Non-Linear

Imperfections

Advanced Accelerator Physics Course Trondheim August 2013

Oliver Bruning / CERN BE-ABP

Non-Linear Imperfections

equation of motion
\longrightarrow Hills equation
\longrightarrow sine and cosine like solutions + one turn map Poincare section
 normalized coordinates
smooth approximation
resonances \longrightarrow tune diagram and fixed points
non-linear resonances
\longrightarrow driving terms and magnetic multipole expansion perturbation treatment of non-linear maps
\longrightarrow amplitude growth and detuning guadrupole \longrightarrow fixed points and slow extraction sextupole \longrightarrow resonance islands octupole pendulum model equation of motion and phase space Hills equations in Cylindrical coordinates examples

Equations of Motion I

〇 Lorentz Force:

$$
\frac{d \vec{p}}{d t}=q \cdot(\vec{E}+\vec{v} \times \vec{B})
$$

\bigcirc path length as free parameter:
replace time ' t ' by path length ' s ':
$x^{\prime}=\frac{d}{d s} x$

$$
\frac{d}{d t}=\frac{d s}{d t} \cdot \frac{d}{d s} \longrightarrow x^{\prime}=\frac{p_{x}}{p_{O}}
$$

\bigcirc Equation of motion:

$$
\frac{d_{X}^{2}}{d s^{2}}=\frac{F}{v \cdot p_{0}}
$$

Equations of Motion II

- Variables in rotating coordinate system:

geometrical focusing

O Hills equation:

$$
\frac{d^{2} x}{d s^{2}}+K(s) \cdot x=0 \quad K(s)=K(s+L)
$$

$$
K(s)= \begin{cases}0 & \text { drift } \\ 1 / \rho^{2} & \text { dipole } \\ 0.3 \cdot \frac{B[T / m]}{p[G e V / c]} & \text { quadrupole }\end{cases}
$$

O Non-linear equation of motion:

$$
\frac{d_{X}^{2}}{d s^{2}}+K(s) \cdot X_{X}=\frac{F_{\mathrm{x}}}{V^{\bullet} \cdot p}
$$

Poincare Section I

Display coordinates after each turn:

 Linear β - motion:
$x_{i}=\sqrt{R} \cdot \sqrt{\beta(s)} \cdot \sin \left(2 \pi Q i+\phi_{0}\right)$
$x_{i}^{\prime}=\sqrt{R} \cdot\left[\cos \left(2 \pi Q i+\phi_{0}\right)+\alpha(s) \cdot \sin \left(2 \pi Q i+\phi_{0}\right)\right] / \sqrt{\beta(s)}$

the ellipse orientation and the half axis length

Poincare Section II

for the sake of simplicity assume $\alpha=0$ at the location of the Poincare Section

$x=\sqrt{\beta} \cdot \sqrt{R} \cdot \cos \left(2 \pi Q i+\phi_{o}\right)$
$x^{\prime}=\sqrt{\boldsymbol{R}} \cdot \sin \left(2 \pi Q i+\phi_{o}\right) / \sqrt{\beta}$

for $\alpha \neq 0$
one can define a new set of coordinates via linear combination of x and x^{\prime} such that one axis of the ellipse is parallel to x -axis

Poincare Section III

Display normalized coordinates:

normalized coordinates:

$x / \sqrt{\beta}=\sqrt{\boldsymbol{R}} \cdot \cos \left(2 \pi Q i+\phi_{o}\right)$
$\sqrt{\beta \cdot} x^{\prime}=-\sqrt{R \cdot} \sin \left(2 \pi Q i+\phi_{0}\right)$

Poincare Section

Smooth Approximation

assume: $\quad \beta=\mathrm{constant}$

$$
\longrightarrow \frac{d \phi}{d s}=\frac{1}{\beta}=\omega=\frac{2 \pi Q}{L}
$$

Linear $\beta-$ motion $\beta=$ const $\longrightarrow \alpha=0$

$$
\begin{aligned}
& x_{i}=\sqrt{R} \cdot \sqrt{\beta(\mathrm{~s})} \cdot \sin \left(2 \pi \mathrm{Q} i+\phi_{0}\right) \\
& x_{i}^{\prime}=\sqrt{\mathrm{R}} \cdot \cos \left(2 \pi \mathrm{Q} i+\phi_{0}\right) / \sqrt{\beta(\mathrm{s})}
\end{aligned}
$$

Linear equation of motion:

$$
\frac{\boldsymbol{d}_{X}^{2}}{\boldsymbol{d} \boldsymbol{s}^{2}}+\left(\frac{2 \pi}{L} \cdot \boldsymbol{Q}\right)^{2} \cdot x=\boldsymbol{0} \quad \longrightarrow \quad \begin{aligned}
& \text { Harmonic } \\
& \text { Oscillator }
\end{aligned}
$$

Resonances I

tune diagram with linear resonances:

stability:
avoid integer and
half integer resonances!

Qy

Qx

higher order resonances:

$$
n Q_{x}+m Q_{y}=r
$$

the rational numbers lie 'dense' in the real numbers

there are resonances everywhere

Resonances II

fixed points in the Poincare section:

$$
Q=N+1 / n
$$

example: $\mathrm{n}=4$

\longrightarrow every point is mapped on itself after n turns!
\longrightarrow every point is a 'fixed point'
\longrightarrow motion remains stable if the resonances are not driven

Non-Linear Resonances I

Sextupoles + octupoles

Magnet errors:

> pole face accuracy
> geometry errors
> eddy currents
> edge effects

Vacuum chamber:

LEP I welding

Beam-beam interaction

Non-Linear Resonances II

Taylor expansion for upright multipoles:

$$
\begin{aligned}
\boldsymbol{B}_{y}+\boldsymbol{i} \cdot \boldsymbol{B}_{x}= & \sum_{\mathrm{n}=0} \frac{1}{\mathrm{n}!} \cdot \mathrm{f}_{\mathrm{n}} \cdot(\mathrm{x}+\mathrm{i} \mathrm{y})^{\mathrm{n}} \\
& \text { with: } \quad \mathrm{f}_{\mathrm{n}}=\frac{\partial^{\mathrm{n}} \boldsymbol{B}_{\mathrm{y}}}{\partial \mathbf{x}^{\mathrm{n}}}
\end{aligned}
$$

multipole	order	B_{x}	$\mathrm{~B}_{y}$
dipole	0	0	$\mathrm{~B}_{o}$
quadrupole	1	$\mathrm{f}_{1} \bullet \mathrm{y}$	$\mathrm{f}_{1} \cdot \mathrm{x}$
sextupole	2	$\mathrm{f}_{2} \cdot \mathrm{x} \bullet \mathrm{y}$	$\frac{1}{2} \mathrm{f}_{2} \cdot\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$
octupole	3	$\frac{1}{6} \mathrm{f}_{3} \cdot\left(3 \mathrm{y} \mathrm{x}^{2}-\mathrm{y}^{3}\right)$	$\frac{1}{6} \mathrm{f}_{3} \cdot\left(\mathrm{x}^{3}-3 \mathrm{x} \mathrm{y}^{2}\right)$

convergence:

the Taylor series is normally not convergent for $\mathrm{x}+\mathrm{i} \mathrm{yl}>1 \longrightarrow$ define 'normalized' coefficients

$$
\mathrm{b}_{\mathrm{n}}=\frac{\mathrm{f}_{\mathrm{n}}}{\mathrm{n}!\cdot \mathrm{B}_{0}} \cdot \mathrm{R}_{\mathrm{ref}}^{\mathrm{n}}
$$

