# Beam-beam effects 

## (an introduction)

Werner Herr<br>CERN, AB Department

(/afs/ictp/home/w/wfherr/public/CAS/doc/beambeam.pdf)
(http://cern.ch/lhc-beam-beam/talks/Trieste_beambeam.pdf)

## BEAMS: moving charges

- Beam is a collection of charges
- Represent electromagnetic potential for other charges
$\rightarrow$ Forces on itself (space charge) and opposing beam (beam-beam effects)
$\Rightarrow$ Main limit for present and future colliders
$\rightarrow$ Important for high density beams, i.e. high intensity and/or small beams: for high luminosity!


## Beam-beam effects

Remember:

$$
\Longrightarrow \mathcal{L}=\frac{N_{1} N_{2} f B}{4 \pi \sigma_{x} \sigma_{y}}=\frac{N_{1} N_{2} f B}{4 \pi \cdot \sigma_{x} \sigma_{y}}
$$

- Overview: which effects are important for present and future machines (LEP, PEP, Tevatron, RHIC, LHC, ...)
- Qualitative and physical picture of the effects
- Mathematical derivations in:

Proceedings, Zeuthen 2003

## Beam-beam effects

- A beam acts on particles like an electromagnetic lens, but:
- Does not represent simple form, i.e. well defined multipoles
- Very non-linear form of the forces, depending on distribution
- Can change distribution as result of interaction (time dependent forces ..)
- Results in many different effects and problems


## Fields and Forces (I)

- Start with a point charge $q$ and integrate over the particle distribution $\rho(\vec{x})$.
- In rest frame only electrostatic field: $\vec{E}^{\prime}$,
but $\overrightarrow{B^{\prime}} \equiv 0$
- Transform into moving frame and calculate Lorentz force

$$
\begin{gathered}
E_{\|}=E_{\|}^{\prime}, \quad E_{\perp}=\gamma \cdot E_{\perp}^{\prime} \quad \text { with }: \quad \vec{B}=\vec{\beta} \times \vec{E} / c \\
\vec{F}=q(\vec{E}+\vec{\beta} \times \vec{B})
\end{gathered}
$$

## Fields and Forces (II)

- Derive potential $\mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ from Poisson equation:

$$
\Delta U(x, y, z)=-\frac{1}{\epsilon_{0}} \rho(x, y, z)
$$

- The fields become:

$$
\vec{E}=-\nabla U(x, y, z)
$$

- Example Gaussian distribution:

$$
\rho(x, y, z)=\frac{N e}{\sigma_{x} \sigma_{y} \sigma_{z} \sqrt{2 \pi}^{3}} \exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}-\frac{z^{2}}{2 \sigma_{z}^{2}}\right)
$$

## Simple example: Gaussian

- For 2D case the potential becomes (see proceedings):

$$
U\left(x, y, \sigma_{x}, \sigma_{y}\right)=\frac{n e}{4 \pi \epsilon_{0}} \int_{0}^{\infty} \frac{\exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}+q}-\frac{y^{2}}{2 \sigma_{y}^{2}+q}\right)}{\sqrt{\left(2 \sigma_{x}^{2}+q\right)\left(2 \sigma_{y}^{2}+q\right)}} d q
$$

- Can derive $\vec{E}$ and $\vec{B}$ fields and therefore forces
- For arbitrary distribution (non-Gaussian): difficult (or impossible, numerical solution required)


## Simple example: Gaussian

- Round beams: $\sigma_{x}=\sigma_{y}=\sigma$
- Only components $E_{r}$ and $B_{\Phi}$ are non-zero
$\rightarrow$ Force has only radial component, i.e. depends only on distance $r$ from bunch centre (where: $\quad r^{2}=x^{2}+y^{2}$ ) (see proceedings)

$$
F_{r}(r)=-\frac{n e^{2}\left(1+\beta^{2}\right)}{2 \pi \epsilon_{0} \cdot r}\left[1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)\right]
$$

