Non-Linear

Imperfections

Advanced Accelerator Physics Course Trondheim August 2013

Oliver Bruning / CERN BE-ABP

Non-Linear Imperfections

equation of motion Hills equation sine and cosine like solutions + one turn map Poincare section normalized coordinates smooth approximation tune diagram and fixed points resonances non-linear resonances driving terms and magnetic multipole expansion perturbation treatment of non-linear maps amplitude growth and detuning guadrupole — fixed points and slow extraction sextupole resonance islands octupole pendulum model equation of motion and phase space Hills equations in Cylindrical coordinates examples resonance islands

higher order perturbation treatment

Equations of Motion I

Lorentz Force:

$$\frac{d\vec{p}}{dt} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$$

opath length as free parameter:

replace time 't' by path length 's':
$$x = \frac{d}{ds} x$$

$$\frac{d}{dt} = \frac{ds}{dt} \cdot \frac{d}{ds} \longrightarrow x' = \frac{p_x}{p_0}$$

Equation of motion:

$$\frac{d^2X}{ds^2} = \frac{F}{V \cdot P_0}$$

Equations of Motion II

Variables in rotating coordinate system:

Hills equation:

$$\frac{d^2x}{ds^2} + K(s) \cdot x = 0 K(s) = K(s + L);$$

$$K(s) = \begin{cases} 0 & drift \\ 1/\rho^2 & dipole \\ 0.3 \cdot \frac{B[T/m]}{p[GeV/c]} & quadrupole \end{cases}$$

Non-linear equation of motion:

$$\frac{d^2x}{ds^2} + K(s) \cdot x = \frac{F_x}{v \cdot p}$$

Poincare Section I

Display coordinates after each turn:

Linear β – motion:

$$x_i = \sqrt{R} \cdot \sqrt{\beta(s)} \cdot \sin(2\pi Q i + \phi_0)$$

$$x_i = \sqrt{R} \cdot [\cos (2\pi Q i + \phi_0) + \alpha(s) \cdot \sin(2\pi Q i + \phi_0)] / \sqrt{\beta(s)}$$

the ellipse orientation and the half axis lengthvary along the machine

Poincare Section II

for the sake of simplicity assume $\alpha = 0$ at the location of the Poincare Section

for $\alpha \neq 0$

one can define a new set of coordinates via linear combination of x and x' such that one axis of the ellipse is parallel to x-axis

Poincare Section III

Display normalized coordinates:

normalized coordinates:

$$x/\sqrt{\beta} = \sqrt{R \cdot \cos(2\pi Q i + \phi_0)}$$

$$\sqrt{\beta \cdot} x' = -\sqrt{R \cdot} \sin(2\pi Q i + \phi_0)$$

circles in the

Poincare Section

Smooth Approximation

assume: β = constant

$$\frac{d\phi}{ds} = \frac{1}{\beta} = \omega = \frac{2\pi Q}{L}$$

Linear β – motion: β = const \longrightarrow α = 0

$$x_i = \sqrt{R} \cdot \sqrt{\beta(s)} \cdot \sin(2\pi Q i + \phi_0)$$

$$x_i = \sqrt{R} \cdot \cos(2\pi Q) + \phi_0 / \sqrt{\beta(s)}$$

Linear equation of motion:

$$\frac{d^2x}{ds^2} + \left(\frac{2\pi}{L} \cdot Q\right)^2 \quad x = 0 \quad \longrightarrow \quad \frac{\text{Harmonic}}{\text{Oscillator}}$$

Resonances I

tune diagram with linear resonances:

higher order resonances:

 $n Q_x + m Q_y = r$

the rational numbers lie 'dense' in the real numbers

there are resonances everywhere

1/4

 $\mathbf{Q}\mathbf{x}$

stability of low order resonances?!!

Resonances II

fixed points in the Poincare section:

$$Q = N + 1/n$$

- every point is mapped on itself after n turns!
- -> every point is a 'fixed point'
- motion remains stable if the resonances are not driven
- sources for resonance driving terms?

Non-Linear Resonances I

- Sextupoles + octupoles
- Magnet errors:

pole face accuracy
geometry errors
eddy currents
edge effects

Vacuum chamber:

LEP I welding

Beam-beam interaction

careful analysis of all components

Non-Linear Resonances II

Taylor expansion for upright multipoles:

$$\mathbf{B}_{y} + \mathbf{i} \cdot \mathbf{B}_{x} = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot f_{n} \cdot (x + i y)^{n}$$

with:
$$f_n = \frac{\partial^n \mathbf{B}_y}{2 \mathbf{x}^n}$$

multipole	order	B_{X}	B_y
dipole	0	0	B_{0}
quadrupole	1	f ₁ •y	f ₁ • x
sextupole	2	f ₂ • x• y	$\frac{1}{2} f_2^{\bullet} (x^2 - y^2)$
octupole	3	$\frac{1}{6} f_3^{\bullet} (3y x^2 - y^3)$	$\frac{1}{6} f_3^{\bullet} (x^3 - 3x y^2)$

convergence:

the Taylor series is normally not convergent for |x + i y| > 1 define 'normalized' coefficients

$$b_{n} = \frac{f_{n}}{n! \cdot B_{0}} \cdot R_{ref}^{n}$$

Non-Linear Resonances III

normalized multipole expansion:

$$B_y + i \cdot B_x = B_{main} \ge b_n \cdot \left(\frac{x + i y}{R_{ref}}\right)^n$$

 b_n is the relative field contribution of the n-th multipole at the reference radius