Non-Linear Resonances III

normalized multipole expansion:

$$
\boldsymbol{B}_{y}+\boldsymbol{i} \cdot \boldsymbol{B}_{x}=\boldsymbol{B} \cdot{ }_{\text {main }} \sum_{\mathrm{n}=0} \mathrm{~b}_{\mathrm{n}} \cdot\left(\frac{\mathrm{x}+\mathrm{i} \mathrm{y}}{\mathrm{R}_{\mathrm{ref}}}\right)^{\mathrm{n}}
$$

b_{n} is the relative field contribution of the $n-t h$ multipole at the reference radius
$\mathrm{b}_{0}=$ dipole; $\mathrm{b}_{1}=$ quadrupole; $\mathrm{b}_{2}=$ sextupole; etc

skew multipoles:

rotation of the magnetic field by $1 / 2$ of the azimuthal magnet symmetry: 90° for dipole
45° for quadrupole
30° for sextupole; etc

general multipole expansion:

$$
\boldsymbol{B}_{y}+\boldsymbol{i} \cdot \boldsymbol{B}_{x}=\boldsymbol{B} \cdot \underset{\text { main }}{ } \sum_{\mathrm{n}=0}\left(\mathrm{~b}_{\mathrm{n}}-\mathrm{i} \mathrm{a}_{\mathrm{n}}\right) \cdot\left(\frac{\mathrm{x}+\mathrm{i} \mathrm{y}}{\mathrm{R}_{\mathrm{ref}}}\right)^{\mathrm{n}}
$$

Perturbation I

perturbed equation of motion:
$\frac{d^{2} x^{2}}{d s^{2}}+\left(\frac{2 \pi}{L} \cdot Q_{X}\right)^{2} \cdot x=\frac{F_{\mathrm{x}}(x, y)}{V^{\bullet} p}$
$\frac{d^{2} y}{d s^{2}}+\left(\frac{2 \pi}{L} \cdot Q_{y}\right)^{2} \cdot y=\frac{F_{y}(x, y)}{v \cdot p}$
assume motion in one degree only:
$y \equiv 0$ is a solution of the vertical equation of motion
$\rightarrow \quad B_{x} \equiv 0 ; \quad B_{y}=\frac{1}{n!} \cdot f_{n} \cdot x^{n} \quad F_{x}=-v_{s} \cdot B_{y}$
perturbed horizontal equation of motion:

$$
\frac{d^{2} x}{d s^{2}}+\left(\frac{2 \pi}{L} \cdot Q_{x}\right)^{2} \cdot x=\frac{-1}{n!} \cdot \boldsymbol{k}_{\mathbf{n}}(s) \cdot x^{n}
$$

normalized strength:

$$
k_{\mathrm{n}}=0.3 \cdot \frac{\mathbf{f}_{\mathrm{n}}\left[\mathrm{~T} / \mathrm{m}^{\mathrm{n}}\right]}{\mathrm{p}[\mathrm{GeV} / \mathrm{c}]} ;\left[\mathrm{k}_{\mathrm{n}}\right]=1 / \mathrm{m}^{\mathrm{n}+1}
$$

Perturbation II

perturbation just infront of Poincare Section:

where ' l ' is the length of the perturbation
perturbed Poincare Map:

Perturbation III

coordinates after 'i' itteration and before kick:
(1) $\quad x_{i} / \sqrt{\beta}=r \cdot \cos \left(\phi_{i}\right) \quad x_{i}^{\prime} \cdot \sqrt{\beta}=-r \cdot \sin \left(\phi_{i}\right)$
(2) with: $\phi_{i}=\phi_{i-1}+2 \pi \mathrm{Q} \quad$ and: $\quad r=\sqrt{R}$ coordinates after the perturbation kick:

$$
\begin{equation*}
\boldsymbol{X}_{\mathrm{i}+\text { kick }} / \sqrt{\beta}=\boldsymbol{X}_{\mathrm{i}} / \sqrt{\beta} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
X_{i+k i c k}^{\prime} \cdot \sqrt{\beta}=X_{\mathrm{i}}^{\mathrm{I}} \cdot \sqrt{\beta}-\frac{1}{n!} \cdot k_{n} \cdot X_{\mathrm{i}}^{n} \cdot \sqrt{\beta} \tag{4}
\end{equation*}
$$

(5) $X_{\mathrm{i}+\mathrm{kick}} / \sqrt{\beta}=\left(\boldsymbol{r}+\Delta r_{\mathrm{i}}\right) \cdot \cos \left(\phi_{\mathrm{i}}+\Delta \phi_{\mathrm{i}}\right)$
(6) $\quad X_{i+\text { kick }} \cdot \sqrt{\beta}=\left(r+\Delta r_{i}\right) \cdot \sin \left(\phi_{\mathrm{i}}+\Delta \phi_{\mathrm{i}}\right)$

Perturbation IV

solve for ${ }^{\prime} \Delta r_{i}^{\prime}$ and ${ }^{\prime} \Delta \phi_{i}{ }^{\prime}$:
\longrightarrow substitute (1) and (2) into (3) and (4) \longrightarrow set new expression equal to (5) and (6)
\longrightarrow use: $\sin (\mathrm{a}+\mathrm{b})=\sin (\mathrm{a}) \cos (\mathrm{b})+\cos (\mathrm{a}) \sin (\mathrm{b})$

$$
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)
$$

and: $\sin (\Delta \phi)=\Delta \phi ; \cos (\Delta \phi)=1$
\rightarrow solve for ' Δr_{i}^{\prime} and ' $\Delta \phi_{i}^{\prime}$:

