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1) Introduction
Mechanism of Landau damping
An undamped single oscillator with resonant frequency w, reacts to a
pulse excitation with an free oscillation lasting for a long time. A har-
monic excitation with frequency w, starting at a time t = 0 and lasting
for a long time, results in a complicated transient motion and ends up in
forced oscillation at the same frequency w but a phase which depends
on the difference w, — w. For w = w, the oscillation amplitude grows
linearly with time.
We consider a set of oscillators having different resonant frequencies w,;
with distribution f(w,). A pulse excitation results in an oscillation of
each oscillator with the same initial velocity (0) followed by a free os-
cillation with individual frequencies w,;. For instabilities or beam obser-
vation the center-of-mass motion of the particles is relevant. Due
to their different w,; the freely oscillating particles change their phase
with respect to each other and the center-of-mass motion is slowly re-
duced.
This represents a kind of damping where the coherent center-of-mass
motion is reduced compared to the incoherent motion of the parti-
cles. This damping is faster the wider the width of the distribution,
i.e. the spread of resonant frequencies. It differs in many respect from
other damping mechanisms. The decay of the center of mass oscillation
is usually not exponential but follows a function which depends on the
form of the resonant frequency distribution f(w;).
In case of a harmonic excitation the phases of the individual particle
oscillations are different and depend on the distance w — w,; between
the excitation and individual resonant frequency. This leads to some
cancelation which reduces the amplitude of the center-of-mass motion
compared to the one of the individual particles.
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Treatment of Landau damping

Landau damping can be understood from different points of view and
presented in different ways. We treat it here in a manner close to beam
observation and experiments.

We calculate the center-of-mass response of a beam with resonant fre-
quency distribution f(w,) to a pulse or harmonic excitation and compare
it with experiments.

This center-of-mass motion induces fields in the surroundings which
act back on the beam and can enhance the excitation. The electrical
properties of the components surrounding the beam, relevant for this
effect, can be expressed by an impedance. The fields induced in this
impedance can be sufficiently large to keep this process going leading
to a self excitation. This leads to an instability having a threshold de-
termined by beam response and impedance. Below this threshold the
frequency spread eliminates any coherent motion at infinitesimally
small amplitudes before it can grow; we have stability. Above, the
voltage induced in the resistive part of the impedance leads to an in-
crease of initial coherent motion and we have an instability.

The amount of Landau damping depends on the frequency distribution
f(wy) or its derivative at the frequency w at which the instability oc-
curs. It can happen that the coherent (center-of-mass) motion has a
different frequency than the incoherent individual particle frequencies.
In this case Landau damping might become ineffective and we can get
an instability for a very small resistive impedance.

We will calculate the beam response and Landau damping for trans-
verse and longitudinal oscillations of a coasting (un-bunched) beam.
From this we can determine the maximum transverse and longitudinal
impedance which still does not create an instability and represent this
in the so-called stability diagram. Finally, the dependence of the reso-
nant frequency on amplitude due to a non-linearity is considered which
produces a frequency spread leading to Landau damping for bunched
beams.
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1) Response of an oscillator set to excitation
Response to a pulse excitation

A set of oscillators j of resonant frequencies w,; get at ¢ = 0 a kick
with same initial velocity #;(0") = &y and make after a free oscillation
with different w,; and constant amplitude z; = ©/w,;

T(t) = &gcos(wyit) , x; = T;sin(wy;t)

Observers see only the center-of-mass motion (z;(t)) = + ¥ z;(t). We
take a normalized, narrow frequency distribution centered around w,

flwy), /f(wr)dfr =1, Aw, = wr — wrp < Wryo.
This center-of-mass displacement and velocity, given below, are 'damped’

(z(t)) = :i:o/f wr) cos(wyt)dw,

:xo/

Expressing the veIOC|ty response by the difference frequency Aw,
g(t) = ((t))/xo = cos(wyot)1(t) + sin(wyo)I2(t) = cos(wpot — @) E(t)

with I; and I, representing inverse Fourier integrals
L(t) = /f (Aw,) cos(Aw,t)dw,, Ir(t) = —/f (Aw,)) sin(Aw,t)dw,
g(t) fcos(f(AwT)) cos(wyot) — fsm (f(Aw,)) sin(wyot) and

E(t) = \/]1 ) + I3(t) being the envelope of the oscillating response.

