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Acceleration

and Energy Gain

ACCELERATION is the main task of

an accelerator.

An accelerator provides KINETIC ENERGY to charged particles and increase their

required, possibly along the momentum p :

MOMENTUM.

*To do so an ELECTRIC FIELD,E, is
dp _
dt

ek

The ENERGY GAIN is the work from the electric field force :

E2 = Eg + p202

dE

dz dz dt
dE =dW = eEZdz

dp dp

= dE=vdp

eEZ

= W=e|E,dz
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Methods of acceleration

1_ Electrostatic field Generateur Vs vy Vi
—~ 0O WM A AMA—T—F
Energy gain : W=n.e(V,-V,) ” E
limitation : Vgenerator =2 Vi L . .
| |

Electrostatic accelerator

2__ Radio-frequency field

. .
Synchronism mesp |=vT/2 J_ J_ J_ J_
SN e

v=particle velocity T=RF period I |

A .
Vsin ot

® 22 e

Wideroe type accelerator
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Methods of acceleration (2)

3_ Acceleration by induction

MAXWELL EQUATIONS :

The electric field is derived from a scalar potential V and from a vector potential A
It is the time variation of the magnetic field H that creates the electric field E

E =- gradV - oA
ot

B=uH =rot A
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Towards Radio-Frequency Cavities

- When particles get relatively high velocities the drift spaces get longer
and the accelerator lose efficiency. A first solution consists of using a
higher RF frequency.

- However the power lost by radiation, due to circulating currents on the
electrodes, is proportional o the RF frequency. A second solution hence
consists of enclosing the system inside a cavity which resonant frequency
is adjusted to the RF generator frequency.

— - Each such cavity can be independently
fed from a RF power source.

. - The electro-magnetic power is stored
— E, — in the resonant volume.

- Note however that power is dissipated
in the cavity walls (joule losses) unless
2% there are made of SC materials.

car A rrz e
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The Pill-Box Cavity

From Maxwell equations one gets the wave
equations :

2
V A- t‘E'O,uoa A

=0 —
a pwe (A=EouH)

- The solutions for E and H are oscillating
R " modes (SW) ,at different frequencies, of
types TM or TE. For I<2a the most simple
—E > Hy mode is TMy,,, It has the lowest frequency,
and only two field components:

AE, AH, Ez:-J (kr)

He:—i 1(kr) } c

Zo

jot

WP —— e —————
B ohem—m———————

- K= 2/{’ @D 21-262a 7,=3770
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The Pill-Box Cavity (2)

=& The geometry of a pill-box can be
sophisticated in order to improve
its characteristics:

-Shaping a nose allows to
rusle® | concentrate the electric field along
the axis, where really needed.

-Shaping the body, to avoid sharp
corners, allows to spread the

magnetic field and reduce the wall
losses as well as multipactor.

A good cavity is a cavity which
efficiently fransform the input RF
power into an accelerating electric
field.
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Transit Time Factor

Consider an oscillating field at frequency ® with
constant amplitude in the gap:

- ik E.=FEo COSwt 2% coswt
JE, Consider a particle crossing the middle of the gap
Fo at time 1=0:
Z=V1
. p\y 9/2 7
, L. Total energy gainis: AW ==—— coswvdz
b —g/2

: 0=29  transit angle
AW ey SNOT2 _ o/ i

/2 T transit time factor
(0<T<1)
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Shunt Impedance and Q Factor

The shunt impedance R is defined

as the parameter which relates the \/ 2
accelerating voltage V in the gap to — Py ="
the power dissipated in the cavity R

walls (Joule losses).

@W < The Q factor is the parameter
which compares the stored
Pq energy, W,, inside the cavity to
V 2 the energy dissipated in the walls
— during an RF period (2n/w). A
oW s high Q is a measure of a good RF
efficiency
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Filling Time of a SW Cavity

From the definition of the Q factor one can see that the energy is
dissipated at a rate which is directly proportional o the stored

energy:
dw.
Pg=— d >==W;
t Q

leading to an exponential decay of the stored energy:

t
W:.:=Wgye avec T = Q (filling time)
0,

Since the stored energy is proportional o the square of the
electric field, the latter decay with a time constant 2t .