$$
\begin{aligned}
\longrightarrow \Delta r_{i} & =-\Delta \mathrm{x}_{\mathrm{i}}^{1} \cdot \sqrt{\beta \cdot} \sin \left(\phi_{i}\right) \\
\Delta \phi_{\mathrm{i}} & =\frac{-\Delta \mathrm{x}_{\mathrm{i}}^{1} \cdot \sqrt{\beta \cdot} \cdot \cos \left(\phi_{i}\right)}{\left[\mathrm{r}+\Delta \mathrm{x}_{\mathrm{i}}^{\prime} \cdot \sqrt{\beta \cdot} \sin \left(\phi_{i}\right)\right]}
\end{aligned}
$$

substitute the kick expression:
(7) $\Delta \mathrm{r}_{\mathrm{i}}=\frac{l}{\mathrm{n}!} \cdot \mathrm{k}_{\mathrm{n}} \cdot \mathrm{x}_{\mathrm{i}}^{\mathrm{n}} \cdot \sqrt{\beta} \cdot \sin \left(\phi_{i}\right)$
(8)

$$
\frac{\frac{\boldsymbol{l}}{\mathrm{n}!} \cdot \mathrm{k}_{\mathrm{n}} \cdot \mathrm{x}_{\mathrm{i}}^{\mathrm{n}} \cdot \sqrt{\beta} \cdot \cos \left(\phi_{i}\right)}{\left[\mathrm{r}+\Delta \mathrm{r}_{\mathrm{i}}\right]}
$$

Perturbation V

quadrupole perturbation:

$$
\begin{aligned}
& \Delta \mathrm{r}_{\mathrm{i}}=l \cdot \mathrm{k}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \cdot \sqrt{\beta \cdot} \sin \left(\phi_{i}\right) \\
& \quad \text { with: } \mathrm{x}_{\mathrm{i}}=\sqrt{\beta} \cdot \mathrm{r} \cdot \cos \left(\phi_{i}\right)
\end{aligned}
$$

$$
\Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathrm{i}} \cdot \mathrm{r} \cdot \beta \cdot \sin \left(2 \phi_{i}\right)
$$

sum over many turns with: $\quad \phi_{i}=2 \pi \mathrm{Q} \cdot \mathrm{i}$

tune change (first order in the perturbation):

$$
\Delta \phi_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathrm{i}} \cdot \beta \cdot\left[1+\cos \left(2 \phi_{i}\right)\right] / 2
$$

average change per turn:

$$
\phi_{i}=2 \pi \mathrm{Q} \cdot \mathrm{i}
$$

$<\Delta \mathrm{Q}>=l \cdot \mathrm{k}_{1} \beta / 4 \pi$

$$
\mathrm{Q}=\mathrm{Q}_{0}+\langle\Delta \mathrm{Q}\rangle
$$

Perturbation VI

resonance stop band: $\mathrm{Q} \neq \mathrm{p} / 2$

the map perturbation generates a tune oscillation

$$
\begin{aligned}
\delta \mathrm{Q}_{\mathrm{i}} & =l \cdot \mathrm{k}_{\mathrm{i}} \beta \cdot \cos \left(4 \pi \cdot \mathrm{Q} \cdot \mathrm{i}+2 \phi_{O}\right) / 4 \pi \\
& =\left\langle\Delta \mathrm{Q}>\cdot \cos \left(4 \pi \mathrm{Q} \mathrm{i}+2 \phi_{O}\right) / 4 \pi\right.
\end{aligned}
$$

\rightarrow particles will experience the half integer resonance if their tune satisfies:

$$
(\mathrm{p} / 2-<\Delta \mathrm{Q}>)<\mathrm{Q}<(\mathrm{p} / 2+<\Delta \mathrm{Q}>)
$$

avoid integer and
half integer
$\mathrm{n}+0.5$
resonances and stay
away from the
resonance 'stop band'
$\mathrm{n}+0.5$
n + 1
tune diagram:
Qy

Perturbation VII

sextupole perturbation:

$$
\begin{aligned}
& \Delta \mathrm{r}_{\mathrm{i}}=l \cdot \mathrm{k}_{2} \cdot \mathrm{x}_{\mathrm{i}}^{2} \cdot \sqrt{\beta \cdot} \sin \left(\phi_{i}\right) / 2 \\
& \quad \text { with: } \mathrm{x}_{\mathrm{i}}=\sqrt{\beta \cdot \mathrm{r}} \cdot \cos \left(\phi_{i}\right) \\
& \Delta \mathrm{r}_{\mathrm{i}}=l \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}}^{2} \beta^{3 / 2}\left[\sin \left(\phi_{i}\right)+\sin \left(3 \phi_{i}\right)\right] / 8
\end{aligned}
$$

sum over many turns:

$$
\phi_{i}=2 \pi \mathrm{Q} \cdot \mathrm{i}
$$

$$
\mathrm{r}=0 \quad \text { unless: } \mathrm{Q}=\mathrm{p} \text { or } \mathrm{Q}=\mathrm{p} / 3
$$

tune change (first order in the perturbation):

$$
\begin{aligned}
2 \pi \Delta \mathrm{Q}_{\mathrm{i}}=l \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} & {\left[3 \cos \left(2 \pi \mathrm{Q} \mathrm{i}+\phi_{o}\right)\right.} \\
+ & \left.\cos \left(6 \pi \mathrm{Q} \mathrm{i}+3 \phi_{o}\right)\right] / 8
\end{aligned}
$$

sum over many turns:
(unless: $\mathrm{Q}=\mathrm{p}$ or $\mathrm{Q}=\mathrm{p} / 3$)

$$
<\Delta \mathrm{Q}>=0
$$

Perturbation VIII

what happens for $\mathrm{Q}=\mathrm{p} ; \mathrm{p} / 3$?

$$
\begin{aligned}
& \Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2} \cdot \underset{1}{2} \sin \left(2 \pi \mathrm{Q} \mathrm{i}+\phi_{o}\right) \\
& \left.1+\sin \left(6 \pi \mathrm{Q} \mathrm{i}+3 \phi_{o}\right)\right] / 8 \\
& \text { '----------------1 } \\
& \text { constant for each kick } \\
& 2 \pi \Delta \mathrm{Q}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} \cdot \begin{array}{l}
{\left[3 \cos \left(2 \pi \mathrm{Qi}+\phi_{0}\right)\right.} \\
\\
\\
\\
\\
\\
\\
\\
\end{array}
\end{aligned}
$$

amplitude 'r' increases every turn \longrightarrow instability
\rightarrow dephasing and tune change
\rightarrow motion moves off resonance
$\rightarrow \quad$ stop of the instability

