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What is an Insertion Device ?

- Insertion Devices are also called Undulators and Wigglers
- Can be 1 to 20 m long, (typical 5 m ) with a small magnetic gap (5-15 mm)
- Intense Source of Synchrotron Radiation in e- Storage Ring Sources
- Control of damping times in Electron Colliders (LEP, CESR,…)
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Beam Dynamics



P. Elleaume, CAS, Trieste    October 2 - 14,  2005                                                      5/46

Electron Trajectory in an Insertion Device

:   ,    x z sAssume v v v c<< ≈

2

2

   
 :  ( , , )

  : ( , , )

  : ( , , )
1:  

1

x z s

x z s

Consider Ortogonal Frame Oxzs
Electron velocity v v v v

Electron position R x z s

Magnetic field B B B B

Define
v
c

γ

=

=

=

=

−

G
G
G

 

( ) x
s z z s

Lorentz Force
dvm ev B
dt

dvm e v B v B
dt

γ

γ

= ×

=> = − −

G GG

'

( ) ( ') '

( ) ( '') '' '

sx
z

s s

z

v s e B s ds
c mc

ex s B s ds ds
mc

γ

γ

−∞

−∞ −∞

= −

= −

∫

∫ ∫
and similar expression for ( ) and ( )zv s z s



P. Elleaume, CAS, Trieste    October 2 - 14,  2005                                                      6/46

Electron Trajectory in a Planar Sinusoidal Undulator
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Interference  with the beam dynamics in the ring lattice

• An Insertion Device is the first component of a photon beamline. Its field setting is fully 
controlled by the Users of the beamline . The  beam dynamics in the whole ring may be altered 
if the field of an ID is changed => crosstalk of the source parameters in each beamline must be 
avoided .

• As far as the lattices are concerned, Insertion devices should ideally behave like drift space but 
the reality is somewhat different  :

– Closed Orbit distortion (non zero field integrals generated by design and field errors) 
– Tune shift (induced by nominal field and by field errors)
– Reduction of dynamic aperture (=>Lifetime reduction & reduced injection efficiency ) induced by 

varying  focusing properties inside the aperture for the beam => critical for modern sources operating in 
topping-up mode. 

– Very high field IDs may change the damping time, emittance , energy spread …

• By combining field shimming and local steering corrections, most of the perturbations are able 
to be solved.

• The problem of the reduction of dynamic aperture is  severest on low energy rings with many 
insertion devices. 
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Radiation from IDs
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Critical Energy of Bending Magnet Radiation
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Electric Field and Spectrum vs K
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Wavelength of the Harmonics
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Undulator Emission by a Filament Electron Beam
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• Until now a Filament mono-energetic electron 
beam has been assumed.

• What happens if the beam presents a finite 
emittance (size and divergence) and finite 
energy spread ?
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Broadening of the Harmonics by the Electron Emittance
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Broadening of the Harmonics by Electron Energy Spread
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• To Make Optimum use of the Undulators, 
The magnet Lattices of synchrotron light 
sources are optimized to produce the 
smallest emittance and smallest energy 
spread of the electron beam possible. 
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Maximum Spectral Flux On-axis on odd harmonics
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Brilliance ( or Brightness)
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Brilliance vs Photon Energy
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Technology
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Technology of  Undulators and Wigglers

• The fundamental issue in the magnetic design of a planar undulator or wiggler is to 
produce a periodic field with a high peak field B and the shortest period λ0 within a 
given aperture (gap). 

• Three type of technologies can be used :
– Permanent magnets ( NdFeB , Sm2Co17 )
– Room temperature electromagnets 
– Superconducting electromagnets

Gap

Period
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Current Equivalent of a Magnetized Material
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Periodic Array of Magnets
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~ 95 % of Insertion Devices are made of Permanent Magnets !!
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Permanent Magnet Undulator
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Support Structure
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• For a permanent magnet undulator , shrinking all dimensions maintains the 
field unchanged. The  peak field   Bp ~ Br F(gap/period)

• Benefits of  using small gaps Insertion Devices :
– Decrease the volume of material (cost driving)  ~ gap3 

– The lower the gap, the higher the energy of the harmonics of the undulator 
emission => the lower the electron energy required to reach the same photon 
energy

• The most advanced undulators  have magnet blocks in the vacuum with an 
operating magnetic gap of 4-6 mm

Undulators are Fundamentally Small Gap Devices
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In Vacuum Permanent Magnet Undulators
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Application : Build a pure permanent magnet
undulator with NdFeB Magnets (Br = 1.2 T)
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Electro-Magnet Undulator

Current Densities < 5-20  A/mm2

Lower field
than permanent magnet
For small period / gap
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Superconducting Wigglers

- High field : up to 10 T => Shift the spectrum to higher energies
- Complicated engineering & High costs
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Magnetic Field Errors in  Permanent Magnet Insertion Devices : 

• Field errors originate from :
– Non uniform magnetization of the magnet blocks (poles).
– Dimensional and Positional errors of the poles and magnet blocks. 
– Interaction with environmental magnetic field (iron frame, earth field,…)

• Important  to use  highly uniform magnetized blocks
– perform a systematic characterization of the magnetization  
– Perform a pairing of the blocks to cancel errors
– Still insufficient …

• Two main type of field errors remain
– Multipole Field  Errors (Normal and skew dipole, quadrupole, sextupole,…). 
– Phase errors which reduce the emission on the high harmonic numbers 
– Further corrections :

• Active steerers
• Shimming
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Shimming

• Mechanical Shimming : 
– Moving permanent magnet or iron pole vertically or horizontally
– Best when free space and mechanical fixation make it possible.

• Magnetic Shimming : 
– Add thin iron piece at the surface of the blocks
– Reduce minimum gap and reduce the peak field
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Magnetic shims

Phase Shim

Phase Shim
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Field Integral and Multipole Shimming

Horizontal Deflection
Quadrupole
Sextupole …

Vertical Deflection
Skew Quadrupole
Skew sextupole …

Gap/2 [mm]
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Phase Shimming and the single electron spectrum
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• I hope that this short introduction has incited your curiosity in 
the broad and exciting field that is Insertion Devices. 
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