 $b_0 = \text{dipole}; b_1 = \text{quadrupole}; b_2 = \text{sextupole}; \text{ etc}$

skew multipoles:

rotation of the magnetic field by 1/2 of the azimuthal magnet symmetry: 90° for dipole 45° for quadrupole

30° for sextupole; etc

general multipole expansion:

$$B_y + i \cdot B_x = B_{main} \ge (b_n - i a_n) \cdot \left(\frac{x + i y}{R_{ref}}\right)^n$$

Perturbation I

perturbed equation of motion:

$$\frac{d^2x}{ds^2} + \left(\frac{2\pi}{L} \cdot Q_x\right)^2 \cdot x = \frac{F_x(x,y)}{V \cdot p}$$

$$\frac{d^2y}{ds^2} + \left(\frac{2\pi}{L} \cdot Q_y\right)^2 \cdot y = \frac{F_y(x,y)}{v \cdot p}$$

assume motion in one degree only:

 $y \equiv 0$ is a solution of the vertical equation of motion

$$\rightarrow$$
 $B_x = 0;$ $B_y = \frac{1}{n!} \cdot f_n \cdot x^n$ $F_x = -v_s \cdot B_y$

perturbed horizontal equation of motion:

$$\frac{d^2x}{ds^2} + \left(\frac{2\pi}{L} \cdot Q_x\right)^2 \cdot x = \frac{-1}{n!} \cdot k_n(s) \cdot x^n$$

normalized strength:

$$k_n = 0.3 \cdot \frac{f_n [T/m^n]}{p [GeV/c]}; [k_n] = 1/m^{n+1}$$

Perturbation II

perturbation just infront of Poincare Section:

$$\Delta x' = \int \frac{F_y}{v \cdot p} ds \longrightarrow = \frac{-l}{n!} \cdot k_n \cdot x^n$$

where 'l' is the length of the perturbation

perturbed Poincare Map:

stability of particle motion over many turns?

Perturbation III

coordinates after 'i' itteration and before kick:

(1)
$$X_{i} / \beta = r \cdot cos(\phi_{i}) \quad X_{i} / \beta = -r \cdot sin(\phi_{i})$$

(2) with:
$$\phi_i = \phi_{i-1} + 2\pi Q$$
 and: $r = \sqrt{R}$

coordinates after the perturbation kick:

(3)
$$X_{i+kick} / \sqrt{\beta} = X_i / \sqrt{\beta}$$

(4)
$$x_{i+kick}^{l} \cdot \sqrt{\beta} = x_{i}^{l} \cdot \sqrt{\beta} - \frac{1}{n!} \cdot k_{n} \cdot x_{i}^{n} \cdot \sqrt{\beta}$$

write new coordinates in circular coordinates

(5)
$$X_{i+kick} / \sqrt{\beta} = (r + \Delta r_i) \cdot cos(\phi_i + \Delta \phi_i)$$

(6)
$$X_{i+kick}^{\dagger} \sqrt{\beta} = (r + \Delta r_i) \cdot sin(\phi_i + \Delta \phi_i)$$

Perturbation IV

- solve for ' Δ r'_i and ' $\Delta \phi$ _i':
 - \rightarrow substitute (1) and (2) into (3) and (4)
 - \rightarrow set new expression equal to (5) and (6)
 - use: sin(a+b) = sin(a) cos(b) + cos(a) sin(b) cos(a+b) = cos(a) cos(b) - sin(a) sin(b)
 - and: $\sin(\Delta \phi) = \Delta \phi$; $\cos(\Delta \phi) = 1$
 - \rightarrow solve for ' Δr_i ' and ' $\Delta \phi_i$ ':

$$\Delta r_{i} = -\Delta x_{i}^{\dagger} \cdot \sqrt{\beta} \cdot \sin(\phi_{i})$$

$$\Delta \phi_{i} = \frac{-\Delta x_{i}^{\dagger} \cdot \sqrt{\beta} \cdot \cos(\phi_{i})}{[r + \Delta x_{i}^{\dagger} \cdot \sqrt{\beta} \cdot \sin(\phi_{i})]}$$

substitute the kick expression:

