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1) Instability mechanisms
Overview
The motion of a single particle in a storage ring is determined by the
external guide fields (dipole and quadrupole magnets, RF-system,
etc.), initial conditions and synchrotron radiation. Many particles
in a beam may represent a sizable charge and current which act as
a source of electromagnetic fields (self fields). They are modified
by boundary conditions imposed by the beam surroundings (vac-
uum chambers, cavities, etc.) and act back on the beam. This can
lead to a frequency shift (change of the betatron or synchrotron
frequency), to an increase of a small disturbance of the beam, i.e.
an instability or to a change of the particle distribution, e.g.
bunch lengthening. These phenomena are called collective effects
being due to a coherent or collective action of many particles.
The role played in this process by the electrical properties of the
beam surroundings is expressed by an impedance.
As an example we take a bunch in a storage ring going through
a cavity where it induces electromagnetic fields which oscillate and
decay away slowly. In the next turn the same bunch finds some field
left and gets influenced by it. Depending on the phase of the field
seen in the next turn, a small initial perturbation is increased or de-
creased leading to an exponentially growing or decaying oscillation
of the bunch.
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Multi-turn effects

In the example the induced fields have a memory and the instabil-
ity is built up over many turns. These self fields are often small
compared to the guide fields and their effects is treated as a per-
turbation in 3 steps.

a) We determine the stationary particle distribution given by the
guide field, initial condition and synchrotron radiation.

b) We consider small disturbances and calculate the fields they cre-
ate including the boundary conditions (impedance).

c) We calculate the effect of these fields on the beam to see if the
initial disturbance is increased (instability) or decreased (damp-
ing) or the oscillation mode changed (frequency shift).

As disturbances we consider orthogonal (independent) oscillation
modes and investigate the stability of each. This works for weak in-
teractions which don't alter the nature of the modes but determine
only their exponential growth over many turns. Multi-turn effects
are driven by narrow frequency band impedances with memory.
Multi-bunch effects

With many circulating bunches their individual oscillations can be
coupled by an impedance with a shorter memory bridging just the
bunch spacing instead of the revolution time. Multi-turn and multi-
bunch instabilities have the same qualitative properties and are called
multi-traversal effects.

bunch 4
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Single traversal effects

Strong self-fields from broad band impedances change the station-
ary distribution and modify oscillation modes which are no longer
independent. A self consistent solutions is difficult to obtain. The
most common such effect is bunch lengthening.

Longitudinal and transverse effects

Longitudinal effects involve synchrotron (energy, phase) oscilla-
tions and longitudinal impedances. They contain longitudinal insta-
bilities, shift of synchrotron frequencies and bunch lengthening.
Transverse effects involve betatron oscillations and transverse im-
pedances. They contain transverse instabilities and betatron fre-
quency shifts.

In both cases the longitudinal particle distribution (bunch length)
is important since it can be "resolved” by the impedance while the
transverse distribution is usually not resolved and does not affect
the instability.

The most important longitudinal single traversal effects are syn-
chrotron frequency shifts and bunch lengthening. In the transverse
case the effect of the chromaticity is important which can lead to
head-tail instabilities.
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2) Impedances and wake functions
Resonator
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Cavities have narrow band oscillation modes which can drive coupled
bunch instabilities. Each resembles an RCL - circuit and can, in
good approximation, be treated as such. This circuit has a shunt
impedance R, an inductance L and a capacity C. In a real cavity
these parameters cannot easily be separated and we use others which
can be measured directly: The resonance frequency w,, the
quality factor () and the damping rate «:
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Driving this circuit with a current I gives the voltages and currents
across the elements

L
IRy I} J Ve = QRRS
-2 _
A8 e Vo = & [ lcdt
kjj s — p= L vV dIL
vV, = L—
| L dt

Ve=Ve=V, =V, Ip+Ilc+1=1
Differentiating with respect to ¢ gives

. N V4 .V
I =1 I [ = — —.
R+ 1o+ 1 R3+CV+L

Using L = R,/(w,Q)and C' = Q/(w,R,) gives the differential

equation
WT (.UTRS .