Perturbation IX

let us assume: $\mathrm{Q}=\mathrm{p} / 3$

$$
\begin{gathered}
\Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathrm{i}} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2}\left[\begin{array}{c}
{\left[\sin \left(\phi_{i}\right)\right.} \\
\left.\Delta \phi_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} \cdot \sin \left(3 \phi_{i}\right)\right] / 8 \\
{\left[3 \cos \left(\phi_{i}\right)+\cos \left(3 \phi_{i}\right)\right] / 8} \\
+2 \pi \mathrm{Q}
\end{array}\right.
\end{gathered}
$$

the first terms change rapidly for each turn

\longrightarrow the contribution of these terms are small

 and we omit these terms in the following (method of averaging)$$
\begin{aligned}
\longrightarrow \quad \Delta \mathrm{r}_{\mathrm{i}} & =\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2} \sin \left(3 \phi_{i}\right) / 8 \\
\Delta \phi_{\mathrm{i}} & =\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} \cos \left(3 \phi_{i}\right) / 8+2 \pi \mathrm{Q}
\end{aligned}
$$

Perturbation X

fixed point conditions: $\mathrm{Q}_{0} \gtrsim \mathrm{p} / 3 ; \mathrm{k}_{2}>0$
$\Delta \mathrm{r} /$ turn $=0 \quad$ and $\quad \Delta \phi /$ turn $=2 \pi \mathrm{p} / 3$
with:
$\Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathrm{i}} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2} \sin \left(3 \phi_{i}\right) / 8$

$$
\begin{gathered}
\Delta \phi_{\mathrm{i}}=2 \pi \mathrm{Q}_{0}+\boldsymbol{l} \cdot \mathrm{k}_{2} \mathrm{r}_{\mathrm{i}} \beta^{3 / 2} \cos \left(3 \phi_{i}\right) / 8 \\
\phi_{\text {fixed point }}=\pi / 3 ; \pi ; 5 \pi / 3 ; \\
\mathrm{r}_{\text {fixed point }}=\frac{16 \pi\left(\mathrm{Q}_{0}-\mathrm{p} / 3\right)}{l \mathrm{k}_{2} \beta^{3 / 2}}
\end{gathered}
$$

$\rightarrow \quad \mathrm{r}=0$ also provides a fixed point in the
$x ; x^{\prime} \quad$ plane
(infinit set in the r, ϕ plane)

Perturbation XI

fixed point stability:
linearize the equation of motion around the fixed points:

Poincare map:

$$
\begin{aligned}
& r_{i+1}=r_{i}+f\left(r_{i}, \phi_{i}\right) \\
& \phi_{i+1}=\phi_{i}+g\left(r_{i}, \phi_{i}\right)
\end{aligned}
$$

single sextupole kick:

$$
\begin{aligned}
\longrightarrow \mathrm{f} & =\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2} \sin \left(3 \phi_{i}\right) / 8 \\
\mathrm{~g} & =\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} \cos \left(3 \phi_{i}\right) / 8
\end{aligned}
$$

\longrightarrow linearized map around fixed points:

$$
\binom{r_{i+1}}{\phi_{i+1}}=\left(\begin{array}{ll}
\frac{\partial r_{i+1}}{\partial r_{i}} & \frac{\partial r_{i+1}}{\partial \phi_{i}} \\
\frac{\partial \phi_{i+1}}{\partial r_{i}} & \frac{\partial \phi_{i+1}}{\partial \phi_{i}}
\end{array}\right)| |_{\text {fixed point }} \cdot\binom{r_{i}}{\phi_{i}}
$$

Perturbation XII

Jacobin matrix for single sextupole kick:
Jacobian matrix
$\frac{\partial \mathrm{r}_{\mathrm{i}+1}}{\partial \mathrm{r}_{\mathrm{i}}}=1 ; \quad \frac{\partial \mathrm{r}_{\mathrm{i}+1}}{\partial \phi_{\mathrm{i}}}=-3 \boldsymbol{l} \cdot \mathrm{k}_{2} \beta^{3 / 2} \cdot \mathrm{r}_{\text {fixed point }}^{2} / 8$
$\frac{\partial \phi_{\mathrm{i}+1}}{\partial \mathrm{r}_{\mathrm{i}}}=-\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \beta^{3 / 2} / 8 ; \quad \frac{\partial \phi_{\mathrm{i}+1}}{\partial \phi_{\mathrm{i}}}=1$
$\phi_{\text {fixed point }}=\pi / 3 ; \pi ; 5 \pi / 3 ; \quad$ and $r_{\text {fixed point }} \neq 0$
$\longrightarrow \Delta \mathrm{r}_{\mathrm{i}+1}=-3 l \cdot \mathrm{k}_{2} \beta^{3 / 2} \cdot \stackrel{\mathrm{r}}{\text { fixed point }}_{2} / 8 \cdot \Delta \phi_{\mathrm{i}}$
$\Delta \phi_{\mathrm{i}+1}=-\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \beta^{3 / 2} / 8 \cdot \Delta \mathrm{r}_{\mathrm{i}} \quad$ stability?

hyperbolic fixed point

Perturbation XIII

Poincare Section for 'r' and ϕ ':

unstable
hyperbolic fixed points

Poincare section in normalized coordinates:

Perturbation XIV

Perturbation XVI

slow extraction:

fixed point position:

$\frac{16 \pi\left(\mathrm{Q}-\frac{\mathrm{p}}{3}\right)}{l \cdot \mathrm{k}_{2} \cdot \beta^{3 / 2}}$
$r_{\text {fixed point }}$
\longrightarrow changing the tune during extraction!

Perturbation XVII

octupole perturbation:

$$
\Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{3} \cdot \mathrm{x}_{\mathrm{i}}^{3} \cdot \sqrt{\beta} \cdot \sin \left(\phi_{i}\right) / 6
$$

with: $x_{i}=\sqrt{\beta \cdot r} \cdot \cos \left(\phi_{i}\right)$
$\Delta \mathrm{r}_{\mathrm{i}}=l \cdot \mathrm{k}_{3} \cdot \mathrm{r}_{\mathrm{i}}^{3} \cdot \beta^{2} \cdot\left[2 \sin \left(2 \phi_{i}\right)+\sin \left(4 \phi_{i}\right)\right] / 48$
sum over many turns: $\quad \phi_{i}=2 \pi \mathrm{Q} \cdot i+\phi_{0}$

$$
\mathrm{r}=0 \quad \text { unless: } \mathrm{Q}=\mathrm{p}, \mathrm{p} / 2, \mathrm{p} / 4
$$

tune change (first order in the perturbation):

$$
\begin{aligned}
2 \pi \Delta \mathrm{Q}_{\mathrm{i}}=l \cdot \mathrm{k}_{3} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{2} \cdot & {\left[4 \cos \left(4 \pi \mathrm{Q} \mathrm{i}+2 \phi_{o}\right)\right.} \\
& \left.+3+\cos \left(8 \pi \mathrm{Q} \mathrm{i}+4 \phi_{o}\right)\right] / 48
\end{aligned}
$$

sum over many turns (unless: $\mathrm{Q}=\mathrm{p}$ or $\mathrm{Q}=\mathrm{p} / 4$):

$$
<\Delta \mathrm{Q}>=l \cdot \mathrm{k}_{3} \cdot \mathrm{r}^{2} \cdot \beta^{2} / 16 / 2 \pi
$$