(7)
$$\Delta r_{i} = \frac{l}{n!} \cdot k_{n} \cdot x_{i}^{n} \cdot \sqrt{\beta} \cdot \sin(\phi_{i})$$

$$\Delta \phi_{i} = \frac{l}{n!} \cdot k_{n} \cdot x_{i}^{n} \cdot \sqrt{\beta} \cdot \cos(\phi_{i})$$

$$[r + \Delta r_{i}]$$

Perturbation V

quadrupole perturbation:

$$\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{1} \cdot \mathbf{x}_{i} \cdot \sqrt{\beta} \cdot \sin(\phi_{i})$$

with:
$$x_i = \sqrt{\beta \cdot r} \cdot \cos(\phi_i)$$

$$\Delta r_i = l \cdot k_1 \cdot r \cdot \beta \cdot \sin(2\phi_i)$$

sum over many turns with: $\phi_i = 2\pi Q \cdot i$

$$\sum_{i} \Delta r_{i} = 0 \quad \text{unless:} \quad Q = p/2$$

(half integer resonance)

tune change (first order in the perturbation):

$$\Delta \phi_i = l \cdot k_1 \cdot \beta \cdot [1 + \cos(2\phi_i)]/2$$

average change per turn: $\phi_i = 2\pi Q \cdot i$

$$<\Delta Q> = l \cdot k_l \cdot \beta / 4\pi$$
 $\longrightarrow Q = Q_0 + <\Delta Q>$

Perturbation VI

resonance stop band: $Q \neq p/2$

the map perturbation generates a tune oscillation

$$\delta Q_i = l \cdot k_1 \cdot \beta \cdot \cos(4\pi \cdot Q \cdot i + 2\phi_0)/4\pi$$

$$= \langle \Delta Q \rangle \cdot \cos(4\pi Q i + 2 \phi_0)/4\pi$$

particles will experience the half integer resonance if their tune satisfies:

Qy

$$(p/2 - < \Delta Q >) < Q < (p/2 + < \Delta Q >)$$

n + 1

avoid integer and
half integer n+0.5
resonances and stay
away from the
resonance 'stop band' n n+0.5

Perturbation VII

sextupole perturbation:

$$\Delta r_i = l \cdot k_2 \cdot x_i^2 \sqrt{\beta} \cdot \sin(\phi_i)/2$$

with:
$$x_i = \sqrt{\beta \cdot r \cdot \cos(\phi_i)}$$

$$\Delta r_i = l \cdot k_2 \cdot r_i^2 \beta^{3/2} \left[\sin(\phi_i) + \sin(3\phi_i) \right] / 8$$

sum over many turns:

$$\phi_i = 2\pi Q \cdot i$$

$$r = 0$$
 unless: $Q = p$ or $Q = p/3$

tune change (first order in the perturbation):

$$2\pi \Delta Q_{i} = l \cdot k_{2} \cdot r_{i} \cdot \beta^{3/2} \left[3 \cos(2\pi Q i + \phi_{0}) + \cos(6\pi Q i + 3\phi_{0}) \right] / 8$$

sum over many turns:

(unless:
$$Q = p \text{ or } Q = p/3$$
)

$$<\Delta Q> = 0$$

stop band increases with amplitude!

Perturbation VIII

what happens for Q = p; p/3?

$$\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i}^{2} \cdot \beta^{3/2} \left[\sin(2\pi \mathbf{Q} \mathbf{i} + \phi_{0}) + \sin(6\pi \mathbf{Q} \mathbf{i} + 3\phi_{0}) \right] / 8$$

$$= \cos(2\pi \mathbf{Q} \mathbf{i} + 3\phi_{0})$$

$$= \cos(2\pi \mathbf{Q} \mathbf{i} + \phi_{0})$$

$$= \cos(6\pi \mathbf{Q} \mathbf{i} + 3\phi_{0})$$

$$= \cos(6\pi \mathbf{Q} \mathbf{i} + 3\phi_{0})$$

amplitude 'r' increases every turn — instability

- dephasing and tune change
 - motion moves off resonance
 - stop of the instability
 - what happens in the long run?

Perturbation IX

let us assume: Q = p/3

$$\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i}^{2} \beta^{3/2} \left[\sin(\phi_{i}) + \sin(3\phi_{i}) \right] / 8$$

$$\Delta \phi_{i} = l \cdot k_{2} \cdot r_{i} \cdot \beta^{3/2} \left[3 \cos(\phi_{i}) + \cos(3\phi_{i}) \right] / 8$$

$$+ 2\pi Q$$

the first terms change rapidly for each turn

the contribution of these terms are small and we omit these terms in the following (method of averaging)

$$\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i}^{2} \cdot \beta^{3/2} \sin(3 \phi_{i}) / 8$$

$$\Delta \phi_{i} = \mathbf{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i} \cdot \beta^{3/2} \cos(3 \phi_{i}) / 8 + 2\pi Q$$