T dTN ’ T ' T’th’
smw w wro/f(w)sm(w )dw

The center-of-mass velocity response ¢(t) of an oscillator set with reso-
nance frequency distribution f(Aw,) to a pulse excitation (Green func-
tion) is proportional to the inverse Fourier transform of this distribution
times an oscillation with the central frequency w;.
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Response of a single oscillator to a harmonic excitation

\/\/\/\;
o N N

Before we got the velocity response of a single undamped oscillator with
resonant frequency w, due to a pulse excitation at a time

©(t) = &g cos(w,(t — to)).

We consider now a harmonic excitation at frequency w starting at time
t1 and lasting up to the present observation time ¢. We treat this as a
series of infinitesimal kicks with a harmonic modulation

di
dig = % cos(wtp)dty = Gdty = G cos(wty)dty
0

where GG is an acceleration. The velocity obtained at the time £ is
At
=G /t1 cos(wty) cos(w,(t — tg))dt.

Calling T =t —ty, T} =t — t, and developing cos(w(t — T')) gives

xg) = /OTl cos(w(t —T)) cos(w, T)dT,
= /0 & (cos(wt) cos(wT") + sin(wt) sinwT")) cos(w, T )dT
T sin((w, —w)11) = sin((w, +w)TY)
sl SR ) )
, 1 — cos((w, —w)T7 1 — cos((w + w, )17
~sin(wt) ( @ - (@ +oh )}

For w & w,( we neglect in each line the 2"? term compared to the 1

z(¢) 1 Sm((wT :w)Tl) B sin(wt)l - COiEEW_T ; W)Tl)}

A

G

cos(wt)

= cos(wt)rs(wy) + sin(wt)rsi(wy).

Velocity and acceleration are in phase for the 1St, resistive, term and
energy can be absorbed, but out of phase for the 2nd’ reactive, term.
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) _ I3[ gyl = 0T
G 2 (wr —w)Th
= cos(wt)rg (W, — w) + sin(wt)rg(w, — w).

1 — cos((w, —w)TY)
(wr —w)Th

— sin(wt)

At w, = w the first term increases linearly with excitation r.(0) =
T1/2 because sinz/x = 1 for x — 0 and the second term vanishes
r.(0) = 0. For the general case the response increases with 77 ini-
tially with the same slope, but reaches a maximum value being smaller
for larger frequency differences w, — w and oscillates slowly around the
extreme values due to an interference between resonant and excitation
frequency. The reactive part has a similar behavior but the initial in-
crease is quadratic. We multiply these responses with w to make them
dimensionless and plot them as a function of excitation time 7T} for
different frequency differences w, — w

1 ] 1 ] 1 ] 1 ] 1 ] 1 ] 1 ] 1 ]

20 | cos(wt)rg.w I 20 |

0L 7:%‘ I/\Lfl/ ~ \L \/ J - 07

_20_ w, —w = 0.1w __20_

20 - Cos(wt)rsrw L 90-

VTR i

L TN s VE o
oLV VA N\‘uhﬁuj_ ’

—20- -—20 1

w, —w = 0.05w

40 cos(wt)rgw sin(wt)rsiw -
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|t is instructive to plot the single oscillator response versus the frequency
difference Aw = w, — w for different excitation times 77

©(t) 1 sin((w, —w)T1) . 1 — cos((w, —w)T7)
5 T3 cos(wt) W — sin(wt) P

= cos(wt)rs(wy — w) + sin(wt)rg(w, —w).

This response is more and more concentrated around w, = w where its
resistive part has a maximum and the reactive one goes through zero.

resistive response reactive response
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The fast oscillation of the response for large T and w,—w gets averaged

while integrating over f(w,) giving with /*°_dzsin(ax)/x =1

sin(w, —wT1) [ oo if w=uw, Y E5(w W)
(wr—w) |0 if w#w, R R
1 — cos(w, — wTh) 0 if w=w,

(w0 — ) { (= w) if w#w,

| G

cos(wt)mo(wy — w) — sin(wi) (wr 1— W>w7§w¢}
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Response of an oscillator set to a harmonic excitation

f (Wv“>
I\ flw) =~

/ ‘ N dw,
/ \ /0 (wp)dw, =1

W Wy
We take many oscillators with a normalized distribution f(w,). The

velocity of the center-of-mass motion is obtained by taking the single
oscillator response