I
Q Q

The solution of the homogeneous equation represents a damped

V(t) = Ve cos (wr 1— 4—(321; + qb)
V({t)=e""|A - L) +Bs R
(t)=¢e ( cos(wr —4—Q2)+ Sln(cur _4—Q2))

V4=V +0’V =

oscillation
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Wake function — Green function
Calculate response of RCL circuit to a delta function pulse

I
L |
o Wy = ——=
vV LC
A
NGNS vooQ = RSE
I(t) = ¢i(t) Wr
& p— _—
_ 20
w, R
V+ 2y WiV = °I
@ Q
The charge g will charge up the capacity to a voltage
R
V(0T) = % wQ q using C = wfi%s
Energy stored in capacitor equals energy lost by charge
2 r R V(0 » R
U = g _Y 2 — ( )q:kpmq2 with kpm:w

200~ 201 T2 20
with the parasitic mode loss factor £,,,, measured usually in
[V/pC]. The capacitor C' discharges first through the resistor R,

: ) I 1 V(T w? Ry 2w, kpm
vioy=-L-n_ _IVO) _ el 2k,
) 0 0

With the initial conditions V(0F), V/(0*) the general solution

Y M e e

gives the response of the circuit to a pulse excitation

V(¢) = 2qkme™" (cos ( J oLy ) _sin (w1 — t))

4Q? 201 - 12
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Normalized per unit source point charges it is called Green or wake
function G(t). For our resonator:

Glt) = ke (( 1 )_sin (wn/T— 22 t)

4Q? 2Q/1— 2
IRS T
G(t) ~ 2kyne " cos (wit) for Q > 1, kyy, = wQ—Q e ;_Q

This voltage induced by charge ¢ at t = 0 changes the energy of a
second charge ¢’ traversing cavity at t by U = ¢'V (t) = q¢'G ().
G
| 2k
1 _i\ wake potential

g // \ NV Y4 -
(E:):(t) longitudinal field

The wake potential is related to the longitudinal field £, by a field
integration which follows the particle with speed v =~ ¢ through the
object length while taking the momentary field value

V= Gq-—/z2E zt)dz-—ft/ E.(z)dz = —(E,);Az.

with transit time factor f;. We use G(t) > 0 where energy is lost.
A particle inside a bunch of charge ¢ and current I(t) going through
a cavity at time ¢ sees the wake function created by all the particles
passing at earlier times ' < t resulting in a voltage

t 0
vit) = [ G#) /

= [ It dt_qwq) /// |
W(t) = ( )/C] wake potential_ | _______ 0
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Impedance

We assume now a harmonic excitation of the circuit with a current
I = I cos(wt) and get the differential equation

(.Ur WTRS - wTRS

Q Q'
The solution of the homogeneous equation damps down leaving a
particular solution V' (t) = A cos(wt)+ B sin(wt). Inserting this into
the differential equation and separating cosine and sine terms gives

V4 =V 4+ 0V =

Twsin(wt)

wrsz =

WT(A) w’f’w
A= I

Q Q Q

The voltage induced by the harmonic excitation of the resonator is

—(w? — W) A+ B =0 and (w*—w?)B +

2_ 2
cos(wt) + Q= sin(wt)
N
1+ Q2 ()
The voltage has a cosine term in phase with the exciting current.
It absorbs energy and is resistive. The sine term is out of phase,

does not absorb energy and is reactive. The ratio between voltage
and current is the impedance. It is a function of frequency w

V(t) = IR,

W2 — 2
Q )

Z(w)=R 5, Zi(w)=—R

’ 9 (wi—w? ’ 9 [w?2—w? 2
L@ (£) L@ ()

Its resistive part Z,.(w) is always positive while its reactive part Z;(w)

positive below and negative above the resonant frequency w;.
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Complex notation
We have used a harmonic excitation of the form

N Aejwt —Jwt
I(t) =Tcos(wt) =1 —|—26 with 0 <w < o0

It is often more convenient to use a complex notation either

A

I(t) = Re [Ie*'] = Re [I(cos(wt) 4 j sin(wt))] = I(cos wt)
or
I(t) = I with — oo < w < o0

giving more compact expressions. Using the differential equation

V+ 2V 4wV =21
Q Q

with () = I exp(jwt) and seeking a solution of the form V (t) =

Vo exp(jwt), where Vjis in general complex, one gets

B wrwRg -

Q Q

and for the impedance which is defined as the ration V/I

] Jwt

( w2t 4 e ej”t) Vo=

Vi R |- Qe
Z((,U):—AO: : ~ " :R ]Q wWwy
I 1+jQ(%—) 1+Q2( <)
For @@ > 1 the impedance is only large for w =~ w, or for |w —
wy|/wr = |Aw|/w, < 1and can be simplified
1 — j2Q5
R. J2Q; 2
1 +4Q? (82)
Ie~“!instead of I(t) = Ie/*! is used,

5 = L+ 72

Z(w) =~

Caution: sometimes [(t) =
this reverses the sign Z;(w).
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Green function and impedance of a resonator
Green function Green function
AG) A G(@)
2kpm Qkpm
1
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".v/ \/ \\/’ \/
V
Impedance Impedance
Zw) Z(w)
R, R
/\ -1 pZr(W) | -1 {Zr(W)
A I\ | |
R N ,/“\ “;‘.l ;’?‘l‘
:// ‘!‘. \‘ /’J I‘\' \“~- o | zz=zoil ’JL _ ,J IK
-1 7 1w/ —1 L w/w,
Z1(w) Zr(w)
Q=30 Q =15.0