Perturbation X

fixed point conditions: $Q_0 \gtrsim p/3$; $k_2 > 0$

$$\Delta r / turn = 0$$
 and $\Delta \phi / turn = 2\pi p / 3$

with:
$$\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{2} \cdot \mathbf{r}_{i}^{2} \beta^{3/2} \sin(3 \phi_{i}) / 8$$

$$\Delta \phi_i = 2\pi Q_0 + l \cdot k_2 r_i \beta^{3/2} \cos(3\phi_i) / 8$$

$$\phi_{\text{fixed point}} = \pi/3; \pi; 5\pi/3;$$

$$r_{\text{fixed point}} = \frac{16\pi (Q_0 - p/3)}{l k_2 \beta^{3/2}}$$

 \rightarrow r = 0 also provides a fixed point in the

(infinit set in the r, ϕ plane)

Perturbation XI

fixed point stability:

linearize the equation of motion around the fixed points:

Poincare map:
$$r_{i+1} = r_i + f(r_i, \phi_i)$$
$$\phi_{i+1} = \phi_i + g(r_i, \phi_i)$$

single sextupole kick:

$$f = l \cdot k_2 \cdot r_i^2 \beta^{3/2} \sin(3\phi_i) / 8$$

$$g = l \cdot k_2 \cdot r_i^2 \beta^{3/2} \cos(3\phi_i) / 8$$

> linearized map around fixed points:

$$\begin{pmatrix} \mathbf{r}_{i+1} \\ \boldsymbol{\phi}_{i+1} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{r}_{i+1}}{\partial \mathbf{r}_{i}} & \frac{\partial \mathbf{r}_{i+1}}{\partial \boldsymbol{\phi}_{i}} \\ \frac{\partial \boldsymbol{\phi}_{i+1}}{\partial \mathbf{r}_{i}} & \frac{\partial \boldsymbol{\phi}_{i+1}}{\partial \boldsymbol{\phi}_{i}} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{r}_{i} \\ \boldsymbol{\phi}_{i} \\ \end{pmatrix}$$
fixed point

fixed point

Perturbation XII

Jacobin matrix for single sextupole kick:

Jacobian matrix

$$\frac{\partial \mathbf{r}_{i+1}}{\partial \mathbf{r}_{i}} = 1; \qquad \frac{\partial \mathbf{r}_{i+1}}{\partial \phi_{i}} = -3l \cdot \mathbf{k}_{2} \, \beta^{3/2} \, \mathbf{r}_{\text{fixed point}}^{2} / 8$$

$$\frac{\partial \phi_{i+1}}{\partial r_i} = -\mathbf{l} \cdot k_2 \cdot \beta^{3/2} / 8; \qquad \frac{\partial \phi_{i+1}}{\partial \phi_i} = 1$$

$$\phi_{\text{fixed point}} = \pi/3; \pi; 5\pi/3; \text{ and } r_{\text{fixed point}} \neq 0$$

$$\Delta r_{i+1} = -3l \cdot k_2 \beta^{3/2} \cdot r_{fixed point}^2 / 8 \cdot \Delta \phi_i$$

$$\Delta \phi_{i+1} = -l \cdot k_2 \cdot \beta^{3/2} / 8 \cdot \Delta r_i$$
 stability?

hyperbolic fixed point

Perturbation XIII

Poincare Section for 'r' and φ':

Poincare section in normalized coordinates:

Perturbation XIV

Poincare section in normalized coordinates:

Perturbation XVI

slow extraction:

fixed point position:

$$r_{\text{fixed point}} = \frac{16\pi \left(Q - \frac{p}{3}\right)}{l \cdot k_2 \cdot \beta^{3/2}} \longrightarrow \text{changing the tune during extraction!}$$

Perturbation XVII

octupole perturbation:

$$\Delta r_i = l \cdot k_3 \cdot x_i^3 \sqrt{\beta} \cdot \sin(\phi_i)/6$$

with:
$$x_i = \sqrt{\beta \cdot r \cdot \cos(\phi_i)}$$

$$\Delta r_{i} = l \cdot k_{3} \cdot r_{i}^{3} \beta^{2} \cdot \left[2 \sin(2\phi_{i}) + \sin(4\phi_{i}) \right] / 48$$

sum over many turns:

$$\phi_i = 2\pi Q \cdot i + \phi_0$$

$$r = 0$$
 unless: $Q = p, p/2, p/4$

tune change (first order in the perturbation):

$$2\pi \Delta Q_{i} = l \cdot k_{3} \cdot r_{i}^{2} \beta^{2} \cdot [4 \cos(4\pi Q i + 2\phi_{0}) + 3 + \cos(8\pi Q i + 4\phi_{0})]/48$$

sum over many turns (unless: Q = p or Q = p/4):

Perturbation XVIII

detuning with amplitude:

particle tune depends on particle amplitude

- tune spread for particle distribution
 - stabilization of collective instabilities
 - install octupoles in the storage ring
 - distribution covers more resonances in the tune diagram
 - avoid octupoles in the storage ring
- requires a delicate compromise
- Poincare section topology:

Q = p/4 and apply method of averaging

$$\Delta \mathbf{r}_{i} = \mathbf{l} \cdot \mathbf{k}_{3} \cdot \mathbf{r}_{i}^{3} \cdot \beta^{2} \cdot \sin(4 \phi_{i}) / 48$$

$$\Delta \phi_{i} = \mathbf{l} \cdot \mathbf{k}_{3} \cdot \mathbf{r}_{i}^{2} \cdot \beta^{2} \cdot [3 + \cos(4 \phi_{i})] / 48 + 2\pi Q$$

Perturbation XIX

fixed point conditions: $Q_0 \le p/4$; $k_3 > 0$

$$\Delta r / turn = 0$$
 and $\Delta \phi / turn = 2\pi p / 4$

with:
$$\Delta r_i = l \cdot k_3 \cdot r_i^3 \beta^2 \cdot \sin(4 \phi_i) / 48$$

$$\Delta \phi_i = 2\pi Q_0 + l \cdot k_3 \cdot r_i^2 \beta^2 \cdot [3 + \cos(4\phi_i)] / 48$$

$$\phi_{\text{fixed point}} = \pi/2; \pi; 3\pi/2; 2\pi$$

$$r_{\text{fixed point}} = \sqrt{\frac{96\pi (p/4 - Q_0)}{l k_3 \beta^2 (3+1)}}$$

$$\phi_{\text{fixed point}} = \pi/4; 3\pi/4; 5\pi/4; 7\pi/4$$

$$r_{\text{fixed point}} = \sqrt{\frac{96\pi (p/4 - Q_0)}{l k_3 \beta^2 (3-1)}}$$

Perturbation XX

fixed point stability for single octupole kick:

Jacobian matrix

$$\frac{\partial r_{i+1}}{\partial r_i} = 1; \qquad \frac{\partial r_{i+1}}{\partial \phi_i} = \pm 4 l \cdot k_3 \cdot \beta^2 \cdot r_{\text{fixed point}}^3 / 48$$

$$\frac{\partial \phi_{i+1}}{\partial r_i} = + \mathbf{l} \cdot k_3 \cdot \beta^2 \cdot r \left(3 \pm 1\right) / 24; \qquad \frac{\partial \phi_{i+1}}{\partial \phi_i} = 1$$

$$\Delta \phi_{i+1} = l \cdot k_3 \cdot \beta^2 (3 \pm 1) / 24 \cdot \Delta r_i$$

Stability for '-' sign and $k_3 > 0$?

Perturbation XXI

Poincare Section for 'r' and \$\phi\$ ':

island structure

Poincare section in normalized coordinates:

Perturbation XXII

Poincare section in normalized coordinates:

generic signature of non-linear resonances:

Pendulum Dynamics I

generic signature of non-linear resonances:

-> chain of resonance islands

pendulum dynamics:

pendulum coordinates:

angle variable:

angular momentum: $L = m \cdot r \cdot v$

$$v = \frac{ds}{dt} = r \cdot \frac{d\phi}{dt} \longrightarrow L = m \cdot r^2 \cdot \frac{d\phi}{dt}$$

Pendulum Dynamics II

equations of motion:

$$\frac{d\phi}{dt} = \frac{1}{m \cdot r^2} \cdot L \qquad \frac{dL}{dt} = -r \cdot g \cdot m \cdot \sin(\phi)$$

generic form:
$$\frac{d\phi}{dt} = G \cdot p \qquad \frac{dp}{dt} = -F \cdot \sin(\phi)$$

constant of motion:
$$E_{tot} = E_{kin} + U_{pot}$$

$$\longrightarrow E_{kin} = \frac{1}{2} G \cdot p^2 \qquad U_{pot} = -F \cdot \cos(\phi)$$

solution:

$$\frac{d\phi}{dt} = G \cdot p \qquad p = \left[[E + F \cdot \cos(\phi)] \cdot \right] \frac{2}{G}$$

$$t - t_0 = \sqrt{\frac{1}{2G}} \int \frac{d\phi}{\left[E + F \cdot \cos(\phi)\right]}$$

Pendulum Dynamics III

phase space:

$$E_{tot} = F \text{ and } \phi = 0$$

island oscillation frequency:
$$\omega_{island} = \sqrt{F \cdot G}$$

pendulum motion:

libration: oscillation around stable fixed point

continuous increase of phase variable rotation:

separation between the two types separatrix:

Cylindrical Coordinates I

linear solution:

$$x = \sqrt{\beta} \cdot \sqrt{R} \cdot \cos(\phi)$$
 $x' = \sqrt{R} \cdot \sin(\phi) / \sqrt{\beta}$

with:
$$\frac{d\phi}{ds} = \omega = \frac{2\pi Q}{L} = \frac{1}{\beta}$$

perturbed Hill's equation:

$$\frac{d^2x}{ds^2} + \omega^2 \cdot x = \frac{F_x(x,y)}{v \cdot p}$$

$$\longrightarrow x'' = \frac{-1}{n!} \cdot k_n (s) \cdot x^n - \omega^2 \cdot x$$

equation of motion in cylindrical coordinates:

$$\frac{d\phi}{ds} = \frac{d\phi}{dx} \cdot x' + \frac{d\phi}{dx'} \cdot x''$$

$$\frac{dR}{ds} = \frac{dR}{dx} \cdot x' + \frac{dR}{dx'} \cdot x''$$

Cylindrical Coordinates II

radial coordinate:

$$R = \frac{x^2}{\beta} + x^2 \cdot \beta$$

$$\frac{dR}{ds} = \frac{2 x x'}{\beta} - 2 \beta \omega^2 x x' + 2 x' \beta \cdot \frac{F_x (s,r,\phi)}{v \cdot p}$$

$$\frac{dR}{ds} = \frac{-2}{n!} \cdot k_{n}(s) \cdot \left(R \cdot \beta\right)^{(n+1)/2} \cdot sin(\phi) \cdot cos^{n}(\phi)$$

angular coordinate:

$$\phi = atan\left(\frac{-x \cdot \beta}{x}\right)$$

with:
$$\frac{d}{ds} \ atan(f[s]) = \frac{1}{f^2(s) + 1} \cdot \frac{df}{ds}$$

$$\left(\frac{1}{\beta} = \omega\right) \longrightarrow \frac{d\phi}{ds} = \omega - \frac{x}{R} \cdot \frac{F_{x}(s,r,\phi)}{v \cdot p}$$

$$\frac{d\phi}{ds} = \omega + \frac{1}{n!} \cdot k_{\mathbf{n}}(s) \cdot \mathbf{R}^{(\mathbf{n-1})/2} \beta^{(\mathbf{n+1})/2} \cos^{\mathbf{n+1}}(\phi)$$

Examples for Equation of Motion I

quadrupole: n = 1

$$\frac{dR}{ds} = -k_1(s) \cdot R \cdot \beta \cdot \sin(2\phi)$$

$$\frac{d\phi}{ds} = \omega + k_1(s) \cdot \beta \cdot \left(1 + \cos(2\phi)\right) / 2$$

similar expressions as with the map approach but we can now treat distributed perturbations!

sextupole: n = 2

$$\frac{dR}{ds} = \frac{-1}{4} \cdot k_2(s) \cdot \left(R \cdot \beta\right)^{3/2} \cdot \left(\sin(\phi) + \sin(3\phi)\right)$$

$$\frac{d\phi}{ds} = \omega + \frac{1}{8} \cdot k_2(s) \cdot R^{1/2} \beta^{3/2} \left(3\cos(\phi) + \cos(3\phi)\right)$$

similar expressions as with the map approach

Examples for Equation of Motion II

octupole: n = 3

$$\frac{dR}{ds} = \frac{-1}{24} \cdot k_3(s) \cdot R^2 \cdot \beta^2 \cdot \left(2 \sin(\phi) + \sin(4\phi)\right)$$

$$\frac{d\phi}{ds} = \omega + \frac{1}{48} \cdot k_3(s) \cdot R \cdot \beta^2 \left(3 + 4\cos(2\phi) + \cos(4\phi) \right)$$

one single kick at one location:

$$\frac{F(s)}{v \cdot p} = 1 k_{\mathbf{n}}(s) \cdot \delta_{\mathbf{L}}(s - s_0)$$

with:
$$\delta = \begin{cases} 1 & \text{for } s = s + n \cdot L \\ 0 & \text{else} \end{cases}$$

Fourier series of δ –function:

$$\frac{F(s)}{v \cdot p} = 1 k_{n}(s) \cdot \frac{1}{L} \sum_{n=-\infty}^{+\infty} \cos(n \cdot 2\pi \cdot s/L)$$

Examples for Equation of Motion III

single octupole magnet at s_0 : n = 3

$$\frac{dR}{ds} = \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2}$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot \beta^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot (s)$$

$$= \frac{-1}{24 \cdot L} \cdot lk \cdot (s) \cdot R^{2} \cdot (s)$$

$$\frac{d\phi}{ds} = \frac{2\pi Q}{L} + \frac{1}{48 \cdot L} lk_3(s) \cdot R \cdot \beta^2 \cdot \sum_{n=0}^{+\infty} \left(3 + \frac{1}{48 \cdot L} lk_3(s) \cdot R \cdot \beta^2 \right)$$

+2
$$\cos(\phi + n \cdot 2\pi \cdot s/L)$$

+
$$\cos(4\phi + n \cdot 2\pi \cdot s/L)$$

resonance:
$$\phi = \frac{2\pi Q}{L} \cdot s + \phi_0$$

with
$$Q = N + 1/n$$

- all but one term change rapidly with s!
- method of averaging!

