Physics of Landau Damping

An introduction (to a mysterious topic)

Werner Herr CERN

http://cern.ch/Werner.Herr/CAS2013/lectures/Trondheim_landau.pdf

Landau damping - the mystery

- First publication in 1946
- Applied to longitudinal oscillations of an electron plasma
 - Was not believed for ≈ 20 years (but worked in simulations and experiment)
 - Still plenty of papers every year (≈ 6000 in 2012) (and many attempts to teach it ...)
 - Many applications: plasma physics, accelerators
 - Physical interpretation often unclear
 - Many mathematical subtleties ...

Landau damping - the mystery

Chronology:

Landau	(1946)	Plasma physics
Bohm, Gross	(1949)	Plasma physics
van Kampen	(1955)	Mathematical foundation
Sessler et al.	(1959)	Accelerators
•••	•••	•••
Mouhot, Villani	(2010)	Non-linear Landau Damping
		(Very detailed maths)

- In a plasma:
 - Landau damping damps collective oscillations
 - Leads to exponentially decaying oscillations

- In a plasma:
 - Landau damping damps collective oscillations
 - Leads to exponentially decaying oscillations
- In an accelerator:

- In a plasma:
 - > Landau damping damps collective oscillations
 - Leads to exponentially decaying oscillations
- In an accelerator:
 - Landau damping does not damp anything !!

- 🔳 In a plasma:
 - > Landau damping damps collective oscillations
 - Leads to exponentially decaying oscillations
- In an accelerator:
 - > Landau damping does not damp anything !!
 - We do not want exponentially decaying oscillations "Landau damping" is confused with <u>decoherence</u>
 - Landau damping stabilizes the beam, i.e.
 - "Landau damping" is the absence of oscillations !!!

- In a plasma:
 - Landau damping damps collective oscillations
 - Leads to exponentially decaying oscillations
- In an accelerator:
 - > Landau damping does not damp anything !!
 - We do not want exponentially decaying oscillations "Landau damping" is confused with <u>decoherence</u>
 - Landau damping stabilizes the beam, i.e.
 - "Landau damping" is the absence of oscillations !!!

- The non-trivial part:
 - In a beam (any plasma) particles interact via Coulomb forces (binary collisions)
 - For Landau damping: particles "interact" with the beam (collective modes)
- Must distinguish:
 - Binary interactions (collisions) of particles
 - > Interactions of particles with a collective mode

- In accelerators different mechanisms have been associated with "Landau damping", most popular:
 - > "Resonance damping"
 - > "Phase mixing"
- Often confused with "decoherence"
 - Landau damping does not lead to emittance growth
 - Decoherence does!
- Different treatment (and results!) for
 - Bunch and unbunched beams
 - Transverse and longitudinal motion

Landau damping - the menu

- > Sketch Landau's treatment for plasmas
- Mechanisms of stabilization physical origin
- Conditions for stabilization beam transfer function and stability diagrams
- Collective motion, physics and description
- Example: how it is used, limits, problems ...
- Do not go through formal mathematics (found in many places, or discussed in the bar), rather <u>intuitive</u> approach to touch the concepts, give hints ..

Why an intuitive approach?

A lot of attention is often paid to interpretation of subtle (mathematical and philosophical) problems:

- > Singularities
- > Reversibility versus Irreversibility
- Linearity versus Non-linearity

The truth is:

- Most "problems" are fictitious
- Not coming from the physics of the process
- Appear in specific mathematical treatment and versions of theory

Plasma without disturbance: ions (•) and electrons (•)

- Plasma: stationary ions (•) with displaced electrons (•)
- Restoring force: oscillate at plasma frequency $\omega^2 = \frac{ne^2}{m\epsilon_0}$ i.e. a stationary plane wave solution (Langmuir, 1929)

- Restoring force: oscillate at plasma frequency $\omega^2 = \frac{ne^2}{m\epsilon_0}$
- > Produces field (mode) of the form:

$$E(x,t) = E_0 \sin(kx - \omega t)$$
 (or $E(x,t) = E_0 e^{i(kx - \omega t)}$)

- Electrons interact with the field they produce
- Field (mode) of the form:

$$E(x,t) = E_0 \sin(kx - \omega t)$$
 (or $E(x,t) = E_0 e^{i(kx - \omega t)}$)

- Individual particles interact with the field produced by all particles
 - Changes behaviour of the particles
 - Can change the field producing the forces
 - → Particles may have different velocities!
- Self-consistent treatment required

If we allow ω to be complex $(\omega = \omega_r + i\omega_i)$:

$$E(x,t) = E_0 e^{i(kx - \omega t)} \implies E(x,t) = E_0 e^{i(kx - \omega_r t)} \cdot e^{\omega_i t}$$

we can have a damped oscillation for $\omega_i < 0$

Resonance damping

- Interaction with a "mode" -

> Surfer gains energy from the mode (wave)

Interaction with a "mode"

- If Surfer faster than wave:

 mode gains energy from the surfer
- > If Surfer slower than wave:

 mode loses energy to the surfer
- Does that always work like that?