G

r(t) =~ —

(1)

and integrating over this distribution

(B(0) = f)7 il ) )y
ra %(cOsw)wf( )= sin(whPV [ M)

G X w, —w

(.Ur_w

os(wt)mo(w, — w) — sin(wt) ( : )w;éwr:|

= cos(wt)r,(w) + sin(wt)r;(w)

with the 'principle value integral’

PV/ f(wr)d — lim [/WG f(wr) _|_/w f(w)

dw,
W — Wy o0 W, —w Tew, —w

This response to harmonic excitation is called transfer function.
lts resistive part is proportional to the distribution at w and vanishes
therfore if the excitation frequency lies outside the distribution f(w; ).
By integrating over ¢ we get the displacement response

= 5 [sin(wt)r, — cos(wt)r;]
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Short derivation using complex notation
We have derived the response to a harmonic excitation using real func-
tions and positive frequencies. We use now complex notation with

cos(wt) = (& + e /2, 0<w< oo — /2, —c0 <w < 0
For oscillators with f(w,) = f(—w;), no damping, complex notation
i+ wir = %eﬂ"t , (—wr Wi = %eﬂ"t.
The displacement response of a single oscillator is
Gt G G 11
20w? —w?) 2w, —w)(w, +w) 4w

Wy — W Wyt w

For w > 0 only the first and for w < 0 only the second term is large.
The first, integrated over f(w,), gives center-of mass response

P (S DU PO oy (2

A 7“ A
G dw 0w, —w G 4 0 . —w

dwy..

This integration over a pole, treated in theory of functiond. gives a PV
(principle value) integral plus an imaginary residue. The sign ambiguity,
due to undefined initial value, is resolved assuming &(—oc) = 0

[Er =i +F’V/f“”—m=—jf jpy [ Ll

Wy — w W Wy — W
y ()4 6‘7” o flwr)
f — = PV
giving for w > 0 e mf(w)+J /OOw _wwr
. —jwt

and for w < 0 <a2 ~ ¢ 7 f(w) —]PV/O; j@jrzudwr
(#)+  (@)- _ 1 _ o flwr)

2 + o T3 cos(wt) f(w) — sin(wt) PV/OOwT_wdwr

which agrees with the previous result.
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Relation between pulse and harmonic excitation
The center-of-mass velocity response of an oscillator set with resonant
frequency distribution f(Aw,) to a pulse and harmonic excitation is

g(t) = cos(wyot) / f(Aw,) cos(Aw,t)dw, —sin(w,t) / f(Aw,) sin(Aw,t)dw,

where Aw, = w, — w,q is deviation from distribution center.

- L)

W, —w

(xg» = % (Cos(wt)wf( ) — sin(wt PV/
= cos(wt)ry(w) + sin(wt)r;(w)

We Fourier transform g(t) using a factor 1/(27) instead 1/+/27m
Geos(Aw) = /0 dt / dAw, cos(Aw,) cos(Awt)

with Aw = w — wy. The integral /5° cos(Aw,t) cos(Awt)dt is infinite
for Aw, = Aw and vanishes otherwise, giving the Dirac delta function

/OOO cos(Aw,t) cos(Awt)dt = 16 (w, — w).
This gives for the cosine Fourier transform
1
gcos AW _/O Awr w)dwr = §f(Aw)

The sine Fourier transform integral we got before
1 —cos((wp —w)T)
N 2(w, — w)

/OOO cos(Aw;,t) sin(Awt)dt
T'—00

0 if w, =w

= 525

) 1 o F(Aw,)
A(Aw) = = PV dw,.
gsm( w) 2 0 wr —w w’f’

The cosine and sine Fourier transforms of the pulse response g¢(t),
(Green function), equal the resistive and reactive parts of the harmonic
response, (transfer function).
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Response of oscillators with a Gaussian distribution

f(AWT) -

1
\V2mo,

o~ (Ber/ow)/2 ity /_Ozo flAw, )dw, =1

Pulse response ¢(t) and its envelope F(t) are

cos(wyot)

V2To,

—02t%/2

[

g(t) =

e

cos(wyot) =

o~ Bwr /20, cos(Aw,t)dw,

E(t) cos(wyot).