Examples for Equation of Motion IV

1/4 resonance:

$$p = 4$$

$$\frac{dR}{ds} = \frac{-1}{24 \cdot L} \cdot lk_3 \cdot R^2 \beta^2 \cdot sin(4\phi_0)$$

$$\frac{d\phi}{ds} = \frac{2\pi Q}{L} + \frac{1}{48 \cdot L} \cdot lk_3 \cdot R \cdot \beta^2 \cdot \left(3 + \cos(4\phi_0)\right)$$

fixed point conditions: $Q_0 \le p/4$; $k_3 > 0$

$$\Delta R / turn = 0$$
 and $\Delta \phi / turn = 2\pi p / 4$

$$\phi_{\text{fixed point}} = \pi/2; \pi; 3\pi/2; 2\pi$$

$$R_{\text{fixed point}} = \frac{96\pi (p/4 - Q_0)}{l k_3 \beta^2 (3+1)}$$

$$\phi_{\text{fixed point}} = \pi/4; 3\pi/4; 5\pi/4; 7\pi/4$$

$$R_{\text{fixed point}} = \frac{96\pi (p/4 - Q_0)}{l k_3 \beta^2 (3-1)}$$

Example Octupole

Examples for Equation of Motion V

expand motion around stabel fixed point:

$$\phi = \frac{2\pi Q}{L} s + \phi_{\text{fix}} + \Delta \phi$$

 $R = R_{fix} + \Delta R$ and keep only first order in ΔR

$$\frac{d\Delta R}{ds} = \frac{-1}{24 \cdot L} \cdot lk_3 \cdot R_{\text{fix}}^2 \cdot \beta^2 \cdot sin(4\Delta\phi)$$

$$\frac{d\phi}{ds} = \frac{2\pi Q_0}{L} + \frac{1}{48 \cdot L} lk_3 \cdot R_{\text{fix}} \beta^2 \cdot \left(3 - \cos(4\Delta\phi)\right)$$

$$+ \frac{1}{48 \cdot L} lk_3 \cdot \Delta R \cdot \beta^2 \cdot \left(3 - \cos(4\Delta\phi)\right)$$

change to new angular variable:

$$\varphi = 4\phi - 8\pi \mathbf{Q} \cdot \mathbf{s} / \mathbf{L} \qquad \mathbf{r} = 4 \cdot \Delta \mathbf{R}$$

with
$$Q = Q_0 + \frac{1}{48 \cdot \pi} \cdot R_3 \cdot R_{\text{fix}} \cdot \beta^2$$

Examples for Equation of Motion VI

pendulum approximation:

$$\frac{dr}{ds} = -F \cdot \sin(\varphi)$$

with
$$F = \frac{4}{24 \cdot L} \cdot lk_3 \cdot \beta^2 \cdot R_{fix}^2$$

$$\frac{d\varphi}{ds} = G \cdot r$$

and
$$G = \frac{1}{24 \cdot L} \cdot 1k_3 \cdot \beta^2$$

resonance width:

$$\Delta r_{\text{max}} = 4 F/G = 8 \cdot \Delta R_{\text{fix}}$$

$$\longrightarrow \Delta R_{\text{max}} = 2 \cdot \Delta R_{\text{fix}}$$

resonance width equals twice the stable fixed point

resonance width increases with decreasing k₃!

Example Octupole

$$lk_3 = 2 \text{ m}^{-3}$$

Example Sextupole

- why did we not find islands for a sextupole?
 - the pendulum approximation requires an amplitude dependent tune!

$$\frac{d\phi}{ds} = G \cdot r$$

- the sextupole perturbation has no amplitude dependent tune (to first order)
 - >>> stabilization by an octupole term?

Example Sextupole

-4e-05

-0.08

-0.06

-0.04

-0.02

0.02

0

0.04

0.06

X

80.0

Example Sextupole + Octupole

Higher Order

so far we assumed on the right-hand side:

$$\phi = 2\pi Q_0^{\bullet} s/L + \phi_{fix} + \Delta \phi$$

$$R = R_{fix} + \Delta R$$

and kept only first order terms in \triangle R

higher order perturbation treatment:

$$R(s) = R_0(s) + \varepsilon R_1(s) + \varepsilon^2 R_2(s) + O(\varepsilon^3)$$

$$\phi(s) = \phi_0(s) + \varepsilon \phi_1(s) + \varepsilon^2 \phi_2(s) + O(\varepsilon^3)$$

$$\text{with: } \varepsilon = (\beta \cdot R_{\text{fix}})^{(n+1)/2} \cdot 1k_n / L$$

match powers of ε :

match powers of 'ε'

solve lowest order without perturbation substitute solution in next higher order equations solve next order etc