## Beam-beam kick:

$\rightarrow$ Kick $\left(\Delta r^{\prime}\right)$ : angle by which the particle is deflected during the passage
$\rightarrow$ Derived from force by integration over the collision (assume: $\mathbf{m}_{1}=\mathbf{m}_{2}$ and $\beta_{1}=\beta_{2}$ ):

$$
\begin{gathered}
F_{r}(r, s, t)=-\frac{N e^{2}\left(1+\beta^{2}\right)}{\sqrt{(2 \pi)^{3}} \epsilon_{0} r \sigma_{s}}\left[1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)\right] \cdot\left[\exp \left(-\frac{(s+v t)^{2}}{2 \sigma_{s}^{2}}\right)\right] \\
\text { with Newton's law : } \quad \Delta r^{\prime}=\frac{1}{m c \beta \gamma} \int_{\infty}^{\infty} F_{r}(r, s, t) d t
\end{gathered}
$$

## Beam-beam kick:

$\rightarrow$ Using the classical particle radius:

$$
r_{0}=e^{2} / 4 \pi \epsilon_{0} m c^{2}
$$

we have (radial kick and in Cartesian coordinates):

$$
\begin{aligned}
& \Delta r^{\prime}=-\frac{2 N r_{0}}{\gamma} \cdot \frac{r}{r^{2}} \cdot\left[1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)\right] \\
& \Delta x^{\prime}=-\frac{2 N r_{0}}{\gamma} \cdot \frac{x}{r^{2}} \cdot\left[1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)\right] \\
& \Delta y^{\prime}=-\frac{2 N r_{0}}{\gamma} \cdot \frac{y}{r^{2}} \cdot\left[1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)\right]
\end{aligned}
$$

## Beam-beam force

beam-beam force, round beams



## Can we measure the beam-beam strength?

- Try the slope of force at zero amplitude $\rightarrow$ proportional to (linear) tune shift $\Delta \mathrm{Q}_{b b}$ from beam-beam interaction
- This defines: beam-beam parameter $\xi$
- For head-on interactions we get:

$$
\xi_{x, y}=\frac{N \cdot r_{0} \cdot \beta_{x, y}}{2 \pi \gamma \sigma_{x, y}\left(\sigma_{x}+\sigma_{y}\right)}
$$

- BUT: does not describe non-linear part of beam-beam force (so far: only an additional quadrupole !)


## Tune measurement: linear optics



Linear force:
all particles have same tune

Only one frequency (tune) visible

## Tune: linear optics with beam-beam



## Amplitude detuning



Non-linear force: $\quad \longrightarrow$
tune depends on amplitude

Largest effect for small amplitudes

Calculation in the proceedings

```
Working point - two dimensions
```



## Start with standard working point

```
- Beam-beam will change working point
```



## Non-linear tune shift - two dimensions



Tunes depend on $x$ and $y$ amplitudes
. No single tune in the beam

- Compute and plot for every amplitude (pair) the tunes in both planes
- In 2 dimensions:
plotted as footprint


## LEP - LHC

|  | LEP | LHC |
| :--- | :---: | :---: |
| Beam sizes | $160-200 \mu \mathrm{~m} \cdot 2-4 \mu \mathrm{~m}$ | $16.6 \mu \mathrm{~m} \cdot 16.6 \mu \mathrm{~m}$ |
| Intensity N | $4.0 \cdot 10^{11} / \mathrm{bunch}$ | $1.15 \cdot 10^{11} / \mathrm{bunch}$ |
| Energy | 100 GeV | 7000 GeV |
| $\beta_{x}^{*} \cdot \beta_{y}^{*}$ | $1.25 \mathrm{~m} \cdot 0.05 \mathrm{~m}$ | $0.55 \mathrm{~m} \cdot 0.55 \mathrm{~m}$ |
| Crossing angle | 0.0 | $285 \mu \mathrm{rad}$ |
| Beam-beam <br> parameter $(\xi)$ | 0.0700 | 0.0034 |

## Weak-strong and strong-strong

- Both beams are very strong (strong-strong):
$\rightarrow$ Both beam are affected and change due to beam-beam interaction
$\rightarrow$ Examples: LHC, LEP, RHIC, ...
- One beam much stronger (weak-strong):
$\rightarrow$ Only the weak beam is affected and changed due to beam-beam interaction
$\rightarrow$ Examples: SPS collider, Tevatron, ...