If the cavity is fed from an RF power source, the stored energy
increases as follows:

W =W (1—9‘2%)2
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Equivalent Circuit of a Cavity

RF cavity: on the average, the stored energy in the magnetic field equal
the stored energy in the electric field, W_=W,_,

21 |Efdv =52 [H[dv

RLC circuit: the previous statement is true for this circuit, where the
electric energy is stored in C and the magnetic energy is stored inL:

Lo W,=7W<C @ =(LC)?
Vi A - el Wsmz%Lm’[ avec V =aw,Ll,
!
W, =W, + W, :%CVV*
Leading to: 5 _1Vv” 0 = @RC = R
172 R 0 a,L

EEEEEEEEEEEEEEEEEEEEEEEEE
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Input Impedance of a Cavity

The circuit impedance as seen from the input is:

-1
Zﬁ(é Jal)Lﬂa)C) aveC w =gy +Aw

Within the approximation Aw«w, the impedance becomes:

Qo RL R
o L+ jZRAa) 1+ JZQ

Le™
o

When Ao satisfies the relation Q=w,/2A® one has Z,= 0,707 |Z

elmax

,with |Z,], .= R. The quantity 2Aw/, is called the bandW|d‘rh (BW):
Q= 1
BW
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Loaded Q

If R represents the losses of the equivalent resonant circuit of the
cavity, then the Q factor is generally called Q.

Introducing additional losses, for instance through a coupling loop
connected to an external load, corresponding to a parallel resistor
R, , then the fotal Q factor becomes Q, ( loaded Q ):

RR

- Re =L
Q= avec R,= R+R,

w,L
Defining an external Q as, Q,=R,/wylL, one gets:

1 1 1

Q7 Q Q.

LNAL CAS, Trieste, October 3-14 2005 F 15

LABORATOIRE
DE LACCELERATECR . g1 pE Puvsioue pEs ParTicuLEs
EEEEEEEE




Some Criteria for Cavity Choice

frequency
low high
-better long. capture (p* synch.) -higher efficiency :R/| o«c ©!/2
-high beam transv. acceptance -use of klystrons (high Pgg)
-low v/c (transit time) -reduced size
Q
small large
-large BW: variable oy (protons) -reduced losses
-short filling time -better use of Pyr
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Main Cavities Families

PN

Single gap cavity Multi-cells cavities

Multiple RF sources Common RF source

Standing wave (SW) cavities

Traveling wave (TW) cavities
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Single Gap Cavities

“"Pill-Box"” variants

with nose with disk

Coaxial cavity

Type A/4 . d
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Coaxial Cavities Variants

;é’ , Type A/2
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Ferrite Loaded Cavities

- ferrite toroids distributed around the
beam tube permit to reach low frequency
within reasonable size.

- polarizing theferrites one can change

the cavity resonant frequency to satisfy
the synchronism condition while ramping
in energy in protons (ions) synchrotrons.

=Cb

| IS | | WOS———_
ACCELERATING W:—b%
M | | O | -
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Exemple of Low Frequency Ferrite Loaded Cavity

_‘_ et _-____'_ .- e k3 - -._- el e F-- __I-;I
f V- - o [‘ R T 1 i
/e s SO 1 £ el ol Vil ol il O el . i
L / o o002 i -1-=—14= — e e w— 1 T 1 G?‘
- — 1 010 oor P ot : . s — = 1
. 174 v
008 _ ; y ] ” E L
S 15 m—— 1 — T s : - -
S-S ; ; ’:': IA65-708-3
Ay | A A 2.5 : :
\-!/ o . “T 111

CERN PS accelerating cavity, ferrite loaded
Operating frequency range 2.5 - 10 MHz
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Standing Wave Multi-cells Cavities