Interaction with a "mode"

- NO, consider two extreme cases:
 - > Surfer very fast: "jumps" across the wave crests, little interaction with the wave (water skiing)
 - > Surfer not moving: "oscillates" up and down with the waves
- \longrightarrow Wave velocity and Surfer velocity must be similar ... !!
- Surfer is "trapped" by the wave

Interaction with a "mode"

- Remember: particles may have different velocities!
- If more particles are moving slower than the wave:
 - Net absorption of energy from the wave
 - Wave is damped!
- If more particles are moving faster than the wave:
 - Net absorption of energy by the wave
 - Wave is anti-damped!
- Always: the <u>slope</u> of the particle distribution at the wave velocity is important!
- → Have to show that now (with some theory)

Liouville theorem

- Consider an ensemble of particles
- > Phase space moves like incompressible fluid
- Density is always conserved
- Described by a density distribution function $\psi(\vec{x}, \vec{v}, t)$: $\int \psi(\vec{x}, \vec{v}, t) dx dv = N$
- If the distribution function is stationary $\rightarrow \psi(\vec{x}, \vec{v}, t) \longrightarrow \psi(\vec{v})$

Phase space density

- Form of phase space distorted by non-linearity
- Local phase space density is conserved
- Global density is changed (e.g. beam size)

Phase space density

- Local phase space density is conserved (number of neighbours)
- How do we describe the evolution of the distribution?

Boltzmann equation

Time evolution of $\psi(\vec{x}, \vec{v}, t)$:

$$\frac{d\psi}{dt} = \underbrace{\frac{\partial \psi}{\partial t}}_{\text{time change}} + \underbrace{\vec{v} \cdot \frac{\partial \psi}{\partial \vec{x}}}_{\text{space change}} + \underbrace{\frac{1}{m} \vec{F}(\vec{x}, t) \cdot \frac{\partial \psi}{\partial \vec{v}}}_{\text{v change, force F}} + \underbrace{\Omega(\psi)}_{\text{collision}}$$

Without collisions and stationary, it becomes Vlasov-equation:

$$\frac{d\psi}{dt} = \frac{\partial \psi}{\partial t} + \vec{v} \cdot \frac{\partial \psi}{\partial \vec{x}} + \frac{1}{m} \vec{F}(\vec{x}, t) \cdot \frac{\partial \psi}{\partial \vec{v}} = 0$$

Vlasov equation

In physical coordinates $\psi(\vec{x}, \vec{v}, t)$:

$$\frac{d\psi}{dt} = \frac{\partial\psi}{\partial t} + \vec{v} \cdot \frac{\partial\psi}{\partial\vec{x}} + \frac{1}{m}\vec{F}(\vec{x},t) \cdot \frac{\partial\psi}{\partial\vec{v}} = 0$$

 $\vec{F}(\vec{x},t)$ is force of the field (mode) on the particles No binary collisions between particles

INTERLUDE

Why is the Vlasov equation useful?

$$\frac{d\psi}{dt} = \frac{\partial \psi}{\partial t} + \vec{v} \cdot \frac{\partial \psi}{\partial \vec{x}} + \frac{1}{m} \vec{F}(\vec{x}, t) \cdot \frac{\partial \psi}{\partial \vec{v}} = 0$$

 $\vec{F}(\vec{x},t)$ can be forces introduced by impedances, beam-beam effects, etc. From the solution one can determine whether a disturbance is growing (instability, negative imaginary part of frequency) or decaying (stability, positive imaginary part of frequency).

INTERLUDE

Why is the Vlasov equation useful?

$$\frac{d\psi}{dt} = \frac{\partial \psi}{\partial t} + \vec{v} \cdot \frac{\partial \psi}{\partial \vec{x}} + \frac{1}{m} \vec{F}(\psi, \vec{x}, t) \cdot \frac{\partial \psi}{\partial \vec{v}} = 0$$

strictly speaking: $\vec{F}(\vec{x},t)$ are given by <u>external</u> forces. When a particle interacts strongly with the <u>collective</u> forces produced by the other particles, they can be treated the same as external forces.

INTERLUDE

Why is the Vlasov equation useful?

$$\frac{d\psi}{dt} = \frac{\partial \psi}{\partial t} + \vec{v} \cdot \frac{\partial \psi}{\partial \vec{x}} + \frac{1}{m} \vec{F}(\vec{x}, t) \cdot \frac{\partial \psi}{\partial \vec{v}} = 0$$

- This is the basis for treatment of collective effects
- Warning, it does not apply for:

Dissipative forces (gas scattering, IBS, ...)

Random forces (e.g. radiation ..)

Would need "Fokker-Planck" equation

Back to Plasma Oscillations

For our problem we need:

for the force \vec{F} (depending on field \vec{E}):

$$\vec{F} = e \cdot \vec{E}$$

for the field \vec{E} (depending on potential Φ):

$$\vec{E} = -\nabla\Phi$$

for the potential Φ (depending on distribution ψ):

$$\Delta \Phi = -\frac{\rho}{\epsilon_0} = -\frac{e}{\epsilon_0} \int \psi dv$$

Therefore:

$$\frac{d\psi}{dt} = \frac{\partial \psi}{\partial t} + \vec{v} \cdot \frac{\partial \psi}{\partial \vec{x}} + \frac{1}{m} \vec{E}(\vec{x}, t) \cdot \frac{\partial \psi}{\partial \vec{v}} = 0$$

and:

$$\Delta \Phi = \frac{e}{\epsilon_0} \int \psi dv$$

Coupled equations: perturbation produces field which acts back on perturbation.

Do we find a solution?