## Incoherent effects

(single particle effects)

- Single particle dynamics: treat as a particle through a static electromagnetic lens
- Basically non-linear dynamics
- All single particle effects observed:
$\rightarrow$ Unstable and/or irregular motion
$\rightarrow$ beam blow up or bad lifetime


## Observations hadrons

- Non-linear motion can become chaotic
$\rightarrow$ reduction of "dynamic aperture"
$\rightarrow$ particle loss and bad lifetime
- Strong effects in the presence of noise or ripple
- Very bad: unequal beam sizes (studied at SPS, HERA)
- Evaluation is done by simulation


## Observations leptons

Remember:

$$
\Longrightarrow \quad \mathcal{L}=\frac{N_{1} N_{2} f B}{4 \pi \sigma_{x} \sigma_{y}}
$$

- Luminosity should increase $\propto N_{1} N_{2}$
$\rightarrow$ for: $N_{1}=N_{2}=N \quad \rightarrow \quad \propto N^{2}$
- Beam-beam parameter should increase $\propto N$
- But:


## Examples: beam-beam limit



## Beam-beam limit (schematic)



## What is happening ?

we have

$$
\begin{aligned}
& \xi_{y}=\frac{N r_{0} \beta_{y}}{2 \pi \gamma \sigma_{y}\left(\sigma_{x}+\sigma_{y}\right)}\left(\sigma_{x} \stackrel{\otimes}{\approx} \sigma_{y}\right) \frac{r_{0} \beta_{y}}{2 \pi \gamma\left(\sigma_{x}\right)} \cdot \frac{N}{\sigma_{y}} \\
& \text { and } \quad \mathcal{L}=\frac{N^{2} f B}{4 \pi \sigma_{x} \sigma_{y}}=\frac{N f B}{4 \pi \sigma_{x}} \cdot \frac{N}{\sigma_{y}}
\end{aligned}
$$

- Above beam-beam limit: $\sigma_{y}$ increases when $N$ increases to keep $\xi$ constant $\rightarrow$ equilibrium emittance !
© Therefore: $\mathcal{L} \propto N$ and $\xi \approx$ constant
- $\xi_{l i m i t}$ is NOT a universal constant !
- Difficult to predict


## The next problem

Remember:

$$
\Longrightarrow \quad \mathcal{L}=\frac{N_{1} N_{2} f \cdot B}{4 \pi \sigma_{x} \sigma_{y}}
$$

- How to collide many bunches (for high $\mathcal{L}$ ) ??
- Must avoid unwanted collisions !!
- Separation of the beams:
$\rightarrow$ Pretzel scheme (SPS,LEP,Tevatron)
$\Rightarrow$ Bunch trains (LEP,PEP)
$\rightarrow$ Crossing angle (LHC)


## Separation: SPS

- $\Rightarrow$ Few equidistant bunches
(6 against 6)
- Beams travel in same beam pipe (12 collision points !)
- Two experimental areas
- Need global separation
- Horizontal pretzel around most of the circumference


## Separation: SPS



## Separation: LHC

$\bullet \Rightarrow$ Many equidistant bunches

- Two beams in separate beam pipes except:
- Four experimental areas
- Need local separation
- Two horizontal and two vertical crossing angles


## Layout of LHC



## Crossing angles (example LHC)



- Still some parasitic interactions
- Particles experience distant (weak) forces
$\rightarrow$ We get so-called long range interactions


## Example: LHC

- Two beams, 2808 bunches each, every 25 ns
- In common chamber around experiments

- Around each IP: 30 long range interactions
- Separation typically 6-12 $\sigma$


## What is special about them?

- Break symmetry between planes, also odd resonances
- Mostly affect particles at large amplitudes
- Tune shift has opposite sign in plane of separation
- Cause effects on closed orbit
- PACMAN effects


## Opposite tuneshift ???



Local slope of force has opposite sign for large separation
$>$ Opposite sign for focusing
$>$ Used for partial compensation

## Long range interactions (LHC)


$\rightarrow$ For horizontal separation $d$ :

$$
\begin{aligned}
\Delta x^{\prime}(x+d, y, r)=-\frac{2 N r_{0}}{\gamma} \cdot \frac{(x+d)}{r^{2}} & {\left[1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)\right] } \\
& \left(\text { with: } \quad r^{2}=(x+d)^{2}+y^{2}\right)
\end{aligned}
$$

## Long range interactions (LHC)



- Number of long range interactions depends on spacing and length of common part
- In LHC 15 collisions on each side, 120 in total !
- Effects depend on separation: $\Delta \mathrm{Q} \propto-\frac{N}{d^{2}}$ (for large enough d !) footprints ??