The resonator impedance has some specific properties:
at w =w, — Z,(w,) has a maximum , Z;(w,) =0
0<w<w — Zjw)>0 (inductive)
0<w <w — Zj(w) <0 (capacitive)
and any impedance or wake potential has the general properties
Zw) = Z(~w) , Ziw) = ~Zl—w)

Z(w) = /_O; G(t)e™¥'dt o Fourier transform
G(t) = 0 fort <0, no fields before particle arrival.
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3) Robinson instability
Longitudinal dynamics
A particle with momentum deviation Ap has a different orbit length
L, revolution time Ty and revolution frequency wy

AL Ap  Awy ATy ( 1 ) Ap Ap
— = Q¢ ) = =/ = — |G Q5| — —TleT—
L p wo Ty ¢ p K p

with momentum compaction «, and slip factor 7. = a,. — 1/fy2. At

the transition energy E1 = moc*yr with 7 = 1/a? the revolution
frequency dependence on momentum (or energy) changes sign

1
E > Er — — < a. = N.>1 = wy decreases with AE
8l

1
E < Ep— >0 —n<l—w increases with AE' .
Y

For synchrotron radiation sources the electrons are ultra-relativistic
and we approximate Ap/p ~ AE/E =€, 1. = ..
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With an RF cavity of voltage V and frequency wrr = hwy and an

energy loss per turn U, due to an impedance, the energy gain or loss

OF is
0F = eV sin(hwy(ts + 7)) — Uy, 0Ty = nToAp/p

with t,= synchronous arrival time at the cavity, 7= deviation from
it and synchronous phase ¢, = hwyts. For hwyT < 1 we develop

Se— 5 (A_E) _ eV sin(¢s) N hwoeV cos ¢ U,

E E E | E
For e < 1 we use a smooth approximation
. 0Ty Ys woeV sin @y w%hef/ cos ¢s  wo Us
T=——=ne€, €= _—= + T——=
1y 1y 2rE 2rE 2m B
The energy loss U can depend on deviations in energy and time
oU oU
Us(e, 7) = U, AE :
(€,7) 0+ E + 5 "

giving for the derivative of the energy loss
. woev sin @y N w%hev COS P woUp wodUs  wp 1 dU;
N 2B 2rE ! 2r B 2 dE ‘ 2m B dt T

For synchronous particle e =0, 7 =0 we have Uy = eV sin Qs

2hef/ COS @, wo dU, 1 wy dU,

EZ(.UO

mE | 2rdEC  Eor dt

T = 1)€.
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Combining the two first order equations into a second order one

wo dU N (_w%hncef/ COS @ Mo dUS)

TS AR o E B i

. . 5 Ows
Ws0

ith o2 5 hnCeV COS @y 1wy dU, 1 nuwydU,
Wi w = —Ww Ols — —_ 9 ws -

* " orE 221 dE 2wy 2T E dt
The solution is a damped oscillation

Ws0
Ne

7(t) = 7 %' cos(wst — @) , €(t) = —ésin(wyt — @), é=7

with w, = wso\/l — 20w Jwyg — a2 /w?) & wy = Qwo.
We have stability if w?, > 0
E>FEp, n.<0 —cosps <0, E<FEp, n.>0 — cosps > 0.

and if the loss U, increases with energy deviation
Qg = ——
227 dE

> 0.
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Bunch in time and frequency domain

We take a circulating bunch of charge ¢, current I(t), symmetry
I(t) = I(—t), we use a Gaussian of RMS width o as example.
Circulating stationary bunch

A bunch circulating with revolutions £ is periodic of period Tj. Its
current, expressed as Fourier series, represents a line spectrum

k=00 00 . 00
Ii(t) = Y It—FkKLy)= X Ipejpwot = Iy +2 % I, cos(pwot)
p=1

k——oo p==00
Wy = q _pa
I, = ) cos(pwpt)dt = —=1(pwy) = —¢ 2ow.
p /0 p 0) \/% (p 0) TO
Ii( 1o t|me domain
/\] +To) /\]t—TO)

/\ /“%\ J\

frequency domam

0 | — W= Pl

Circulating oscillating bunch
I(t) = § I(t — KTy — 1) , 7 = Tcos(2mQsk) = 73, = T cos(wyt)