Assume a small <u>non-stationary</u> perturbation ψ_1 on the stationary distribution $\psi_0(\vec{v})$:

$$\psi(\vec{x}, \vec{v}, t) = \psi_0(\vec{v}) + \psi_1(\vec{x}, \vec{v}, t)$$

Then we get:

$$\frac{d\psi}{dt} = \frac{\partial \psi_1}{\partial t} + \vec{v} \cdot \frac{\partial \psi_1}{\partial \vec{x}} + \frac{1}{m} \vec{E}(\vec{x}, t) \cdot \frac{\partial \psi_0}{\partial \vec{v}} = 0$$

and:

$$\Delta \Phi = -\frac{\rho}{\epsilon_0} = -\frac{e}{\epsilon_0} \int \psi_1 dv$$

$$\psi_1(\vec{x}, \vec{v}, t) \implies \vec{E}(\vec{x}, t) \implies \psi_1(\vec{x}, \vec{v}, t) \implies \dots$$

- > Density perturbation produces electric field
- > Electric field acts back and changes density perturbation
- Change with time ...
- How can we attack that?

Plasma oscillations - Vlasov's approach

Expand as double Fourier transform:*)

$$\psi_1(\vec{x}, \vec{v}, t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{\psi}_1(k, \vec{v}, \omega) e^{i(kx - \omega t)} dk d\omega$$

$$\Phi(\vec{x}, \vec{v}, t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{\Phi}(k, \vec{v}, \omega) e^{i(kx - \omega t)} dk d\omega$$

and apply to Vlasov equation

*) Remember: we assumed the field (mode) of the form: $E(x,t)=E_0e^{i(kx-\omega t)}$

Assuming a perturbation as above, the condition for a solution is:

$$1 + \frac{e^2}{\epsilon_0 mk} \int \frac{\partial \psi_0 / \partial v}{(\omega - kv)} dv = 0$$

This is the Dispersion Relation for plasma waves i.e. relation between frequency (ω) and wavelength (k)

Looking at this relation:

- \blacktriangleright It depends on the (velocity) distribution ψ
- \rightarrow It depends on the slope of the distribution $\partial \psi_0/\partial v$
- The effect is strongest for velocities close to the wave velocity, i.e. $v \approx \frac{\omega}{k}$

Plasma oscillations

Looking at this relation:

- \blacktriangleright It depends on the (velocity) distribution ψ
- \rightarrow It depends on the slope of the distribution $\partial \psi_0/\partial v$
- The effect is strongest for velocities close to the wave velocity, i.e. $v \approx \frac{\omega}{k}$
- There seems to be a complication (singularity) at $v \equiv \frac{\omega}{k}$ Can we deal with this problem?

Dealing with the singularity

- Handwaving argument (Vlasov):
 - \triangleright In practice ω is never real (collisions !)
- Optimistic argument (Bohm et al.):
 - $\partial \psi_0/\partial v = 0$ where $v \equiv \frac{\omega}{k}$
- Alternative approach (van Kampen):
 - > Search for stationary solutions (normal mode expansion)
 - Continous versus discrete modes (not treated here)
- Better argument (Landau):
 - Initial value problem with perturbation $\psi_1(\vec{x}, \vec{v}, t)$ at t = 0, (time dependent solution with complex ω)
 - Solution: in time domain use Laplace transformation in space domain use Fourier transformation

Plasma oscillations - Landau's approach

Fourier transform in space domain:

$$\tilde{\psi}_1(k, \vec{v}, t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \psi_1(\vec{x}, \vec{v}, t) e^{i(kx)} dx$$

$$\tilde{E}(k,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} E(\vec{x},t) e^{i(kx)} dx$$

and Laplace transform in time domain:

$$\Psi_1(k, \vec{v}, p) = \int_0^{+\infty} \tilde{\psi}_1(k, \vec{v}, t) e^{(-pt)} dt$$

$$\mathcal{E}(k,p) = \int_0^{+\infty} \tilde{E}(k,t)e^{(-pt)}dt$$

Plasma oscillations

In Vlasov equation and after some algebra (see books) this leads to the modified dispersion relation:

$$1 + \frac{e^2}{\epsilon_0 mk} \left[P.V. \int \frac{\partial \psi_0 / \partial v}{(\omega - kv)} dv - \frac{i\pi}{k} \left(\frac{\partial \psi_0}{\partial v} \right)_{v = \omega/k} \right] = 0$$

P.V. refers to "Cauchy Principal Value"

Second term only in Landau's treatment

responsible for damping

Plasma oscillations

Evaluating the term:

$$-\frac{i\pi}{k} \left(\frac{\partial \psi}{\partial v}\right)_{v=\omega/k}$$

 $\rightarrow \omega$ is complex and the imaginary part becomes:

$$Im(\omega) = \omega_i = \frac{\pi}{2} \frac{\omega_p e^2}{\epsilon_0 m k^2} \left(\frac{\partial \psi}{\partial v}\right)_{v = \omega/k}$$

- Example Get a damping (without collisions) if: $\left(\frac{\partial \psi}{\partial v}\right)_{v=\omega/k} < 0$
- -> Landau Damping

Velocity distribution

- Distribution of particle velocities (e.g. Maxwellian distribution)
- ➤ More "slower" than "faster" particles → damping
- ➤ More "faster" than "slower" particles → anti-damping

Warning: a paradox

For a bar discussion

If this is true:

Should it not be possible to go to a Lorentz frame which is moving relative to the particles faster than the wave (phase-) velocity?

In this frame we have always anti-damping!!

Is this true???

Now what about accelerators ???