Relativistic particles

3

2

Mode nn L=vT/2

In « WIDEROE » the radiated power oC CcV

@ Générateur RF

Mode 2n L= vT = BA

In order to limit the radiated
power the gap is enclosed
inside a resonant cavity at

the operating frequency. A

-—— 1

| . . .
zero circulating current in a
wall makes this wall useless

LABORATOIRE
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Standing Wave Multi-cells Cavities (2)

nose cone
RF input coupling

| '}‘L S / slots

lj‘y‘W‘_

S A G

A
side coupled

S
¢

ACCELERATING
CAVITY

COUPLING
CAVITY

Cida_sannlad wavasiida ranl
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Traveling Wave Multi-cells Cavities

B- Ultra-relativistic particles v~c, g ~1

L increases ... unless the frequency ® = 2 7 f is increased.
Following the development of klystrons for radars, it became possible after 1945

to get high RF power at high frequencies, ® ~ 3000 MHz

Next came the idea of suppressing the drift spaces by using a traveling wave.
However to benefit from a continuous acceleration the phase velocity of the wave
should equal that of the particle (~c).

000«

The solution consists of using slow waveguide =) iris loaded waveguide
( Typically electron LINAC )

2N , PN = P 3
e e CAS, Trieste, October 3-14 2005 E— - 24



Traveling Wave Multi-cells Cavities (2)

L'onde progressive est extraite
par un coupleur en sortie et
absorbée dans une charge

Section accélératrice
du pré.injecteur LEP




A first Evolution of RF Cavities Towards Higher Efficiency

Eviﬂ

Colg formeg hoies

3 Mrkdeg.
.\>¢ £ N
1t

Brored pots

7.;

Le champ magnétique dans les
parois, allié a la résistivité du
matériau, conduit a des pertes
de puissance par effet Joule:

P= V2/R,
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A Second Evolution : Super-conducting Cavities

-the use of Super-conducting material (Nb) at low temperature (2-4 K)
considerably reduces the ohmic losses and almost all the RF power from
the source is available for the beam ( ~100% efficiency).

-in contrast with normal conducting cavities ,SC cavities will favor the use
of lower frequencies, hence offering bigger opening to the beam that
reduces the beam cavity interaction responsible for instability.

-Q, factor as high as 10° - 1019 are achievable. It leads to much longer
filling times which means that it favors CW operation (synchrotron or
Linac).

-it also permits to reach high electric field gradients for acceleration (
25-30 MV/m) , hence saving on the number of cavities or giving more
energy.

-in practice SC cavities are either designed as single cell cavities or multi-
cells cavities.

-they are now used for e~ and p*, for synchrotron and linac : a fechnological
revolution as a matter of fact.
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Super-conducting Cavities (2)

The SC cavity of the synchrotron light source SOLEIL made of two single cells

LAL . Lo = o
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Super-conducting Cavities (3)

A super-conducting cavity is
often a multi-cells
assembly.Many such cavities
can be put in a single
cryostat.

CEBAF SC Cavities

____

LNE : N ENE
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LEP 2: 2x100 GeV with SC cavities

CAS, Trieste, October 3-14 2005




Acceleration of Intense Beams

Obviously the accelerated beam gets its energy from the stored
energy in the cavity:

PRF - diss. + Pbeam

The cavity voltage is the vector sum of the voltage due to the
generator and the "beam loading":

Vi = Ve + Voean = Zop L+ £, I

Under proper matching and tuning (cavity on-resonance) the impedance
is just the shunt impedance R.

Since the beam loading is just like a power loss one can introduce a
corresponding Q factor, Q, . The loaded Q becomes:

1 1 1 1
Q- Q 'Q'Qq
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Acceleration of Intense Beams (2)

Equivalent circuit with beam
I Vi

——

During acceleration a

o synchronous phase is

| established between the
|

o

\Y R L. ¢ ‘ I, current and the voltage:

1 )
RJ :ﬁvt Ibsm¢s

The resulting effect is a detuning of the cavity ; a
feed back system is used to compensate for that.

Optimum power transfer to the cavity and beam is
made by proper matching of the power supply to the
cavity through a feeder and a coupling loop.

LAL . (o= oo
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