Perturbation XVIII

detuning with amplitude:

particle tune depends on particle amplitude
\longrightarrow tune spread for particle distribution
\rightarrow stabilization of collective instabilities
\longrightarrow install octupoles in the storage ring
\longrightarrow distribution covers more resonances in the tune diagram

\longrightarrow avoid octupoles in the storage ring

\rightarrow requires a delicate compromise Poincare section topology:
$\mathrm{Q}=\mathrm{p} / 4$ and apply method of averaging

$$
\begin{aligned}
& \Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{3} \cdot \mathrm{r}_{\mathrm{i}}^{3} \cdot \beta^{2} \cdot \sin \left(4 \phi_{i}\right) / 48 \\
& \Delta \phi_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{3} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{2} \cdot\left[3+\cos \left(4 \phi_{i}\right)\right] / 48+2 \pi \mathrm{Q}
\end{aligned}
$$

Perturbation XIX

fixed point conditions: $\mathrm{Q}_{0} \approx \mathrm{p} / 4 ; \mathrm{k}_{3}>0$
$\Delta \mathrm{r} /$ turn $=0 \quad$ and $\quad \Delta \phi /$ turn $=2 \pi \mathrm{p} / 4$
with:
$\Delta r_{i}=\boldsymbol{l} \cdot \mathrm{k}_{\mathbf{j}} \mathrm{r}_{\mathrm{i}}^{3} \cdot \boldsymbol{\beta}^{2} \cdot \sin \left(4 \phi_{i}\right) / 48$

$$
\Delta \phi_{\mathrm{i}}=2 \pi \mathrm{Q}_{0}+\boldsymbol{l} \cdot \mathrm{k}_{3} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{2} \cdot\left[3+\cos \left(4 \phi_{i}\right)\right] / 48
$$

$\phi_{\text {fixed point }}=\pi / 2 ; \pi ; 3 \pi / 2 ; 2 \pi$
$\mathrm{r}_{\text {fixed point }}=\sqrt{\frac{96 \pi\left(\mathrm{p} / 4-\mathrm{Q}_{0}\right)}{l \mathrm{k}_{3} \beta^{2}(3+1)}}$

$\phi_{\text {fixed point }}=\pi / 4 ; 3 \pi / 4 ; 5 \pi / 4 ; 7 \pi / 4$
$\mathrm{r}_{\text {fixed point }}=\sqrt{\frac{96 \pi\left(\mathrm{p} / 4-\mathrm{Q}_{0}\right)}{l \mathrm{k}_{3} \beta^{2}(3-1)}}$

Perturbation $X X$

fixed point stability for single octupole kick:
Jacobian matrix

$$
\frac{\partial \mathrm{r}_{\mathrm{i}+1}}{\partial \mathrm{r}_{\mathrm{i}}}=1 ; \quad \frac{\partial \mathrm{r}_{\mathrm{i}+1}}{\partial \phi_{\mathrm{i}}}= \pm 4 \boldsymbol{l} \cdot \mathrm{k}_{\overrightarrow{3}} \cdot \beta^{2} \cdot \mathrm{r}_{\text {fixed point }}^{3} / 48
$$

$$
\frac{\partial \phi_{\mathrm{i}+1}}{\partial \mathrm{r}_{\mathrm{i}}}=+l \cdot \mathrm{k}_{3} \cdot \beta^{2} \cdot \mathrm{r}(3 \pm 1) / 24 ; \quad \frac{\partial \phi_{\mathrm{i}+1}}{\partial \phi_{\mathrm{i}}}=1
$$

$\longrightarrow \Delta \mathrm{r}_{\mathrm{i}+1}= \pm 4 \boldsymbol{l} \cdot \mathrm{k}_{3} \cdot \beta^{2} \cdot \mathrm{r}_{\text {fixed point }}^{3} / 48 \cdot \Delta \phi_{\mathrm{i}}$

$$
\Delta \phi_{\mathrm{i}+1}=l \cdot \mathrm{k}_{3} \cdot \beta^{2}(3 \pm 1) / 24 \cdot \Delta \mathrm{r}_{\mathrm{i}}
$$

Stability for ' - ' sign and $\mathrm{k}_{3}>0$?

elliptical fixed point

Perturbation XXI

Poincare Section for 'r' and ϕ ':

island structure

Poincare section in normalized coordinates:

Perturbation XXII

Pendulum Dynamics I

generic signature of non-linear resonances:

\rightarrow chain of resonance islands

pendulum dynamics:

angle variable:
ϕ
angular momentum: $\mathrm{L}=\mathrm{m} \cdot \mathrm{r} \cdot \mathrm{v}$

$$
\mathrm{v}=\frac{\mathrm{d} s}{\mathrm{dt}}=\mathrm{r} \cdot \frac{\mathrm{~d} \phi}{\mathrm{dt}} \longrightarrow \mathrm{~L}=\mathrm{m} \cdot \mathrm{r}^{2} \cdot \frac{\mathrm{~d} \phi}{\mathrm{dt}}
$$

Pendulum Dynamics II

equations of motion:
$\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{1}{\mathrm{~m} \cdot \mathrm{r}^{2}} \cdot \mathrm{~L} \quad \frac{\mathrm{~d} L}{\mathrm{dt}}=-\mathrm{r} \cdot \mathrm{g} \cdot \mathrm{m} \cdot \sin (\phi)$
generic form:

$$
\frac{\mathrm{d} \phi}{\mathrm{dt}}=\mathrm{G} \cdot \mathrm{p} \quad \frac{\mathrm{dp}}{\mathrm{dt}}=-\mathrm{F} \cdot \sin (\phi)
$$

constant of motion:
$\mathrm{E}_{\text {tot }}=\mathrm{E}_{\mathrm{kin}}+\mathrm{U}_{\mathrm{pot}}$

$$
\mathrm{E}_{\mathrm{kin}}=\frac{1}{2} \mathrm{G} \cdot \mathrm{p}^{2}
$$

$$
U_{\text {pot }}=-F \cdot \cos (\phi)
$$

solution:

$$
\frac{\mathrm{d} \phi}{\mathrm{dt}}=\mathrm{G} \cdot \mathrm{p} \quad \mathrm{p}=\sqrt{[\mathrm{E}+\mathrm{F} \cdot \cos (\phi)]} \cdot \sqrt{\frac{2}{\mathrm{G}}}
$$

