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Contents:

• Wake Fields and Coupling Impedance

• Short range and long range wake fields

• Potential well distortion

• Microwave instability

• Robinson Instability

• Coupled bunch Instability



10/10/2005 L.Palumbo, CAS-Intermediate-
Trieste 2005

Longitudinal Wake Fields and Impedance

q1 (z1, r1): trailing point chargev

q (z,r) :    test point charge

The test charge q can gains or 
loses energy because of the 
electromagnetic fields generated
behind q1

( ) ( )∫−=∆
trajectory

dztzzFzU ;,,,;, 11||1|| rrrr∆z = z1 - z

( ) c/zzt ∆+= 1with



10/10/2005 L.Palumbo, CAS-Intermediate-
Trieste 2005

The energy variation of the test charge q,  normalized to q and q1 is
called longitudinal wake function (green’s function)
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The energy variation of a test charge inside a bunch, due to the 
distribution ρ(z) , is called longitudinal bunch wake potential

DAΦNE wake potential of
a 2.5 mm Gaussian bunch.
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The longitudinal coupling impedance is the Fourier transform
of the wake function
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DAΦNE accumulator wake potential of
a 2.5 mm Gaussian bunch.
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Short range wakefield acts over the bunch length

DAFNE Short Range Wake Field

• Vanishes after a distance of few bunch lengths
• Low frequency resolution of Fourier transform and of coupling 

impedance
• Smoother and broader impedance → broad band impedance

mode (e.g. Broad Band Resonator Model) 
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Long range wakefields acts on many bunches/multi-turn

• Fields oscillating over long distances
• produced by high Q resonant modes 
• Determined by only 3 parameters: Q, ωr and Rs
• High peak impedance 
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In both cases we have ( )
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where Γ = ωr / 2Q, ωn
2 = ωr

2 – Γ2, and H(∆z) is the step function.

Notice that for the short range wake field, the Broand Band Resonator
with Q ~ 1, is only a useful approximation,
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Effects on beam dynamics

Short range wakefileds:

• Potential well distortion
• Longitudinal emittance growth, microwave instability

Long range wakefileds:

• Robinson instabilities (RF fundamental mode)
• Coupled bunch instability
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Short range wakefileds
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Potential well distortion
The motion of a particle in the bunch is confined by the potential
due to the RF voltage and to the wake fields
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In the low current regime, with gaussian energy distribution, energy
spread σε0, the longitudinal distribution is described by an integral
equation known as the Haissinski equation
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Typical measured bunch distributions in the Dafne Rings.   The head is to the left

positrons electrons
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Longitudinal emittance growth, microwave instability
• Observe energy spread and bunch length as a function of the current.

• σε is almost constant up to a threshold current after which it starts to increase
with the current according to a given power law (in most cases 1/3 power). 

• σz starts to increase from the very beginning (potential well distortion), and, 
after the same threshold current, it grows with the same power law.
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Longitudinal emittance growth & microwave instability
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Longitudinal emittance growth & microwave instability

Chao – Gareyte scaling law:

Assume a power-law behavior of Z|| (ω)
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For SPEAR a = 0.68

From: A. W. Chao, J. Gareyte, Particle Accelerators, Vol. 25, pp. 229-234, 1990
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Bunch lengthening in DAFNE

DAFNE Accumulator.
Dots:          measurement results
Solid line : numerical simulation.

DAFNE main rings
Circles - measurement results.
Solid line - numerical calculations

NOTICE
Numerical simulations performed 
before measurements : good 
impedance model of the machine
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Design strategy: proper design of vacuum chamber

• Single bunch: low broad band impedance Z/n  

Cross section tapers

Reduce parasitic loss, taper discontinuities
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Impedance budget

Longitudinal Microwave instability is
is fast but not destructive

Cures ?
• Landau damping
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Long range wakefields

A. Hofmann
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Interaction with RF fundamental mode:
Robinson Instabilities

Single particle equation of motion (neglecting quantum fluctuation)
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Robinson instability …
By including also the beam
loading effect we have
(see A. Hofmann lecture)
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Robinson instability …….

number of turns

Damped synchrotron oscillation

Exponential decay

Oscillation
amplitude

Example
of 
stability
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Interaction with HOMs : Coupled bunch instability
(Macroparticle model)

The equations of motion are the same of the single particle. The 
difference is in the voltage induced by other bunches in the HOMs
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is the voltage seen by the nth bunch and induced by the long 
range wake fields.
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By linearizing the RF voltage and the HOM induced wake
fields with respect to zn we obtain three terms
1) A term independent on z that modifies synchronous phase
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2) A term dependent on zn (t) that modifies synchronous frequency
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3) Other terms dependent on zh at previuos passages that are
seen as ‘external coupling forces’
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To solve the equation system we seek a solution of the kind
zn (t) = an exp[iΩt] and obtain
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Seek for a solution of the kind
z1 (t) = a1 exp[iΩt] and z2 (t) = a2 exp[iΩt] and obtain
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• Homogeneus system of two equations. 
• Non trivial solution the matrix determinant most be zero. 
• Consider a single narrow band HOM:

( ) ( ) ( ) ( )[ ]0||00||0
0

2
0

2
c

2

2
s

0

2

qZqqZq
EL

Qec2i

T
Di

ω−ΩΩ−ω−ω+ΩΩ+ω
α

−

=







ω−Ω−Ω



10/10/2005 L.Palumbo, CAS-Intermediate-
Trieste 2005

That can be further simplified (Ω ≈ ωs)
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Looks similar to Robinson …..
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Notice : even q’s corresponds to the two bunches oscillating in phase

odd q’s corresponds to the two bunches oscillating with π phase shift
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Design strategy: proper design of resonant devices

• Reduce HOM's, low Rs / Q and Q
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Cures

• Longitudinal feedbacks
• Landau damping
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In general, if we suppose a single narrow band HOM and Ω(µ) ≈ ωs

then only two (different) oscillation modes are excited, and we obtain
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(q1 and q2 > 0)

µ+ (positive synchrotron sideband) is the unstable oscillation mode  
µ- (negative synchrotron sideband) is the stable oscillation mode 
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Conclusions

• The Longitudinal Instability mechanisms are well understood;

• With an accurate model of the machine impedance one can predict
the single bunch and multibunch dynamics;

• Single bunch instabilities are not destructive but lead to beam
heating (increase of energy spread and bunch length)

• Multibunch instabilities are destructive and require the installation
of a fast feedback system on the ring.

• Necessary an accurate design of the vacuum chamber and RF devices
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