt+«
dt oP
back transformation to x,p:
2FE
T=A sin(wt + a)



Canonical transformations - type 2
> Find a transformation of ¢,p at time ¢ to values qg, py at

time t = 0.

q = q(qo, o, 1)

p = p(qo, o, t)
> The transformations ARE the solution of the problem !

For both types: how to find the transformation ?

> Without details: Hamilton-Jacobi equation ...



Extension: general monomials

Monomials in z and p of orders n and m (z"p™)

n_m

prar P
gives for the map (for n # m):

ezam”pm:x — . [1 4 CL(TL _ m)xn—lpm—l]m/(m—n)
6:aw"’pm:p = p- [1 4 CL(TL _ m)xn—lpm—l]n/(n—m)
gives for the map (for n = m):

e Py = g.e

N S O
e.axp.p = p-e



‘Collision scheme - two IPSI

IP1

U= pl+ 2

IP5



Two IPs '

=»> two transfers f}, f? and two beam-beam kicks F'!, [?,
first IP at 111, second IP at u:

1 1, .2 .2,
1 . 1 1 el 2 2

= ef2 et e 12 e'f2' ef2 et = eih2
1 1 ! CF. 2 .



Two IPs '

here a miracle occurs (remember g(: f5 :)e!™¥ iy,

= g(inp)e

6:]”21:62'71\11 _ ein,ulez'n\ll _ ein(,ul—l—‘lf)

i.e. the Lie transforms of the perturbations are phase
shifted?). Therefore:

6:e_ f21:F1 —if2ip2 e far eihgl
becomes simpler with substitutions of V; = ¥ + ;; and
U = U4 puin F! and F:
e:Fl(\Ill):ezF(\I/):ezfgz s e:Fl(‘lfl)—l—F(\Il):ezfgz

m 2) E. Forest, ”Beam Dynamics, A New Attitude and Framework”, 1998 mmm



Two IPs '

gives for hs:

T 1
/o )
cos(n(¥ + 5T 5 ))cos(n > )

\ - 7
Ve

interesting part
Nota bene, because of:

6:F(\I/):e:fg: — e:Fl(\Ill)—i—F(\Il):ezfQ:

can be generalized to more interaction points ...



Invariant versus tracking: two IPSI

X yx -0.31 X yx -0.31

12. 45;
12. 4}

12. 35¢

=» Shown for 50, and 100,



Recap: Hamiltonian for a finite length element

We have from the Hamiltonian equations for the motion
through an element with the Hamiltonian H for the
element of length L:

d
d_;] =|q,H| =: —H : q (from lecture 5)
qu
— L _ (. _H )k
EOO: tk qu EOO: tk k —tH:

with independent variable s instead of ¢t (nota bene:
So — O,to — O):
_>q(8) _ e:—LH:



Lie transformations on moments:

We have used Lie transformations mainly to propagate

coordinates and momenta, i.e. like:

€:f:330 = T

ezfzpo = D1
or using Z = (z,pz,Y,Dy,---):
e:f:ZO = Zl

> Remember: can be applied to any function of x and p !!

» In particular to moments like 2%, zp, p?, ...



Lie transformations on moments

Assume a matrix M of the type:

mi1  Mi2
M =
ma1 M22

described by a generator f, we have for the Lie

transformation on the moment:
elix? = (ex)? (see lecture 5)

therefore:

(e/°2)? = (mi1z + miap)?

(e:f:x)2 :m%1x2 + 2 myimig2xp + m%2p2



More on moments

To summarize the moments:

2 2 2
€T mi 2Mmi11m1o mis
rp — M11Mo1  MM11Moo + M12Mo1  1T12M29
2 2 2
p m21 2m21m22 m22

$2

This is the well known transfer matrix for optical

parameters

S1



A real life example: beam-beam interaction® I

> Beam-beam interaction very non-linear
> Important to understand stability

> Non-linear effects such as amplitude detuning very

important
Our questions ?
> How does the particles behave in phase space ?
> Do we have an invariant ?

> Can we calculate the invariant ?

*) From: W. Herr, D. Kaltchev, LHC Project Report 1082,
(2008).