The transfer function is obtained by a Fourier transform of E/(t)

rr(w)

ri(w)

IS

0 _2t2/2 _
/0 ¢ cos(Awt)dt =

oot /2 sin(Awt)dt =

e—AwQ/Qac%

s
V2mo,

o, 0

The integral on the right is called Dawson integral.

FREQUENCY DISTRIBUTION
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For pulse excitation the frequency spread reduces the initial coherent

motion while individual oscillations continue with fixed amplitudes. In

harmonic excitation the oscillators respond with different phases but a

few, being on resonance, have growing amplitudes and absorb energy.

Both lead to finite incoherent oscillations.

Landau damping works by

reducing the coherent motion at small levels before finite amplitudes

are reached.
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Landau damping of oscillator set

) amplifier )
Ry RO )
RIS | S
| N SRREZL AR
NARESEL L AINKEIRX T
kicker detector

Based on the center of mass response of a set of oscillators we il-
lustrate how the frequency spread leads to Landau damping of coherent
oscillation which would otherwise grow.

The velocity of center of mass motion of a set of oscillators is measured
by a detector, the signal is amplified and fed to a kicker to produce
an acceleration GG in phase with the velocity which should lead to a
growing oscillation, i.e. a negative feed-back system. The center of
mass velocity response to an external acceleration G' = Gexp(jwt) is
in general and for a Gaussian distribution

(&) = Ol +.n] = G () + 3PV |

flAw) wr)

wfr_w

_ G T e—Aw2/20'Ej +j£e—(Aw/gw)2/2 Aw/(\/igw) et/Zdt/ .
V2o, o, 0
We assume now that the excitation happens at the central frequency
for the Gaussian distribution Aw = 0 for which r; =0

<:C> - G\/%Uw

We replace the external excitation GG by the one of the feed-back G, =

k() and assume a gain k just sufficient to keep the oscillation going.
This is the limit of stability since a slightly larger gain would increase
the oscillation leading to an exponential growth

(i) = k:<:t>\/%a k< \Igaw.

This maximum gain k still giving stability is proportional to the fre-

quency spread. Landau damping works by making an accidental co-
herent oscillation incoherent at infinitesimal levels without having first
a growth reaching finite amplitudes. It does not lead to a growth of
incoherent oscillations.
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3) Transverse coasting beam instability
Oscillation modes

A uniform coasting beam of NV particles circulates with revolution fre-
quency wy, current I = eNwy/(27) in a ring of uniform focusing. Each
particle executes a betatron oscillation of frequency Qwy

0; = 0o +wot , yi(t) = ycos(Qup(t —t;)).

Depending on the phases QQwyt; between adjacent particle we have dif-
ferent modes. We choose a set having a form as seen at a fixed location
0

y(t) = ycos(nh — wt) , y(0) = ycos(nh).

Frozen in time ¢ = 0 we have a closed wave with n periods. Following a
particle 0(t) = 6y + wot give us the betatron oscillation with frequency

Qup.
ys = g cos(nby — (w — nwy)t) = g cos(nbs — Quit)
giving for the frequency w seen by a stationary observer
w=(n+Qw)=ws with —oo <n < 0.

We divide modes into fast and slow waves according to the sign of the
phase difference between adjacent particle

wgr = (np+Q)wo, ny > —Q
wgs = (ns— Q)wy , ng > Q.
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Effect of momentum spread
The betatron frequencies of a beam with nominal momentum are:

wgr = (ny+ Q)wy , wgs = (ns — Q)wo.

AFE A 2A A
Through — = 52—p = —ﬁ—ﬂ ;and AQ = Q'—p
E p Ne Wo p
they are affected by a momentum deviation

Ap
Awgp = (Q —me(ny + Q))Wo?
Ap
Awﬁs — (Ql - 770(”3 - Q))L‘JO?

1F(wo)
fwss) /TN f(wsy)
AT~ / \ // \\
I L NN
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them

i+ woQ%y = G cos(w)

and seek a solution y(t) = ycos(nf — w). To excite such a mode n
each particle has to be driven by the proper phase corresponding to its
longitudinal position 6. Therefore, we expect to find a excitation fre-
quency which is not wy() but close to the fast or slow wave frequencies
war = (ny + Q)wp or wgs = (s — Q)wo.

Substituting the desired solution form in the differential equation form
gives

(—(nwo —w)*+ Qng) § cos(nf — wt) = G cos(wt).