- Landau damping in plasmas, all right
- Physical origin rather simple
- How to apply it in accelerators?
- We have:
 - No plasmas but beams
 - No distribution of velocity, but tune
 - No electrons, but ions (e.g. p)
 - > Also transverse oscillations

Now what about accelerators ???

- How to apply it in accelerators?
- Can be formally solved using Vlasov equation, but physical interpretation very fuzzy (and still debated ..)
- Different (more intuitive) treatment (following Chao, Hofmann, Hereward, Sagan)
- Look now at:
 - **Beam response to excitation**
 - Beam transfer function and stability diagrams
 - Phase mixing
 - Conditions and tools for stabilization, problems

How does a beam respond to an external excitation?

Consider a harmonic, linear oscillator with frequency ω driven by an external sinusoidal force f(t) with frequency Ω : The equation of motion is:

$$\ddot{x} + \omega^2 x = A \cos\Omega t = f(t)$$

for initial conditions x(0) = 0 and $\dot{x}(0) = 0$ the solution is:

$$x(t) = -\frac{A}{(\Omega^2 - \omega^2)} (\cos \Omega t \underbrace{-\cos \omega t}_{x(0)=0, \dot{x}(0)=0})$$

The beam consists of an ensemble of oscillators with different frequencies ω with a distribution $\rho(\omega)$ and a spread $\Delta\omega$. Number of particles per frequency band:

$$\rho(\omega) = \frac{1}{N} dN/d\omega$$
 with $\int_{-\infty}^{\infty} \rho(\omega) d\omega = 1$

reminder: for a transverse (betatron motion) ω_x is the tune!

IMPORTANT MESSAGE!

- $ho(\omega)$ is distribution of external focusing frequencies !
 - Transverse, bunched and unbunched beams: betatron tune
 - Longitudinal, bunched beams: synchrotron tune
 - Longitudinal, unbunched beams: ??? (see later!)
- $\Delta\omega$ is spread of external focusing frequencies !

The beam consists of an ensemble of oscillator with different frequencies ω with a distribution $\rho(\omega)$, number of particles per frequency band:

$$\rho(\omega) = \frac{1}{N} dN/d\omega \text{ with } \int_{-\infty}^{\infty} \rho(\omega) d\omega = 1$$

The average beam response (centre of mass) is then:

$$< x(t) > = \int_{-\infty}^{\infty} x(t)\rho(\omega)d\omega =$$

$$< x(t) > = -\int_{-\infty}^{\infty} \left[\frac{A}{(\Omega^2 - \omega^2)} (\cos \Omega t - \cos \omega t) \right] \rho(\omega) d\omega$$

We can re-write (simplify) the expression

$$< x(t) > = -\int_{-\infty}^{\infty} \left[\frac{A}{(\Omega^2 - \omega^2)} (\cos \Omega t - \cos \omega t) \right] \rho(\omega) d\omega$$

for a narrow beam spectrum around a frequency ω_x (tune) and the driving force near this frequency $\Omega \approx \omega_x^{*}$)

$$< x(t) > = -\frac{A}{2\omega_x} \int_{-\infty}^{\infty} \left[\frac{1}{(\Omega - \omega)} (\cos \Omega t - \cos \omega t) \right] \rho(\omega) d\omega$$

For the further evaluation we transform variables from ω to $u = \omega - \Omega$, and assume that Ω is complex: $\Omega = \Omega_r + i\Omega_i$

*) justified later ... (but you may already guess!)

We get now two contributions to the integral:

$$\langle x(t) \rangle = -\frac{A}{2\omega_x} cos(\Omega t) \int_{-\infty}^{\infty} du \ \rho(u + \Omega) \frac{1 - cos(ut)}{u} + \frac{A}{2\omega_x} sin(\Omega t) \int_{-\infty}^{\infty} du \ \rho(u + \Omega) \frac{sin(ut)}{u}$$

This avoids singularities for u = 0

We are interested in long term behaviour,

i.e. $t \to \infty$, so we use:

$$\lim_{t \to \infty} \frac{\sin(ut)}{u} = \pi \delta(u)$$

$$\lim_{t \to \infty} \frac{1 - \cos(ut)}{u} = P.V. \left(\frac{1}{u}\right)$$

and obtain for the asymptotic behaviour (back to ω, Ω)*):

$$< x(t) > = \frac{A}{2\omega_x} \left[\pi \rho(\Omega) sin(\Omega t) + cos(\Omega t) P.V. \int_{-\infty}^{\infty} d\omega \frac{\rho(\omega)}{(\omega - \Omega)} \right]$$

The response or Beam Transfer Function has a:

- Resistive part: absorbs energy from oscillation damping (would not be there without the term $-\cos \omega t$)
- Reactive part: "capacitive" or "inductive", depending on sign of term relative to driving force

^{*)} Assuming Ω is complex, we integrate around the pole and obtain a 'principal value P.V.' and a 'residuum' (Sokhotski-Plemelj formula)

What do we see:

- The "damping" part only appeared because of the initial conditions !!!
- With other initial conditions, we get additional terms in the beam response
- \blacktriangleright I.e. for $x(0) \neq 0$ and $\dot{x}(0) \neq 0$ we may add:

$$x(0) \int d\omega \rho(\omega) cos(\omega t) + \dot{x}(0) \int d\omega \rho(\omega) \frac{sin(\omega t)}{\omega}$$

> Do not participate in the dynamics, what do they do?