$\rightarrow \sqrt{t-t_{0}=\sqrt{\frac{1}{2 G}} \int \frac{d \phi}{\sqrt{[E+F \cdot \cos (\phi)]}}}$

Pendulum Dynamics III

phase space:

\longrightarrow island width:
$\Delta \mathrm{p}_{\max }=4 \sqrt{\mathrm{~F} / \mathrm{G}}$
$\mathrm{E}_{\text {tot }}=\mathrm{F}$ and $\phi=0$
island oscillation frequency: $\omega_{\text {island }}=\sqrt{\mathrm{F} \cdot \mathrm{G}}$

pendulum motion:

libration: rotation:
oscillation around stable fixed point continuous increase of phase variable separatrix: separation between the two types

Cylindrical Coordinates I

linear solution:
$x=\sqrt{\beta} \cdot \sqrt{\boldsymbol{R}} \cdot \cos (\phi) \quad x^{\prime}=-\sqrt{\boldsymbol{R}} \cdot \sin (\phi) / \sqrt{\beta}$
with: $\frac{d \phi}{d s}=\omega=\frac{2 \pi Q}{L}=\frac{1}{\beta}$
perturbed Hill's equation:

$$
\frac{d^{2} x}{d s^{2}}+\omega^{2} \cdot x=\frac{F_{\mathrm{x}}(x, y)}{v^{\cdot} p}
$$

$$
x^{\prime \prime}=\frac{-1}{n!} \cdot k_{n}(s) \cdot x^{n}-\omega^{2} \cdot x
$$

equation of motion in cylindrical coordinates:

$$
\begin{aligned}
& \frac{d \phi}{d s}=\frac{d \phi}{d x} \cdot x^{\prime}+\frac{d \phi}{d x^{\prime}} \cdot x^{\prime \prime} \\
& \frac{d R}{d s}=\frac{d R}{d x} \cdot x^{\prime}+\frac{d R}{d x^{\prime}} \cdot x^{\prime \prime}
\end{aligned}
$$

Cylindrical Coordinates II

radial coordinate:

$$
\boldsymbol{R}=\frac{x^{2}}{\beta}+x^{-2} \cdot \beta
$$

$\frac{d \boldsymbol{R}}{\boldsymbol{d} \boldsymbol{s}}=\frac{2 x x^{\prime}}{\beta}-2 \beta \alpha^{2} x^{2} x^{\prime}+2 x^{\prime} \beta \cdot \frac{F_{\mathrm{x}}(s, r, \phi)}{v^{\cdot} p}$
$\frac{d R}{d s}=\frac{-2}{\mathrm{n}!} \cdot k_{\mathrm{n}}(s) \cdot(R \cdot \beta)^{(\mathrm{n}+1) / 2} \cdot \sin (\phi) \cdot \cos ^{\mathrm{n}}(\phi)$
angular coordinate:

$$
\phi=\operatorname{atan}\left(\frac{-x^{\prime} \cdot \beta}{x}\right)
$$

with: $\quad \frac{d}{d s} \operatorname{atan}(f[s])=\frac{1}{f^{2}(s)+1} \cdot \frac{d f}{d s}$

$$
\left(\frac{1}{\beta}=\omega\right) \longrightarrow \frac{d \phi}{d s}=\omega-\frac{X}{R} \cdot \frac{F_{\mathrm{x}}(s, r, \phi)}{v^{\bullet} p}
$$

$$
\frac{d \phi}{d s}=\omega+\frac{1}{\mathrm{n}!} \cdot k_{\mathrm{n}}(s) \cdot \boldsymbol{R}^{(\mathrm{n}-1) / 2} \beta^{(\mathrm{n}+1) / 2} \cos ^{\mathrm{n}+1}(\phi)
$$

Examples for Equation of Motion I

quadrupole: $\mathrm{n}=1$

$$
\begin{aligned}
& \frac{d R}{d s}=-k_{1}(s) \cdot R \cdot \beta \cdot \sin (2 \phi) \\
& \frac{d \phi}{d s}=\omega+k_{1}(s) \cdot \beta \cdot(1+\cos (2 \phi)) / 2
\end{aligned}
$$

\longrightarrow similar expressions as with the map approach but we can now treat distributed perturbations!
sextupole: $\mathrm{n}=2$

$$
\begin{aligned}
& \frac{d R}{d s}=\frac{-1}{4} \cdot k_{2}(s) \cdot(R \cdot \beta)^{3 / 2} \cdot(\sin (\phi)+\sin (\beta \phi)) \\
& \frac{d \phi}{d s}=\omega+\frac{1}{8} \cdot k_{2}(s) \cdot R^{1 / 2} \cdot \beta^{3 / 2} \cdot(3 \cos (\phi)+\cos (3 \phi))
\end{aligned}
$$

Examples for Equation of Motion II

octupole: $\mathrm{n}=3$
$\frac{d R}{d s}=\frac{-1}{24} \cdot k_{3}(s) \cdot R^{2} \cdot \beta^{2} \cdot(2 \sin (\phi)+\sin (4 \phi))$
$\frac{d \phi}{d s}=\omega+\frac{1}{48} \cdot k_{3}(s) \cdot \boldsymbol{R} \cdot \beta^{2} \cdot(3+4 \cos (2 \phi)+\cos (4 \phi))$
one single kick at one location:
$\longrightarrow \frac{F(s)}{v \cdot p}=1 k_{\mathrm{n}}(s) \cdot \delta_{\mathrm{L}}\left(s-s_{0}\right)$
with: $\delta=\left\{\begin{array}{l}1 \text { for } \mathrm{s}=\mathrm{s}+\mathrm{n} \cdot \mathrm{L} \\ 0 \text { else }\end{array}\right.$
\longrightarrow Fourier series of δ-function:

$$
\frac{F(s)}{v \cdot p}=1 k_{\mathrm{n}}(s) \cdot \frac{1}{L} \cdot \sum_{\mathrm{n}=-\infty}^{+\infty} \cos (n \cdot 2 \pi \cdot s / L)
$$

Examples for Equation of Motion III

single octupole magnet at $\mathrm{s}_{\mathbf{0}}: \mathrm{n}=3$

$$
\begin{aligned}
\frac{d R}{d s}=\frac{-1}{24 \cdot \mathrm{~L}} \cdot 1 k_{\mathfrak{f}}(s) \cdot R^{2} \cdot \beta^{2} \cdot \sum_{\mathrm{n}=0}^{+\infty} & (2 \sin (\phi+n \cdot 2 \pi \cdot s / L) \\
& +\sin (4 \phi+n \cdot 2 \pi \cdot s / L))
\end{aligned}
$$

$$
\frac{d \phi}{d s}=\frac{2 \pi Q}{L}+\frac{1}{48 \cdot \mathrm{~L}} \cdot 1 k_{3}(s) \cdot R \cdot \beta^{2} \cdot \sum_{\mathrm{n}=0}^{+\infty}(3+
$$

$$
+2 \cos (\phi+n \cdot 2 \pi \cdot s / L)
$$

$$
+\cos (4 \phi+n \cdot 2 \pi \cdot s / L))
$$

resonance: $\phi=\frac{2 \pi Q}{L} \cdot s+\phi_{0}$
with $\quad Q=N+1 / n$
\longrightarrow all but one term change rapidly with s !
\longrightarrow method of averaging!