We assume excitation and observation is done at the location # = (

A

G G

T R P (o ain + Q) —an— Q)

B -G G 1 1
 (w—wpp)w —wss) 2we@ (w —Wps W Wﬁf) |
to excite the fast wave we use w ~ (n; + QQ)wy and the first term is
much smaller than the second one. Correspondingly for the slow wave

we use w & (ns — Q)wy and the second term is much smaller than the
first one. We approximate for the two waves

(&)~ mal=m) @)= mal=)
Gl 2wQ \w—wsr) T \G)s T 2w0Q \w —wss )

The two responses have opposite sign, this will be discussed later.

cas05ld-15



Response of the whole beam
The whole beam has frequency distribution f(wgs) and f(wgs) The
center-of-mass responses in displacement and velocity are related by

(y) = jw<y>

f(wsr) Gw f(wsy)
2@0«)0 / waf — w - _QQWO (Wf( ) B jpv/w w5f) dwﬁf

N f wﬁs . ﬁ _ )
) QQwo / Wps — W Ape = 2Qwo (Wf( ) PV/w - Wﬁs) s

The term 7 f (w) is real, exciting acceleration and responding velocity

are in phase resulting in an absorption of energy and damping, called
Landau damping. It is only present if the excitation frequency w is
within the frequency distribution of the individual particles. The sec-
ond term is imaginary and gives the out-of-phase response being of
less interest.

The spread in betatron frequencies is given by the momentum spread
and the dependence of revolution frequency wy and betatron tune () on
momentum deviation Ap/p. It is therefore determined by an exter-
nal parameter which is not affected by the excitation of betatron
oscillations.
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Measuring the beam response

out
P

& | =\
L !L ______ in !// ' \&

—— =
Sl Sl =< = : o

[—

kicker monitor
network analyzer

The center-of-mass displacement response can directly be measured
with a network analyzer. Here, we derived the velocity response which
is more transparent for understanding the resistive and reactive behav-
ior of the beam. In measurements the displacement is observed and
our equation have to be converted to analyze the results. Due to cable
delays the real and imaginary part of the response are often mixed.
It is easier to measure amplitude and phase response and correct the
latter off-line.

Vertical TF of an unbunched beam in the ISR
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Measurement of upper and lower side-band
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Longitudinal impedance

—E,

Y
-~ EJw)ds V
- Sy — N Bs _ Vi)
- I(w) w

The longitudinal impedance is the ratio between the integrated longi-
tudinal field and the exciting current. It has a real (resistive) part for
which voltage and current are in phase and an imaginary (reactive)
part for which they are out of phase. It is measured in Ohm=V/A.
Transverse impedance

"E, Zr(w) = j/ <E(w+ [XX B(w)])Tds
— i: et © o © ]SC( )
{1 e v (B v x BW)), ds
. B — ]:z:( )
— abp  ©

The transverse impedance is the ratio between a longitudinal inte-
gral over the transversely deflecting fields and the dipole moment of
the current which excites it. It is illustrated by a cavity mode having a
transverse electric field with a gradient 0 E;/0x which is first induced
by the dipole moment of the current. After 1/4 oscillation this is con-
verted into a transverse magnetic field B, which produces a deflection
in the x-direction. The ’j’ in front of the first definition indicates that
the exciting dipole moment and the deflecting field are out of phase.
However, the second definition relates the transverse deflection to the
transverse velocity is real indicating the transfer of energy. Like in
the longitudinal case the transverse impedance has a real (resistive)
and an imaginary (reactive) part, furthermore it has a horizontal and
vertical component. It is measured in units of Ohm/m=V/(A m).
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Stability limit
The oscillating beam can induce a voltage in a transverse impedance
which in turn applies a self acceleration G to the beam

f(Ew)+[6x Bw)]), ds , Gs=-— eZrl(y)

W
Iy(w)
If G, = G we can have a steady self sustained oscillation without

external excitation, i.e. a threshold of an instability. Introducing this
into the response we get for this threshold

S (o o [

Z = —
() ymo2m Rw

_ JeclZp(w) 1 flwss ecl Zr(w) _ Flwss)
A4TQFE /Wﬁs—w S_W(Wf(w)+JPV/w—dwgs).

These equations represent relations between the complex impedance
and the complex beam response to an excitation. We plot this as a
stability diagram shown for a Gaussian distribution. If the impedances
lies inside the central curve we have stability, outside an instability.
The curve itself represents the threshold. Its shape is determined by
the frequency distribution of the particles.