- Oscillation of particles with different tunes
- \rightarrow Initial conditions: x(0) = 0 and $\dot{x}(0) \neq 0$

- > Oscillation of particles with different tunes
- \rightarrow Initial conditions: x(0) = 0 and $\dot{x}(0) \neq 0$
- Average over particles, centre of mass motion

- > Oscillation of particles with different tunes
- Initial conditions: $x(0) \neq 0$ and $\dot{x}(0) = 0$
- Average over particles, centre of mass motion

- > Oscillation of particles with different tunes
- \rightarrow Initial conditions: $x(0) \neq 0$ and $\dot{x}(0) = 0$
- Average over particles, centre of mass motion

This is NOT Landau Damping!!

Physics of Landau Damping

Part 2

Werner Herr CERN

http://cern.ch/Werner.Herr/CAS2013/lectures/Trondheim_landau.pdf

Interpretation of Landau Damping

- Initial conditions: x(0) = 0 and $\dot{x}(0) = 0$, beam is quiet
- Spread of frequencies $\rho(\omega)$
- When an excitation is applied:
 - Particles cannot organize into collective response (phase mixing)
 - > Average response is zero
 - The beam is kept stable, i.e. stabilized

- > Oscillation of particles with different tunes
- \rightarrow Initial conditions: $x(0) \neq 0$ and $\dot{x}(0) = 0$
- Average over particles, centre of mass motion

This is NOT Landau Damping!!

Interpretation of Landau Damping

- Initial conditions: x(0) = 0 and $\dot{x}(0) = 0$, beam is quiet
- Spread of frequencies $\rho(\omega)$
- When an excitation is applied:
 - Particles cannot organize into collective response (phase mixing)
 - > Average response is zero
 - The beam is kept stable, i.e. stabilized
- → Next : quantitative analysis

For this, we re-write (simplify) the response in complex notation:

$$< x(t) > = \frac{A}{2\omega_x} \left[\pi \rho(\Omega) sin(\Omega t) + cos(\Omega t) P.V. \int_{-\infty}^{\infty} d\omega \frac{\rho(\omega)}{(\omega - \Omega)} \right]$$

becomes:

$$< x(t) > = \frac{A}{2\omega_x} e^{-i\Omega t} \left[P.V. \int d\omega \frac{\rho(\omega)}{(\omega - \Omega)} + i\pi \rho(\Omega) \right]$$

First part describes oscillation with complex frequency Ω

Reminds us a few things

Since we know the collective motion is described as $e^{(-i\Omega t)}$ For an oscillating solution Ω must fulfill the relation

$$1 + \frac{1}{2\omega_x} \left[P.V. \int d\omega \frac{\rho(\omega)}{(\omega - \Omega)} + i\pi \rho(\Omega) \right] = 0$$

This is again a dispersion relation, i.e. condition for oscillating solution.

What do we do with that ??

Well, look where $\Omega_i < 0$ provides damping !!

Note: no contribution to damping when Ω outside spectrum !!

Simplify by moving to normalized parametrization. Following Chao's proposal, in the expression:

$$< x(t) > = \frac{A}{2\omega_x} e^{-i\Omega t} \left[P.V. \int d\omega \frac{\rho(\omega)}{(\omega - \Omega)} + i\pi \rho(\Omega) \right]$$

we use again u, but normalized to frequency spread $\Delta\omega$:

with
$$u = (\omega_x - \Omega)$$
 \longrightarrow $u = \frac{(\omega_x - \Omega)}{\Delta\omega}$

and introduce two functions f(u) and g(u):

$$f(u) = \Delta \omega P.V. \int d\omega \frac{\rho(\omega)}{\omega - \Omega}$$

$$g(u) = \pi \Delta \omega \rho(\omega_x - u \Delta \omega) = \pi \Delta \omega \rho(\Omega)$$

The response with the driving force discussed above:

$$\langle x(t) \rangle = \frac{A}{2\omega_x \Delta\omega} e^{-i\Omega t} [f(u) + i \cdot g(u)]$$

where $\Delta\omega$ is the frequency spread of the distribution. The expression $f(u) + i \cdot g(u)$ is the Beam Transfer Function Easier with this to evaluate the different cases and

examples

For important distributions $\rho(\omega)$ analytical functions f(u) and g(u) exist (see e.g. Chao, Tigner, "Handbook ..")

Will lead us to stability diagrams.

Response of a beam in presence of wake fields

Example: the driving force comes from the displacement of the beam as a whole, i.e. $\langle x \rangle = X_0$! For example driven by a wakefield or impedance.

The equation of motion for a particle is then something like:

$$\ddot{x} + \omega^2 x = f(t) = K \cdot \langle x \rangle$$

where K is a "coupling coefficient"

Coupling coefficient K depends on nature of wake field:

- Purely real:
 - Force in phase with the displacement
 - e.g. image space charge in perfect conductor
- > Purely imaginary:
 - Force in phase with the velocity
- In practice, have both and we can write:

$$K = 2\omega_x(U - iV)$$

Response of a beam in presence of wake fields

Interpretation:

- A beam travelling off centre through an impedance induces transverse fields
- Transverse fields kick back on all particles in the beam, via:

$$\ddot{x} + \omega^2 x = f(t) = K \cdot \langle x \rangle$$

- If beam moves as a whole (in phase, collectively !) this can grow for V > 0
- The coherent frequency Ω becomes complex and shifted by $(\Omega \omega_x)^{*}$

 $^{^{*)}}$ without impedance: $\Omega=\omega_x$ (betatron frequency, i.e.tune)

For a beam without frequency spread $(\rho(\omega) = \delta(\omega - \omega_x))$ we can easily sum over all particles and for the centre of mass motion < x > we get:

$$<\ddot{x}> + \Omega^2 < x> = f(t) = -2\omega_x(U - iV) < x>$$

- For the original coherent motion with frequency Ω this means
 - In-phase component U changes the frequency
 - Out-of-phase component V creates growth (V > 0) or damping (V < 0)

For any V > 0 the beam is unstable (even if very small) !!