‘Collision scheme - two IPSI

IP1

IP5



‘Start with single IPI

»Classic” (B.C.) approach:

Bl Interaction point at beginning (end) of the ring (very
local interactions, §-functions )

Bl s-dependent Hamiltonian and perturbation theory:

H = ...+ 6(s)eV

Bl Disadvantages:
> for several IPs endless mathematics

> conceptually and computationally easier method



Effect on invariants - start with single IPI

Look for invariants h, (see e.g. Dragt!)), and evaluate for
different number of interactions and phase advance.

Very well suited for local distortions (e.g. beam-beam kick)
Linear transfer ¢/2° and beam-beam interaction e

el
ezfgz . 6:F: _ 6:h:
with
2
_ _ B 2
and

F = /Oxdx’f(x’)

- 1) A. Dragt, AIP Conference proceedings, Number 57 (1979) mmm



‘Eﬂ’ect on invariants I

using for a Gaussian beam f(x):

f#) =2 (1 - e57)

X

as usual go to action angle variables ¥, A:

x = \/2A08sinV, p=4| %COS\IJ

and write F(x) as Fourier series:

oo

Fz)= Y cu(A)e™  with: ¢, (4) = —

2T

n=-—oo




We need: I

REMEMBER: with this transform:

fa=—pA

and useful properties of Lie operators (any textbook2)):

: fo: Q(A) = 0, : fo: enV — in,uem\l/, g(; fs ) v __ g(zn,u) inl

and the formula (because the beam-beam perturbation is
small !):

ezfzi 6:F: _ 6:h: — exp [: f2—|—( f2 )F+O(F2) :]

m 2) E. Forest, ”Beam Dynamics, A New Attitude and Framework”, 1998 mmm



Single IP I

gives immediately for h:

h=—pA+ > cu(A) et ¥

1 — e—inn

n

= —pA+ Z cn(A el )

28111 s )

away from resonance, a normal form transformation takes
away the pure oscillatory part and we have only:

h = —pA+c(A) = const.
homework : dc;j(:l)



Single IP I

If you are too lazy or too busy:

—1 dCO (A)
2w dA

is the detuning with amplitude, i.e. the amplitude

AQ =

dependent frequency change of the transformation we had

before ...

We get:

—1 NTO

= o a1 e I (45/20%)

AQ



Single IP - analysis of h I

_uA (zn‘lf—l—z%
AT ch 28111 8 )
On resonance:
_r_
0= n o 2w
with ¢, # 0O:
sin(@) =sin(pr) =0 V integer p
n

and h diverges



Invariant versus tracking'

B 1s it useful what we obtained ?

=% Debug and compare (”benchmark”)

Bl Compare to very simple tracking program:
linear transfer between interactions
beam-beam kick for round beam
compute action I = %(g—i + p2 3*)

and phase ¥ = arctan(2%)

R IR

compare I with h



Invariant from tracking: one IPI

X v =0.31 X w =031

127 .
50.2

' ' *2.65

50.1
12,6 o R t - - -
05T s T o5 i s o
. " .
1255 | 299 t*
| | | o o 498
15 -1 -05 05 1 15 ®+m2

=» Shown for 50, and 100,



‘Invariant versus tracking: one IPI

X yx -0.31

50. 2¢

50. 1t

o+71/2

=» Shown for 50, and 100,



Invariant versus tracking: I

I/h
/21 = 0.33

i+ 54l

05 ‘r/ 5= P+ 11/,

=p Behaviour near a resonances: no more invariant possible

= Envelope of tracking well described



If we have () = 5~ =~ 7 (3rd order resonance). Using a
Ydistance to resonance d’ as:
m +d

QZT where: d <1

The trick is to observe the motion every 3 turns:

MB _ (ez—quezkz:c?’:)i% _ 6:3h:

We get a factor:

6:—3,uu]: _ i 2mdJ:



Without proof (but like before, see e.g. Chao), we get:

. 3 .
he — 2T 4 — %dk(2J)3/2 | (Sm(gqj ) Sm@ u %)>

3u ©
3 SZ”T SN 5

For small d (sint ~ —7rd) we can simplify:

27T 1
hee—"—d) — —k(BJ)325in(30
3 7 (BJ) (3V)

Analysis give fixed points, i.e. (back in Cartesian again):

h 2
_gx = ——;T dx — 53/2(396’2 —32%) =0
8h 2m 3/9