2 - -
The stability diagram is the in- 1
verse response of the beam, i.e. ]
inverse amplitude plotted against 1. ;gss;n J i
the negative phase, it is an in- .
verse Nyquist diagram.
lower sideband 0 1 f o \ 7. [
gecl Zp(w) - 1 1 | '
ArQE [ de | 1
W—Wwgg 5 i i
|
upper sideband —17 Ly Ao i
jecl Zp(w) 1 : \ o/
= f(w ) ] \ | /
ATQFE I—Lw—cfﬁfdwﬁf 9. &‘:%3 i
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Response in the presence of an impedance
The beam response to an external acceleration is for the lower side
band R
; Gw ; flwss)
(Y)s = [

T 2Quwy ! wgs — w

dwgs

The oscillating beam can induce a voltage in a transverse impedance
which in turn applies a self acceleration G to the beam

GZT]<y>
ymo2m Rw

W - S5 .
Zﬂmz—E@#Um@+mxm@mmm<%:_
This self excitation has to be added to the external one. We take the

inverse response (stability diagram) due to both

(G+Ggz) W
<y>s QQWQ / jg:é‘idw%

However, we know only the external excitation and would like the
relation of the response to it. The inverse of this response is

A

G », G z W eZrl
2QWO I f;wéidwﬁs ’}/m027TRCU

w

(0)s ZQwof%dwgs F

The presence of an impedance | — / ‘\ ki Zz | i
shifts the stability diagram by ] R
a vector ] // \\

GZT] 1 ! \

B 2pt Rymow

which is proportional to the

negative complex impedance.
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Transverse beam response in the presence of an impedance

\
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4) Longitudinal coasting beam instability

Dynamics
The longitudinal coasting beam dynamics is governed by relations be-
tween deviations Ap in momentum and Awy in revolution frequency
Ap 1 AE AE 1Awy; . 1
7:@ =~ T e ,with . = a. — —, Awp = w, — wp
giving an equilibrium distribution in £ and w, around Fy and wy

2 2
%ddﬁc;\; = Roldwn) = i

Pulse response

fo(AE) -

, /d@/Fg(Aw())dwr = 1.

N dfdwy

At t = 0 we pulse excite a mode 0 \;'/\E;’“\\/j E ; sap.m
=
OE = §Fycos(nb) . ; T
f(0%) = R(AE+5E) T
df() (AE) AE 27N 2% ZE —0.9 AR
~ fO(AE) + —dE oF Z@ s
dfy e
= fo+ d_E(SEO cos(nf), ”}’30 : 7
} I —
ft) = fo+ dil% cos(nf — w,t) - ’ Mﬁ%%:l: > ;
with w, = wy — wnAE/E OW ~ jaEm)
===
I(t) = New [ f(AE)E ; ; o

= Iy+I(t) current. I(f?fw
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Response to a harmonic excitation
E = Ey+ AFE

/ AFE 1 Awo
( — = ——, Awp=w, —wy
- E Ne Wo
\ | )
-/ I(t) = Newy [ f(AE)E = Iy + Ii(t)
\Hﬁ L(t) o e“h,

-——L_CE_@ U(t) = Uy it
The response is a perturbed current I1(t) = U(t)(r,(w) + jri(w))
—iNe*wU(t) , dFy/dwy Ne*wiU ( dFy , )
= duy = —jPV ().
2w 32E /w — nwy 0 2w 32E T ) /

]1 (t) dwo

1.0—_ fA(wp) /\ —

0.5

0.0

" = ¢180
1-_ - 90
0 0

—14 N —-90

_9 —F —180

1 [ [ [ t -
0.0 1.0 2.0 3.0 Ow 4.0
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Longitudinal Landau damping of a coasting beam

The response is a perturbed current I1(t) = U(t)(r,(w) + jri(w))
—iNe*wiU(t) , dFy/dwy Ne*wiU ( dFy , )
Li(t) = dwy = — PV [].
1(¢) 2w 32E /w — nwy 0 2w 32E de()(w) J /

To find the limit of stability we consider a complex longitudinal im-
pedance in which the perturbed current I;(¢) induces just the voltage
we used to excite the beam and get this current U(t) = I1(t)Z(w)

Ne*win(Z,(w) + jZi(w)) 7TdF0( = dFy( wo)/dt
21 (32F — nwy “0)
This represents a mapping between two complex quantities which can

be represented by a stability diagram. We separate beam parameters
from the integral which depends on the distribution form.