Response of a beam in presence of wake fields

What happens for a beam with an frequency spread?

The response (and therefore the driving force) was:

$$\langle x(t) \rangle = \frac{A}{2\omega_x \Delta\omega} e^{-i\Omega t} [f(u) + i \cdot g(u)]$$

Response of a beam in presence of wake fields

The (complex) frequency Ω is now determined by the condition:

$$-\frac{(\Omega - \omega_x)}{\Delta \omega} = \frac{1}{(f(u) + ig(u))}$$

All information about stability contained in this relation!

- The (complex) frequency difference $(\Omega \omega_x)$ contains impedance, intensity, γ , ... (see lecture by G. Rumolo).
- The right hand side contains information about the frequency spectrum (see definitions for f(u) and g(u)).

Without Landau damping (no frequency spread):

- If $\Im(\Omega \omega_x) < 0$ beam is stable
- If $\Im(\Omega \omega_x) > 0$ beam is unstable (growth rate τ^{-1} !)

With Landau damping we have a condition for stability:

$$-\frac{(\Omega - \omega_x)}{\Delta \omega} = \frac{1}{(f(u) + ig(u))}$$

How to proceed to find limits?

Could find the complex Ω at edge of stability ($\tau^{-1} = 0$!)

→ Can do a bit more ...

Look at the right hand side first.

Take the (real) parameter u in

$$D_1 = \frac{1}{(f(u) + ig(u))}$$

- 1 Scan u from $-\infty$ to $+\infty$
- 2 Plot the real and imaginary part of D_1 in complex plane

Why is this formulation interesting ??? The expression:

$$(f(u) + ig(u))$$

is actually the Beam Transfer Function, i.e. it can be measured!!

- With its knowledge (more precise: its inverse) we have conditions on $(\Omega \omega_x)$ for stability
- > Intensities, impedances, ...

Example: rectangular distribution:

$$\rho(\omega) = \begin{cases} \frac{1}{2\Delta\omega} & \text{for} |\omega - \omega_x| \le \Delta\omega \\ 0 & \text{otherwise} \end{cases}$$

Step 1: Compute f(u) and g(u) (or look it up, e.g. Chao, Tigner, "Handbook of ...")

$$f(u) = \frac{1}{2} \ln \left| \frac{u+1}{u-1} \right|$$
 $g(u) = \frac{\pi}{2} \cdot H(1-|u|)$

Step 2: Plot the real and imaginary part of D_1

- \triangleright Real (D_1) versus Imag (D_1) for rectangular $\rho(\omega)$
- This is a Stability Boundary Diagram
- > Separates stable from unstable regions (stability limit)

Take the (real) parameter u in

$$D_1 = \frac{1}{(f(u) + ig(u))}$$

- 1 Scan u from $-\infty$ to $+\infty$
- 2 Plot the real and imaginary part of D_1 in complex plane
- Plot the complex expression of $-\frac{(\Omega \omega_x)}{\Delta \omega}$ in the same plane as a point (this point depends on impedances, intensities ..)

- This is a Stability Boundary Diagram
- > Separates stable from unstable regions

- This is a Stability Boundary Diagram
- > Separates stable from unstable regions

For other types of frequency distributions, example:

Real (D_1) versus Imag (D_1) for bi-Lorentz distribution $\rho(\omega)$ In all cases: half of the complex plane is stable without Landau Damping

Now: transverse instability of unbunched beams

The technique applies directly. Frequency (tune) spread from:

- Change of revolution frequency with energy spread (momentum compaction)
- Change of betatron frequency with energy spread (chromaticity)

but oscillation depends on mode number n (number of oscillations around the circumference C):

$$\propto exp(-i\Omega t + in(s/C))$$

and the variable u should be written:

$$u = (\omega_x + n \cdot \omega_0 - \Omega)/\Delta\omega$$

the rest is the same treatment.

Examples: transverse instability of unbunched beams

Transverse collective mode with mode index n = 4

Examples: transverse instability of unbunched beams

Transverse collective mode with mode index n = 6

- No external focusing !
- $lue{}$ No spread $\Delta\omega$ of focusing frequencies !
 - > Spread in revolution frequency: related to energy
 - Energy excitations directly affect frequency spread

$$\frac{\Delta\omega_{rev}}{\omega_0} = -\frac{\eta}{\beta^2} \frac{\Delta E}{E_0}$$