## Footprints



- Large fo largest amplitudes where non-linearities are strong
- Size proportional to $\frac{1}{d^{2}}$
- Must expect problems at small separation
- Footprint very asymmetric


## Particle losses

- Small crossing angle $\Longleftrightarrow$ small separation
- Small separation: particles become unstable and get lost

- Minimum crossing angle for LHC: $285 \mu \mathrm{rad}$


## Closed orbit effects

$$
\Delta x^{\prime}(x+d, y, r)=-\frac{2 N r_{0}}{\gamma} \cdot \frac{(x+d)}{r^{2}}\left[1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)\right]
$$

For well separated beams ( $d \gg \sigma$ ) the force (kick) has an amplitude independent contribution: $\rightarrow$ orbit kick

$$
\Delta x^{\prime}=\underbrace{\frac{\text { const. }}{d} \cdot[1}-\frac{x}{d}+O\left(\frac{x^{2}}{d^{2}}\right)+\ldots
$$

## Closed orbit effects

$\rightarrow$ Beam-beam kick from long range interactions changes the orbit

- Has been observed in LEP with bunch trains
- Self-consistent calculation necessary
- Effects can add up and become important
$\rightarrow$ Orbit can be corrected, but:

- LHC bunch filling not continuous: holes for injection, extraction, dump ..
- 2808 of $\mathbf{3 5 6 4}$ possible bunches $\rightarrow \mathbf{1 7 5 6}$ "holes"
© "Holes" meet "holes" at the interaction point
- But not always ...


## Effect of holes

- A bunch can meet a hole (at beginning and end of bunch train)
- Results in left-right asymmetry
- Example LHC: between 120 (max) and 40 (min) long range collisions for different bunches


## PACMAN bunches

© When a bunch meets a "hole":
$\rightarrow$ Miss some long range interactions, PACMAN bunches
$\rightarrow$ They see fewer unwanted interactions in total
$\rightarrow$ Different integrated beam-beam effect

- Example: orbit and tune effects


## Orbit along batches: beam 1

Orbit along bunches


## Orbit along batches: beam 1 and beam 2

## Orbit along bunches



## Tune along batches

Tune along bunches


- Spread is too large for safe operation


## Beam-beam deflection scan

- The orbit effect can be useful when one has only a few bunches, i.e. not PACMAN effects
- Effect can be used to optimize luminosity
- Scanning two beams against each other
- Two beams get a orbit kick, depending on distance


## Deflection scan (LEP measurement)



## Deflection scan

- Calculated kick from orbit follows the force function
- Allows to calculate parameters
- Allows to centre the beam
- Standard procedure at LEP


## Coherent beam-beam effect



- Whole bunch sees a kick as an entity (coherent kick)
- The coherent kick of separated beams can excite coherent dipole oscillations
- All bunches couple together because each bunch "sees" many opposing bunches: many coherent modes possible !


## Coherent beam-beam effect

Simplest case: one bunch per beam:


- Coherent mode: two bunches are "locked" in a coherent oscillation
- 0-mode is stable (Mode with NO tune shift)
- $\pi$-mode can become unstable (Mode with LARGEST tune shift)


## Coherent beam-beam frequencies (schematic)


$\rightarrow$ Strong-strong case: $\pi$-mode shifted outside tune spread
$\rightarrow$ No Landau damping possible


- Two modes clearly visible
- Can be distinguished by phase relation, i.e. sum and difference signals


## Measurement: RHIC


$\rightarrow$ Compare spectra with and without beams : two modes visible with beams

## Simulation of coherent spectra



- Full simulation of both beams required

Use up to $10^{8}$ particles in simulations
Must take into account changing fields
Requires computation of arbitrary fields

## Many bunches and more interaction points



- Bunches couple via the beam-beam interaction
- Additional coherent modes become visible
- Potentially undesirable situation

```
What can be done to avoid problems ?
```