1 pu—

PV/

dwo

| L Separate physics from distribu-
| U’ \ : -
. I \\ | tion with
#—2 Ty = 2? Newy
4 L F Iy =
| ! 2
1- \ ll i Op = half width at half height
, / 0
\ /| S = UWO?p frequency spread
\ /
0 \ i 1/V’ Wy — Wy w — Nwy
\ / s 7 nS
o 27TSF (wr)
4 B (R go(x) = . /go dr = 1.
—1 1
elyZ(w)/n mdgy dao
1 SRR Ao (x )—ZPV/ i dx
2m 32 Eon(Ap/p) T — T
~1
| Iy(Z, +iZ;) dgo 4
Vi) = IO —iPV [—dr g
o 21 32 Egnn(Ap/p)? i o) = /:c—:m )

Gaussian: o, = S/v/2log2 = S/a, go(z) = a/\/2m exp —a’z?/2

2

a
\ 2T

V' 44U =
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Longitudinal stability criterion (Keil-Schnell)

Stability diagrams for different distributions, (A. Ruggiero, V. Vaccaro)
We separated the dependence on the distribution form from the one
on measurable beam and accelerator parameters Ey, Iy, Ap/p, Z(w)
and 7. and got the normalized stability diagram

~1
d af
Wﬂ(ajl) — z'PV/d—xda:

dx T — T

ViU = = —
27 32 Egne(p/p)?

We approximate such diagrams of different distributions by a circle

radius of 0.6 and get a condition for the absolute impedance divided
by mode number, called Keil-Schnell stability criterion

’Z ‘ _ 277 Ene(0p/p)’
n| - el '

Important is the strong dependence on the momentum spread, or the

connected frequency spread, which gives rise to Landau damping.
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Measured transverse and longitudinal coasting beam re-

sponses
TRANSVERSE LONGITUDINAL
c) ompl. and phase vs. frequency d) ampl. and phose vs. frequency
slow_wave fast wave
& (reQ=2379 (g Q) = 2.621 f=36 tev
‘4 ) AR
o]
-
27(£.1
188}
96 USSR %—4—6—
al 0 TkHz -1
1 ["‘;mm
3
ra
| e L, cemk
1 0 TkHz 7 1 ‘\‘ omf"l Af

v
ixf Cres.

b) resistive response vs frequency
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omplitude vs. phase

s
N
s

~ \__.//
—
ompl. vs. phase
( Nyquist diogram)
<) inv.ampl vs. phase
(stobility diagram) f) inv. ampl vs. phose

measurement normalized
-——- " " ond corrected for woll impedonce

REPRESENTATIONS OF MEASURED TRANSFER FUNCTIONS

Transverse:
In each side-band the phase changes by w. The resistive response is
positive for the slow and negative for the fast wave.

Longitudinal:
Each revolution harmonics gives a 27 phase change.
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Simple demonstration of frequency spread and shift
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5) Landau damping due to non-linearities
In a non-linear oscillator w, depends on amplitude or Hamiltonian H’,
A distribution ¥ (H') gives one in w,. Example of synchrotron oscil-
lation with nominal parameters Ey, Ty = 27 /wy and ¢s = hwots = 7
with deviations € = AE/Ey ~ Ap/py and ¢ = hwyt.
For a stationary bucket, ¢, = 7

e
5 N
. _ wiy  nheV
0 0 \.bunch
—=
s K

For ¢ < 1 — ¢p+w?¢ = 0 with solution”!

€ = ¢ cos(wyot) , T = 7sin(wyt) and constant Hamiltonian H'

[ ne€ N w3 7 _ N6 _ w3 72 with OH' . OH' .
2 20, 2 20, Oe © Ot
A stationary distribution is a direct function of H'; for a Gaussian
_& —H'/(H')
@D(Ea 7_) — 1 € 2026 20; — e— y Oc = a0 3 <Hl> - 776062
2M0 .0, 2mo. o Me

Next approximation ¢ < 1; sin ¢ ~ ¢ — ¢3 /6
é—kw?osinqb:() — é#—wzo <¢—¢3/6> = 0.