Examples for Equation of Motion IV

$1 / 4$ resonance :
$\mathrm{p}=4$

$$
\frac{d \boldsymbol{R}}{d s}=\frac{-1}{24^{\bullet} \cdot \mathrm{L}} \cdot 1 k_{3} \cdot \boldsymbol{R}^{2} \cdot \beta^{2} \cdot \sin \left(4 \phi_{0}\right)
$$

$\frac{d \phi}{d s}=\frac{2 \pi Q}{L}+\frac{1}{48 \cdot \mathrm{~L}} \cdot 1 k_{3} \cdot R \cdot \beta^{2} \cdot\left(3+\cos \left(4 \phi_{0}\right)\right)$
fixed point conditions: $\mathrm{Q}_{0} \lessgtr \mathrm{p} / 4 ; \mathrm{k}_{3}>0$
$\Delta \mathrm{R} /$ turn $=0 \quad$ and $\quad \Delta \phi /$ turn $=2 \pi \mathrm{p} / 4$
$\rightarrow \quad \phi_{\text {fixed point }}=\pi / 2 ; \pi ; 3 \pi / 2 ; 2 \pi$

$$
\mathrm{R}_{\text {fixed point }}=\frac{96 \pi\left(\mathrm{p} / 4-\mathrm{Q}_{0}\right)}{l \mathrm{k}_{3} \beta^{2}(3+1)}
$$

$\phi_{\text {fixed point }}=\pi / 4 ; 3 \pi / 4 ; 5 \pi / 4 ; 7 \pi / 4$

$$
\mathrm{R}_{\text {fixed point }}=\frac{96 \pi\left(\mathrm{p} / 4-\mathrm{Q}_{0}\right)}{l \mathrm{k}_{3} \beta^{2}(3-1)}
$$

Example Octupole

Examples for Equation of Motion V

expand motion around stabel fixed point:

$$
\phi=\frac{2 \pi Q}{L} s+\phi_{\mathrm{fix}}+\Delta \phi
$$

$\mathrm{R}=\mathrm{R}_{\mathrm{fix}}+\Delta \mathrm{R} \quad$ and keep only first order in $\Delta \mathrm{R}$

$$
\frac{d \Delta R}{d s}=\frac{-1}{24^{\bullet} \mathrm{L}} \cdot 1 k_{3} \cdot R_{\mathrm{fix}}^{2} \cdot \beta^{2} \cdot \sin (4 \Delta \phi)
$$

$$
\begin{array}{r}
\frac{d \phi}{d s}=\frac{2 \pi Q_{0}}{L}+\frac{1}{48 \cdot \mathrm{~L}} 1 k_{3} \cdot \boldsymbol{R}_{\mathrm{fix}} \cdot \beta^{2} \cdot(3-\cos (4 \Delta \phi)) \\
+\frac{1}{48 \cdot \mathrm{~L}} 1 k_{3} \cdot \Delta \boldsymbol{R} \cdot \beta^{2} \cdot(3-\cos (4 \Delta \phi))
\end{array}
$$

change to new angular variable:

$$
\begin{aligned}
& \varphi=4 \phi-8 \pi Q \cdot s / L \quad r=4 \cdot \Delta \boldsymbol{R} \\
& \quad \text { with } \quad Q=Q_{0}+\frac{1}{48 \cdot \pi} \boldsymbol{1} k_{3} \cdot \boldsymbol{R}_{\text {fix }} \cdot \beta^{2}
\end{aligned}
$$

Examples for Equation of Motion VI

pendulum approximation:

$$
\frac{d r}{d s}=-F \cdot \sin (\varphi)
$$

$$
\text { with } F=\frac{4}{24 \cdot \mathrm{~L}} \cdot 1 k_{3} \cdot \beta^{2} \cdot \boldsymbol{R}_{\mathrm{fix}}^{2}
$$

$$
\frac{d \varphi}{\boldsymbol{d} \boldsymbol{s}}=\mathrm{G} \cdot \mathrm{r}
$$

resonance width:

$$
\begin{gathered}
\Delta r_{\max }=4 \sqrt{F / G}=8 \cdot \Delta R_{\mathrm{fix}} \\
\longrightarrow \Delta R_{\max }=2 \cdot \Delta R_{\mathrm{fix}}
\end{gathered}
$$

resonance width equals twice the stable fixed point resonance width increases with decreasing k_{3} !

Example Octupole

$R \cdot 10^{6}$
$1 \mathrm{k}_{3}=2 \mathrm{~m}^{-3}$

Example Sextupole

why did we not find islands for a sextupole?
\rightarrow the pendulum approximation requires an amplitude dependent tune!

$$
\longrightarrow \quad \frac{\mathrm{d} \phi}{\mathrm{ds}}=\mathrm{G} \cdot \mathrm{r}
$$

unstable hyperbolic fixed points -

the sextupole perturbation has no amplitude dependent tune (to first order)
\rightarrow stabilization by an octupole term?

Example Sextupole

$R \cdot 10^{6}$

Example Sextupole + Octupole

$R \cdot 10^{6}$

Higher Order

so far we assumed on the right-hand side:

$$
\begin{aligned}
\phi & =2 \pi \mathrm{Q}_{0} \cdot \mathrm{~s} / \mathrm{L}+\phi_{\text {fix }}+\Delta \phi \\
\mathrm{R} & =\mathrm{R}_{\mathrm{fix}}+\Delta \mathrm{R}
\end{aligned}
$$

and kept only first order terms in $\Delta \mathrm{R}$ higher order perturbation treatment:

$$
\begin{gathered}
\mathrm{R}(\mathrm{~s})=\mathrm{R}_{0}(\mathrm{~s})+\varepsilon \mathrm{R}_{1}(\mathrm{~s})+\varepsilon^{2} \mathrm{R}_{2}(\mathrm{~s})+\mathrm{O}\left(\varepsilon^{3}\right) \\
\phi(\mathrm{s})=\phi_{0}(\mathrm{~s})+\varepsilon \phi_{1}(\mathrm{~s})+\varepsilon^{2} \phi_{2}(\mathrm{~s})+\mathrm{O}\left(\varepsilon^{3}\right) \\
\text { with: } \quad \varepsilon=\left(\beta \cdot \mathrm{R}_{\mathrm{fix}}\right)^{(\mathrm{n}+1) / 2} \cdot \mathrm{lk}_{\mathrm{n}} / \mathrm{L}
\end{gathered}
$$

match powers of ε :
match powers of ' ε '
solve lowest order without perturbation
substitute solution in next higher order equations
solve next order etc