Higher Order II

expand equation of motion into a Taylor series around zero order solution

$$\frac{d\mathbf{r}}{d\mathbf{s}} = \mathbf{F}(\mathbf{r}, \phi) \qquad \frac{d\phi}{d\mathbf{s}} = \mathbf{G}(\mathbf{r}, \phi)$$

single sextupole kick:

$$F = f(R) \cdot [\sin(3\phi) + 3\sin(\phi)]$$

$$G = g(R) \cdot \left[\cos(3 \phi) + 3 \cos(\phi)\right] + \frac{2\pi Q}{L}$$

$$\frac{dR}{ds} = \varepsilon \cdot f + \left[\frac{\partial f}{\partial r} \cdot r_1 + \frac{\partial F}{\partial \phi} \cdot \phi_1 \right] \cdot \varepsilon^2 + O(\varepsilon^3)$$

$$\frac{d\phi}{ds} = \frac{2\pi Q}{L} + \epsilon \cdot g + \left[\frac{\partial g}{\partial r} \cdot r_1 + \frac{\partial G}{\partial \phi} \cdot \phi_1\right] \cdot \epsilon^2 + O(\epsilon^3)$$

Higher Order III

- match powers of ε and solve equation of motion in ascending order of ε^n :
 - zero order: $\phi_0(s) = \frac{2\pi Q}{L} \cdot s + \phi_0$

$$R_0(s) = R_0 \qquad (Q = p + v)$$

substitute into equation of motion and solve for $\phi_1(s)$ and $r_1(s)$

first order:

$$\phi_{1}(s) \propto \left[\sin(\frac{6\pi Q}{L} \cdot s + 3\phi_{0})/3 + 3\sin(\frac{2\pi Q}{L} \cdot s + \phi_{0}) \right]$$

$$R_1(s) \propto \left[\cos(\frac{6\pi Q}{L} \cdot s + 3\phi_0)/3 + \frac{2}{L}\right]$$

$$3 \cdot \cos(\frac{3\pi Q}{L} \cdot s + \phi_0)$$

Perturbation IV

second order:

substitute $\phi_1(s)$ and $r_1(s)$ into equation of motion and order powers of ϵ^2

you get terms of the form:
$$\frac{d\mathbf{r}_2}{d\mathbf{s}} = \left[\frac{\partial \mathbf{f}}{\partial \mathbf{r}} \cdot \mathbf{r}_1 + \frac{\partial \mathbf{f}}{\partial \phi} \cdot \phi_1\right]$$

$$\frac{d\phi}{ds} = \left[\frac{\partial g}{\partial r} \cdot r_1 + \frac{\partial g}{\partial \phi} \cdot \phi_1 \right]$$

 $\sin(3 \phi) \cdot \cos(3 \phi); \sin(3 \phi) \cdot \cos(\phi); \sin(\phi) \cdot \cos(\phi)$

 $\cos(3\phi) \cdot \cos(3\phi); \cos(3\phi) \cdot \cos(\phi); \cos(\phi) \cdot \cos(\phi)$

$$\frac{d\phi}{ds} \propto \cos(6\phi); \cos(4\phi); \cos(2\phi); 1$$

$$\frac{dr}{ds} \propto \sin(6 \phi); \sin(4 \phi); \sin(2 \phi)$$

higher order resonances: ε^n

a single perturbation generates ALL resonances driving term strength and resonance width decrease with increasing order!

Perturbation V

Integrable Systems

trajectories in phase space do not intersect

deterministic system

integrable systems:all trajectories lie on invariant surfacesn degrees of freedom

n dimensional surfaces

two degrees of freedom:

x, s — motion lies on a torus

Poincare section for two degrees of freedom:

motion lies on closed curves

indication of integrability

Non-Integrable Systems

'chaos' and non-integrability:

so far we removed all but one resonance (method of averaging)

dynamics is integrable and therefore predictable

re—introduction of the other resonances 'perturbs' the separatrix motion

- motion can 'change' from libration to rotation
- generation of a layer of 'chaotic motion'

no hope for exact deterministic solution in this area!

Sextupole + Octupole

2e-06 1.5e-06 motion near 1/4 1e-06 resonance: 5e-07 0 -5e-07 -1e-06 -1.5e-06 -2e-06 -0.004-0.0020.006 -0.0060.002 0.004 X pendulum island sctructure appears on all 9e-07 scales! 8.5e-07 8e-07 renormalization 7.5e-07 theory

-0.0006 -0.0004 -0.0002

0.0002 0.0004 0.0006

Non-Integrable Systems

slow particle loss:

particles can stream along the 'stochastic layer' for 1 degree of freedom (plus 's' dependence) the particle amplitude is bound by neighboring integrable lines

not true for more than one degree of freedom

global 'chaos' and fast particle losses:

if more than one resonance are present their resonance islands can overlap

the particle motion can jump from one resonance to the other

'global chaos'

fast particle losses and dynamic aperture

Summary

- Non-linear Perturbation:
 - amplitude growth
 - detuning with amplitude
 - coupling

- 3 degrees of freedom
- 1 invariant of the motion
- + non-linear dynamics
- ———— no global analytical solution!