- Coherent motion requires 'organized' motion of many particles
- Therefore high degree of symmetry required
- Possible countermeasure: (symmetry breaking)
$\rightarrow$ Different bunch intensity
$\rightarrow$ Different tunes in the two beams


## Beams with different intensity



$\rightarrow$ Bunches with different intensities cannot maintain coherent motion

## Beams with different tunes


$\rightarrow$ Bunches with different tunes cannot maintain coherent motion

## Can we suppress beam-beam effects ?

- Find 'lenses' to correct beam-beam effects
- Head on effects:
$\rightarrow$ Linear "electron lens" to shift tunes
$\rightarrow$ Non-linear "electron lens" to reduce spread
$\rightarrow$ Tests in progress at FNAL
- Long range effects:
$\rightarrow$ At very large distance: force is $1 / r$
$\rightarrow$ Same force as a wire!
- So far: mixed success with active compensation


## Others: Möbius lattice

- Principle:
$\rightarrow$ Interchange horizontal and vertical plane each turn
- Effects:
$\rightarrow$ Round beams (even for leptons)
$\rightarrow$ Some compensation effects for beam-beam interaction
$\rightarrow$ First test at CESR at Cornell


## Not mentioned:

- Effects in linear colliders
- Asymmetric beams
- Coasting beams
- Beamstrahlung
- Synchrobetatron coupling
- Monochromatization
- Beam-beam experiments
- ... and many more


## Bibliography

Some bibliography in the hand-out

## Beam-beam lectures:

A. Chao, The beam-beam instability, $S L A C-P U B-3179$ (1983).
L. Evans, The beam-beam interaction, CAS Course on proton-antiproton colliders, in CERN 84-15 (1984).
L. Evans and J. Gareyte, Beam-beam effects, CERN Accelerator School, Oxford 1985, in: CERN 87-03 (1987).
A. Zholents, Beam-beam effects in electron-positron storage rings, Joint US-CERN School on Particle Accelerators, in Springer, Lecture Notes in Physics, 400 (1992).

## Beam-beam force:

E. Keil, Beam-beam dynamics, CERN Accelerator School, Rhodes 1993, in: CERN 95-06 (1995).
M. Basetti and G.A. Erskine, Closed expression for the electrical field of a 2-dimensional Gaussian charge, CERN-ISR-TH/80-06 (1980).

## PACMAN bunches:

W. Herr, Effects of PACMAN bunches in the LHC, CERN LHC Project Report 39 (1996).

## Coherent beam-beam effects:

A. Piwinski, Observation of beam-beam effects in PETRA, IEEE Trans. Nucl. Sc., Vol.NS-26 4268 (1979).
K. Yokoya et al., Tune shift of coherent beam-beam oscillations, Part. Acc. 27, 181 (1990).
Y. Alexahin, On the Landau damping and decoherence of transverse dipole oscillations in colliding beams, Part. Acc. 59, 43 (1996).
A. Chao, Coherent beam-beam effects, SSC Laboratory, SSCL-346 (1991).
Y. Alexahin, A study of the coherent beam-beam effect in the framework of the

Vlasov perturbation theory, Nucl. Inst. Meth. A 380, 253 (2002).
Y. Alexahin, H. Grote, W. Herr and M.P. Zorzano, Coherent beam-beam effects in the LHC, CERN LHC Project Report 466 (2001).

## Simulations (incoherent beam-beam):

W. Herr, Computational Methods for beam-beam interactions, incoherent effects, Lecture at CAS, Sevilla 2001, at http://cern.ch/lhc-beam-beam/talks/comp1.ps.

## Simulations (coherent beam-beam):

W. Herr, Computational Methods for beam-beam interactions, coherent effects, Lecture at CAS, Sevilla 2001, at http://cern.ch/lhc-beam-beam/talks/comp2.ps.
W. Herr, M.P. Zorzano, and F. Jones, A hybrid fast multipole method applied to beam-beam collisions in the strong-strong regime, Phys. Rev. ST Accel.
Beams 4, 054402 (2001).
W. Herr and R. Paparella, Landau damping of coherent modes by overlap with synchrotron sidebands, CERN LHC Project Note 304 (2002).

## Möbius accelerator:

R. Talman, A proposed Möbius accelerator, Phys. Rev. Lett. 74, 1590 (1995).