Frequency distribution by:

$$\rho(\omega_{rev}) \quad \text{and} \quad \Delta\omega_{rev}$$

With and without perturbation in a plasma

> With and without longitudinal modulation in a beam

No external focusing $(\omega_x = 0)$:

$$u = \frac{(\omega_x + n \cdot \omega_0 - \Omega)}{\Delta \omega} \qquad \longrightarrow \qquad u = \frac{(n \cdot \omega_0 - \Omega)}{n \cdot \Delta \omega}$$

$$-\frac{(\Omega - n \cdot \omega_0)^2}{n^2 \Delta \omega^2} = \frac{1}{(F(u) + iG(u))} = D_1$$

and introduce two new functions F(u) and G(u):

$$F(u) = n \cdot \Delta \omega^2 P.V. \int d\omega_0 \frac{\rho'(\omega_0)}{n \cdot \omega_0 - \Omega}$$

$$G(u) = \pi \Delta \omega^2 \rho'(\Omega/n)$$

IMPORTANT MESSAGE!

$$-\frac{(\Omega - n \cdot \omega_0)^2}{n^2 \Delta \omega^2} = \frac{1}{(F(u) + iG(u))} = D_1$$

- The impedance now related to the square of the complex frequency shift $(\Omega n \cdot \omega_0)^2$
- Consequence: no more stable in one half of the plane!
- Landau damping always required

Stability diagram for unbunched beams, longitudinal, no spread:

 $Real(D_1)$ versus $Imag(D_1)$ unbunched beam without spread

Stability diagram for unbunched beams, longitudinal:

 $\mathbf{Real}(D_1)$ versus $\mathbf{Imag}(D_1)$ for parabolic $\rho(\omega)$ and unbunched beam

Stability diagram for unbunched beams, longitudinal:

Real (D_1) versus Imag (D_1) for parabolic and Lorentz distribution $\rho(\omega)$ and unbunched beam

Why so different stability region:

- Larger stability provided by tail of frequency distribution
- What if we do not know exactly the distribution function?

- \blacksquare Stability boundary relates Z, I, etc. with frequency spread
- Can derive criteria for stable or unstable beams
- $lue{f B}$ Simplified criterion: inscribe pprox circle as estimate

For longitudinal stability/instability:

$$\frac{|Z_{\parallel}|}{n} \leq F \frac{\beta^2 E_0 |\eta_c|}{qI} \left(\frac{\Delta p}{p}\right)^2$$

- In Items In
- For given beam parameters define maximum impedance $\frac{|Z_{\parallel}|}{n}$
- Can derive similar criteria for other instabilities (see lecture by G. Rumolo)

Effect of the simplifications

- We have used a few simplifications in the derivation:
 - > Oscillators are linear
 - Movement of the beam is rigid (i.e. beam shape and size does not change)
- What if we consider the "real" cases?
 - i.e. non-linear oscillators

The case of non-linear oscillators

Consider now a bunched beam, because of the synchrotron oscillation: revolution frequency and betatron spread (from chromaticity) average out!

- > Source of frequency spread: non-linear force
 - Longitudinal: sinusoidal RF wave
 - Transverse: octupolar or high multipolar field components

Can we use the same considerations as for an ensemble of linear oscillators?

The case of non-linear oscillators

NO!

The excited betatron oscillation will change the frequency distribution $\rho(\omega)$ (frequency depends on amplitude) !! Complete derivation through Vlasov equation. The equation:

$$\langle x(t) \rangle = \frac{A}{2\omega_x} e^{-i\Omega t} \left[P.V. \int d\omega \frac{\rho(\omega)}{(\omega - \Omega)} + i\pi \rho(\Omega) \right]$$

becomes:

$$< x(t) > = \frac{A}{2\omega_x} e^{-i\Omega t} \left[P.V. \int d\omega \frac{\partial \rho(\omega)/\partial \omega}{(\omega - \Omega)} + i\pi \partial \rho(\Omega)/\partial \Omega \right]$$

Response in the presence of non-linear fields

Study this configuration for instabilities in the transverse plane

Since the frequency ω depends now on the particles amplitudes J_x and J_y^{*} :

$$\omega_x(J_x, J_y) = \frac{\partial H}{\partial J_x}$$

is the amplitude dependent betatron tune (similar for ω_y). We then have to write:

$$\rho(\omega) \longrightarrow \rho(J_x, J_y)$$

*) see e.g. "Tools for Non-Linear Dynamics" (W.Herr, this school)

Response in the presence of non-linear fields

Assuming a periodic force in the horizontal (x) plane and using now the tune (normalized frequency) $Q = \frac{\omega}{\omega_0}$:

$$F_x = A \cdot exp(-i\omega_0 Qt)$$

the dispersion integral can be written as:

$$1 = -\Delta Q_{coh} \int_0^\infty dJ_x \int_0^\infty dJ_y \frac{J_x \frac{\partial \rho(J_x, J_y)}{\partial J_x}}{Q - Q_x(J_x, J_y)}$$

Then proceed as before to get stability diagram ...

What happens when bunches are not rigid?

If particle distribution changes (often as a function of time), obviously the frequency distribution $\rho(\omega)$ changes as well. :

- **Examples:**
 - Higher order modes
 - Coherent beam-beam modes
- Treatment requires solving the Vlasov equation (perturbation theory or numerical integration)
- Pragmatic approach (20-20 hindsight): use unperturbed stability region and perturbed complex tune shift ...