We seek solution ¢ = gg(cos wst) with wg # wy, neglect higher har-
monics and use cos® z = (3 cosx + cos(3x)) /4

—w? cos(wit)+w?, (qg cos(wst) — iqﬁg (3 cos(wst) + Cos(Bwst))) =0

1 - 1 - Aw, 12 h2win, H'
Ws = Wy, 1 — c¢* = (1 - _¢2> ; e _¢_ - = W2077 —.
8 16 W 16 wip 8

A distribution in H becomes a corresponding one in wy.
B(H') oc e ) s p(Awy) oc eBes/{lAws])
—6 —|4 | -2 | (I) | ? | 4
() I Distribution | 8 Auw,

] R=H/H) |

6 4 2 0 o 4
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Pulse excitation

€p__ Wl
770€2+ng2 _ Awy _ _h%}(%ﬁcﬂ ol T \\\\7
2 2770 ’ Ws0 wg() 8 /// \ *\
oH'  OH' D\
= T = € ! /
Oe ©oT / B i y
Vs 807/770
o H'/(H') , - . ) |
N — A \\\ i /
¢O(H) <H/> ) <H> N0 ¢ \\\\ | X
An energy change de gives e o
at £ = 0 (0") = o(H') + tr (e, 7) —
0 d d
0n(07) = Gle = SO ge = Sl coe ;
e dH' 0e ~  dH' 06
P
At t > 0 rotation with wy, = wyy + Awsy ' T\ W(e)
gives also a displacement in 7 / : \
e = ésin(@ —wyt), T=7cos(@ —wgt) O ¢
0 = B0 (0 — w,t)s
Y (t) = T sin(0 — wst)de /——\7%0(6)
A slice ¥1dH' has long. dipole moment / \
dDTzfdwle@ T G
| A (o)
integral over H' gives full dipole moment T~
Tttt | >
D, = [dH' [ dir7df —
D.(t)  2mn.(1 — (bt)?)sin(wyt) + 20t cos(wyy) Ws0;
— with b =
O€ Ws0 (14 (bt)?)?
' D (1)
L
ey
I}“Hg!“ﬁh,"H'\“I\.”i'iljkw,“\”ﬂ AN NANNAANAAAAAAAA
NIRRT
"Jf L \ VoV
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Harmonic excitation
We use a harmonic excitation C cos(wtg)dty with w corresponding to
a Hamiltonian H|, and get a dipole moment response

DT 00 e_RRdR
T — Alre fOR, cos(wt) — PV ———sin(wt)] .
2. 0 ( ) 0 (RO _ R) ( )
—6 —4 —2 0 2 4
V(R) Distribution ' EA%
14 0'35 Ws0 B
exp(—R) i
] _ Ry = Hy/(H')
0 _ — |
6 4 2 0 —2 —4
—6 —4 —2 0 2 4
- ' | | ' 8 Aw, I
11 | ) B
] / \. 7 o :
Yo T T i [
O T T L e o o e l  lm . |
4 | ~ B -
: N
‘1‘- o Re=Hyw) |
6 4 2 0 —2 —4
—06 —4 —2 0 2 4
|

///// N o ?_‘tj\:-:: Sl F 90
| . Ry myun
6 4 ’ : - :
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Increase Landau damping
Double RF-system

Single RF-system

Two RF-systems with wrp and nwgrp approximated for ¢ ~ m,
V(p) = —Vising + V, sin(ng) with V,,/ = Vi /n
10 ~ (- (o= ) L (s~ ")) il

§)
. 2 1 . \ N
¢ + Wgon 6 ¢3 = 0, ws x ¢ ! // :_\‘ (¢)
C'b2+ 2n2_1¢4 H tant [ \<‘
— = = constarn : \
. n? —1 : \
]<¢> = lexp _wZO 202 ¢4] 0 )
¢

we and wy are synchrotron frequencies of the basic and the double
RF-system. The latter depends strongly on amplitude and gives large
spread and Landau damping. The flat voltage leads to a long bunch.
Successful operation at ELETTRA, G. Penco et al.

Octupoles for transverse Landau damping

Octupoles give a restoring force oc z® and make the betatron fre-
quency dependent on amplitude resulting in a spread. Since they also
produce non-linear resonances they should be distributed. The beam-
beam force in collider represents a non-linear lens which gives Landau
damping.
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