= 2 Y |1, cos(pwpt) + Z% (Lpt sin(wpit) + I, Sin(wp_t))]

w>0

wo = wo =

wpr = wo(p £ Q) Lpx = \/—Q—W](Wpﬁ ~ \/—Q—WI(Z?WO) =1

time domain

. Ty i Ty | 0
Ii(t) N T I(-To-m) T I(t—2Tp—m)
' ! |
;_T.O ! __T_1>O-t 1:2
0 1o 2T,
Ow
- frequency domain
I w I i
()I |||||iii|"' i:!ii|.
N O N 1 1 O 1 O 0 O O Y
0 s wo “

cas05in-15



Qualitative treatment of the Robinson instability

The most important longitudinal instability is an interaction between
a bunch and a narrow band cavity with memory, called Robinson
instability. As a qualitative treatment we consider a single circulat-
ing bunch interacting with a cavity of resonance frequency w, and
impedance Z(w) of which we consider only its resistive part Z,.
lts band-width is sufficiently narrow that only a single revolution

¢
A

frequency harmonics pwy interacts with it.
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The revolution frequency wy depends on energy deviation AE

Awo AFE

—:—C—:—CA. St'
m nE ne€ sin(wgot)

While the bunch is executing a coherent dipole mode oscillation
€(t) = € cos(wst) its energy and revolution frequency are modulated.
Above transition wgis small when the energy is high and wyis
large when the energy is small. If the cavity is tuned to a resonant
frequency slightly smaller than the RF frequency w, < pwy the
bunch sees a higher impedance and loses more energy when it
has an energy excess and it loses less energy when it has a lack
of energy. This leads to a damping of the oscillation. If w, >
pwy this is reversed and leads to an instability. Below transition
energy the dependence of the revolution frequency is reversed which
changes the stability criterion.
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Effect of the impedance at the synchrotron side-bands
Instead of the wy-variation we consider the spectrum of an oscillat-
ing bunch with carriers pwy and side-bands +w;. The current of the
oscillating bunch Ij;(¢) is split into a stationary one I(t) and a peri-
odic perturbation I;(¢). The voltage induced by this perturbation in
an impedance Z,(w,) for w, = (p + Qs)wy makes an energy change
in the next turn as shown for the case p = 2 and ), = 0.25. lts
effect is seen in a time-energy (7, €) phase space diagram of the syn-
chrotron oscillation. For v > ~r the voltage induced by the upper
sideband enhances the oscillation, the one from the lower sideband
reduces it. Below transition the situation is reversed.

Oscillating bunch with @), = 0.25

turn k turnlk—l—l
) "
7) T
1:(t) < 0 i (t)
| ~ :
_ — t
It) Stationary bunch  11(t) .
AN + FACAN
—— »/ 7 Perturbation e ;
Cavity field induced by the two sidebands
EZ | ! _ Wy = (2 + Qs)wo .
| - - X t
B : wr = (2 — Qs)wo
:/ \\\\\ T :
(4

———— e

Phase motion of the bunch center b

CEES N

€
/}T Y <r <LT>

Damping rate is given by the weopl X2 — Z7)
side-band impedance difference Qs = QIopthcosgb P
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4) Potential well bunch lengthening
A ring impedance has many resonances with frequency w,, shunt im-
pedance R, and quality factor (). At low frequencies, w < w,., their
impedance can be approximated by an inductance L

1 A W™ —wp RS
Z(w) = R ]QQ(’M; 5 A ] C =jLlw+ ...
1+ (Q—Mw;jf’ ) Qur

The sum impedance at low frequencies of all these resonances di-
vided by the mode number n = w/wy is called

Z skWO

= = Lwy.
k kark ’
We ad the voltage V; = —Ldlb/dt induced by a bunch current

I,(t) of parabolic shape, to the RF-voltage using hwot = ¢4+ hwyT

. dl . d]
V(t) = Vrpsin(hwot) — Ld—b ~ Vip(sin ¢s+ hwg cos ¢s7) — dtb'
- T2 3l 2\ dI, 3mlyT
I =1|1——=|= l——), —=— Iy = (I).
H(7) ( T&) 2w To ( 7'3) " dr word Y )

ey

¥ t
\
N

N
The voltage V; seen inside the bunch gives an incoherent w
37T‘Z/n’0]0 )
~ T
hV cos ¢s(wop)?

Vi = VRF sin ¢, + V cos dshw (1 +

2 92 ( 37T’Z/n‘0]0 ) Aws 37T’Z/n‘0]0
w; =wy |1+ —= : N ——
2hVRF cos ¢y (woTp)? Ws 2RV cos ¢s(woTp)?

Aw, = wy — Wy is the shift from the unperturbed frequency wy. It
is negative above transition and gives bunch lengthening.
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