Landau damping as a cure

If the boundary of

$$D_1 = \frac{1}{(f(u) + ig(u))}$$

determines the stability, can we:

- Increase the stable region by:
 - Modifying the frequency distribution $\rho(\omega)$, i.e. $\rho(J_x, J_y)$
 - Introducing tune spread artificially (octupoles, other high order fields)

The tune dependence of an octupole (k_3) can be written as^{*)}:

$$Q_x(J_x, J_y) = Q_0 + a \cdot \mathbf{k_3} \cdot J_x + b \cdot \mathbf{k_3} \cdot J_y$$

^{*)} see e.g. "Tools for Non-Linear Dynamics" (W.Herr, this school)

Landau damping as a cure

- Other sources to introduce tune spread:
 - > Space charge
 - > Chromaticity
 - High order multipole fields
 - Beam-beam effects (colliders only)

Landau damping as a cure

- Recipe for "generating" Landau damping:
 - For a multipole field, compute detuning $Q(J_x, J_y)$
 - Given the distribution $\rho(J_x, J_y)$
 - Compute the stability diagram by scanning frequency

> Stabilization with octupoles, increased strengths

- Complex coherent tune of an unstable mode
- Now in the stable region

- Complex coherent tune of an unstable mode
- > What if we increase the impedance (or intensity)?

- > Complex coherent tune of an unstable mode
- Now in the unstable region

Stability diagram with octupoles

- > Complex coherent tune of an unstable mode
- Increased octupole strength makes it stable again

Stability diagram with octupoles

- Can we increase the octupole strength as we like ??
- The downside:
 - Ctupoles introduce strong non-linearities at large amplitudes
 - Not many particles at large amplitudes: requires large strengths
 - Can cause reduction of dynamic aperture and life time
 - They can change the chromaticity!
- The lesson: use them if you have no choice

Another example: Head-Tail modes

(see e.g. Lecture G. Rumolo)

- For short range wake fields
- > Broad band impedance
- > Growth and damping controlled with chromaticity Q'
 - Some modes need positive Q'
 - Some modes need negative Q'
 - Some modes can be damped by feedback (m = 0)
- In the control room: juggle with octupoles and Q'

- > Stability region and head-tail modes for different chromaticity
- > Stabilization with octupoles

- > Stability region and head-tail modes for different chromaticity
- > Stabilization with octupoles

- > Stability region and head-tail modes for different chromaticity
- > Stabilization with octupoles

- Head-tail mode m = 0 stabilized with positive chromaticity, (what about higher orders?)
- > Stabilization with octupoles

- Head-tail mode m = 0 stabilized with positive chromaticity, (what about higher orders?)
- > Stabilization with octupoles

Stability diagram with octupoles

- Would need very large octupole strength for stabilization
- The known problems:
 - Can cause reduction of dynamic aperture and life time
 - > Life time important when beam stays in the machine for a long time
 - Colliders: life time more than 10 20 hours needed ...
- Is there another option?

- > Stability region and head-tail modes for different chromaticity
- > Stabilization with octupoles or colliding beams

What makes the difference ...?

The tune dependence of an octupole can be written as:

$$Q_x(J_x, J_y) = Q_0 + aJ_x + bJ_y$$

linear in the action (for coefficients, see Appendix).

The tune dependence of a head-on beam-beam collision can be written as*):

with
$$\alpha = \frac{x}{\sigma^*}$$
 we get $\Delta Q/\xi = \frac{4}{\alpha^2} \left[1 - I_0(\frac{\alpha^2}{4}) \cdot e^{\frac{-\alpha^2}{4}} \right]$

^{*)} see e.g. "Beam-Beam effects" (Tatiana Pieloni, this school)

Response in the presence of non-linear fields

- Tune footprints for beam-beam and octupoles
- Overall tune spread always the same!
- But: for beam-beam largest effect for small amplitudes

Response in the presence of non-linear fields

- > Stability diagrams for beam-beam and octupoles
- > Stability region very different!

The Good, the Bad, and the Weird ...

Landau Damping with non-linear fields: Are there any side effects?

- Good:
 - > Stability region increased
- Bad:
 - Non-linear fields introduced (resonances!)
 - Changes optical properties, e.g. chromaticity ... (feed-down!)
- Weird:
 - Non-linear effects for large amplitudes (octupoles)
 - Much better: head-on beam-beam (but only in colliders ...)

Conditions for Landau "damping"

- > Presence of incoherent frequency (tune) spread
- Coherent mode must be inside this spread remember the convolution integral of the surfer ...

Beams with and without damping

- Coherent mode inside or outside the incoherent spectrum
- > Landau damping restored

Conditions for Landau "damping"

- > Presence of incoherent frequency (tune) spread
- Coherent mode must be inside this spread remember the convolution integral of the surfer ...
- The same particles must be involved!

Summary

- Long history
- Different approaches to the mathematical treatment, (needed for rigorous treatment of different configurations)
- Many applications (plasmas, accelerators, wind waves, bio-physics, ...)
- Very important for hadron accelerators, but should be used with care ...
- It works! It is not a mystery!

APPENDIX:

Tune shift of an octupole:

The tune dependence of an octupole can be written as:

$$Q_x(J_x, J_y) = Q_0 + aJ_x + bJ_y$$

for the coefficients:

$$\Delta Q_x = \left[\frac{3}{8\pi} \int \beta_x^2 \frac{K_3}{B\rho} ds \right] J_x - \left[\frac{3}{8\pi} \int 2\beta_x \beta_y \frac{K_3}{B\rho} ds \right] J_y$$

$$\Delta Q_y = \left[\frac{3}{8\pi} \int \beta_y^2 \frac{K_3}{B\rho} ds \right] J_y - \left[\frac{3}{8\pi} \int 2\beta_x \beta_y \frac{K_3}{B\rho} ds \right] J_x$$