Higher Order II

expand equation of motion into a Taylor series around zero order solution

$$
\frac{\mathrm{dr}}{\mathrm{ds}}=\mathrm{F}(\mathrm{r}, \phi) \quad \frac{\mathrm{d} \phi}{\mathrm{ds}}=\mathrm{G}(\mathrm{r}, \phi)
$$

single sextupole kick:

$$
\begin{aligned}
\mathrm{F} & =\mathrm{f}(\mathrm{R}) \cdot[\sin (3 \phi)+3 \sin (\phi)] \\
\mathrm{G} & =\mathrm{g}(\mathrm{R}) \cdot[\cos (3 \phi)+3 \cos (\phi)]+\frac{2 \pi \mathrm{Q}}{\mathrm{~L}} \\
\rightarrow \quad & \mathrm{dR} \\
\mathrm{ds} & =\varepsilon \cdot \mathrm{f}+\left[\frac{\partial \mathrm{f}}{\partial \mathrm{r}} \cdot \mathrm{r}_{1}+\frac{\partial \mathrm{F}}{\partial \phi} \cdot \phi_{1}\right] \cdot \varepsilon^{2}+\mathrm{O}\left(\varepsilon^{3}\right)
\end{aligned}
$$

$$
\frac{\mathrm{d} \phi}{\mathrm{ds}}=\frac{2 \pi \mathrm{Q}}{\mathrm{~L}}+\varepsilon \cdot \mathrm{g}+\left[\frac{\partial \mathrm{g}}{\partial \mathrm{r}} \cdot \mathrm{r}_{1}+\frac{\partial \mathrm{G}}{\partial \phi} \cdot \phi_{1}\right] \cdot \varepsilon^{2}+\mathrm{O}\left(\varepsilon^{3}\right)
$$

Higher Order III

match powers of ε and solve equation of motion in ascending order of ε^{n} :
zero order: $\quad \phi_{0}(\mathrm{~s})=\frac{2 \pi \mathrm{Q}}{\mathrm{L}} \cdot \mathrm{s}+\phi_{0}$

$$
\mathrm{R}_{0}(\mathrm{~s})=\mathrm{R}_{0} \quad(\mathrm{Q}=\mathrm{p}+\mathrm{v})
$$

\longrightarrow substitute into equation of motion and solve for $\phi_{1}(\mathrm{~s})$ and $\mathrm{r}_{1}(\mathrm{~s})$
first order:

$$
\begin{aligned}
& \phi_{1}(\mathrm{~s}) \propto {\left[\operatorname { s i n } \left(\frac{\left.6 \pi \mathrm{Q} \cdot \mathrm{~s}+3 \phi_{0}\right) / 3+}{\mathrm{L}}+\right.\right.} \\
& 3 \cdot \sin \left(\frac{\left.\left.2 \pi \mathrm{Q} \cdot \mathrm{~s}+\phi_{0}\right)\right]}{\mathrm{L}}\right) \\
& \mathrm{R}_{1}(\mathrm{~s}) \propto {\left[\operatorname { c o s } \left(\frac{\left.6 \pi \mathrm{Q} \cdot \mathrm{~s}+3 \phi_{0}\right) / 3+}{\mathrm{L}}+\right.\right.} \\
&\left.3 \cdot \cos \left(\frac{3 \pi \mathrm{Q}}{\mathrm{~L}} \cdot \mathrm{~s}+\phi_{0}\right)\right]
\end{aligned}
$$

Perturbation IV

second order:

\longrightarrow substitute $\phi_{1}(\mathrm{~s})$ and $\mathrm{r}_{1}(\mathrm{~s})$ into equation
of motion and order powers of ε^{2}
you get terms of the form: $\frac{\mathrm{dr}_{2}}{\mathrm{ds}}=\left[\frac{\partial \mathrm{f}}{\partial \mathrm{r}} \cdot \mathrm{r}_{1}+\frac{\partial \mathrm{f}}{\partial \phi} \cdot \phi_{1}\right]$

$$
\frac{\mathrm{d} \phi}{\mathrm{ds}}=\left[\frac{\partial \mathrm{g}}{\partial \mathrm{r}} \cdot \mathrm{r}_{1}+\frac{\partial \mathrm{g}}{\partial \phi} \cdot \phi_{1}\right]
$$

$\sin (3 \phi) \cdot \cos (3 \phi) ; \sin (3 \phi) \cdot \cos (\phi) ; \sin (\phi) \cdot \cos (\phi)$
$\cos (3 \phi) \cdot \cos (3 \phi) ; \cos (3 \phi) \cdot \cos (\phi) ; \cos (\phi) \cdot \cos (\phi)$

higher order resonances: ε^{n}
a single perturbation generates ALL resonances
driving term strength and resonance width
decrease with increasing order!

Perturbation V

$\mathrm{R} \cdot 10^{6}$

Integrable Systems

trajectories in phase space do not intersect

deterministic system

integrable systems:
all trajectories lie on invariant surfaces
n degrees of freedom

two degrees of freedom:

$\mathrm{x}, \mathrm{s} \longrightarrow$ motion lies on a torus

Poincare section for two degrees of freedom:
\qquad motion lies on closed curves $\longrightarrow \quad$ indication of integrability

Non-Integrable Systems

'chaos' and non-integrability:
so far we removed all but one resonance
(method of averaging)
\longrightarrow dynamics is integrable and therefore predictable
re-introduction of the other resonances 'perturbs' the separatrix motion
\rightarrow motion can 'change' from libration to rotation
\rightarrow generation of a layer of 'chaotic motion'

Sextupole + Octupole

Non-Integrable Systems

slow particle loss:
particles can stream along the 'stochastic layer' for 1 degree of freedom (plus 's' dependence) the particle amplitude is bound by neighboring integrable lines
not true for more than one degree of freedom
global 'chaos' and fast particle losses:
if more than one resonance are present their resonance islands can overlap
\longrightarrow the particle motion can jump from one resonance to the other
\longrightarrow 'global chaos'
\longrightarrow fast particle losses and dynamic aperture

Summary

Non-linear Perturbation:
\square amplitude growth
\square detuning with amplitude \square coupling

Complex dynamics:

3 degrees of freedom
$+\quad 1$ invariant of the motion

+ non-linear dynamics
no global analytical solution!
\longrightarrow analytical analysis relies on
perturbation theory

