# Imperfections & corrections

Richt.





November, 2016. Thessaloniki R. Tomás

#### Contents

- Introduction to accelerator optics and imperfections
- ★ Measurement algorithms
  - Free and forced oscillations
  - Singular Value Decomposition
  - Data cleaning: denoising and removal of outlayers
  - Spectral analysis
  - $\beta$  from phase /  $\beta$  from amplitude
- ★ Correction algorithms
  - Orthogonal knobs
  - Local: segment-by-segment
  - Best N corrector problem: MICADO and friends
  - Response matrix approach

#### Code examples

2

#### Code examples require the following. Install Python ( ( Ubuntu has it by default) Install plotting and numerical libraries:

```
python —m pip install — user numpy scipy matplotlib ipython jupyter pandas
sympy nose scikit—learn
```

Or download **O ANACONDA**. which is a very complete Python free distribution with scientific packages.

#### $\beta$ function in a triplet lattice



Ideal CERN Proton Synchrotron Booster lattice.

#### Quadrupole strength error & $\beta$ -beating



 $\beta$  functions change ( $\beta$ -beating= $\frac{\Delta\beta}{\beta} = \frac{\beta_{pert} - \beta_0}{\beta_0}$ ). Tunes change too ( $\Delta Q$ ).

## E.D. Courant and H.S. Snyder 1957

Theory of the Alternating-Gradient Synchrotron [1]:

$$\left(\frac{\Delta\beta}{\beta}\right)_{\rm max} = 4.0 \left(\frac{\Delta k}{k}\right)_{\rm rms}$$

"Thus if the variation in k from magnet to magnet were 1% (...) we would have a  $\beta$ -beating of 4%. Any particular machine (...) would be unlikely to be worse by more than factor of 2."

 $\rightarrow$  Expected  $\beta$ -beating below 8% for *any machine* 

## 120% in LHC, commissioning 2016



## The LHC Interaction Region (IR)



## $\approx$ **400%** in PEP-II, commissioning 2005



Even  $\Delta\beta/\beta \approx 700\%$  was reached when LER tune was pushed closer to the half integer

#### $\beta$ -beating versus time



## Dipole magnetic field



Lorentz force:

$$\vec{F} = q\vec{v} \times \vec{B}$$

## Dipole errors

- ★ An error in the strength of a main dipole causes a perturbation on the horizontal closed orbit.
- ★ A tilt error in a main dipole causes a perturbation on the vertical closed orbit.



## Orbit perturbation formula

From distributed angular kicks  $\theta_i$  the closed orbit results in:

$$CO(s) = rac{\sqrt{eta(s)}}{2\sin\pi Q} \sum_i \sqrt{eta_i} heta_i \cos(\pi Q - |\phi(s) - \phi_i|)$$

Attention to the denominator  $sin(\pi Q)$  that makes closed orbit to diverge at the integer resonance  $Q \in \mathbb{N}$ .

Another source of orbit errors is offset quadrupoles.

## Quadrupole field and force on the beam



Note that  $F_x = -kx$  and  $F_y = ky$  making horizontal dynamics totally decoupled from vertical.

## Offset quadrupole - Feed-down



An offset quadrupole is seen as a centered quadrupole plus a dipole. This is called feed-down.

#### Quadrupole strength error - Formulae

Tune change (single source):

$$\Delta Q_x \approx \frac{1}{4\pi} \overline{\beta_x} \Delta k_i L_i, \quad \Delta Q_y \approx -\frac{1}{4\pi} \overline{\beta_y} \Delta k_i L_i$$

 $\beta$ -beating from many sources:

$$rac{\Deltaeta}{eta}(s)pprox \pm \sum_i rac{\Delta k_i L_i \overline{eta_i}}{2\sin(2\pi Q)} \cos(2\pi Q - 2|\phi(s) - \phi_i|)$$

Attention to the denominator  $sin(2\pi Q)$  that makes  $\beta$ -beating diverge at the integer and half integer resonances,  $2Q \in \mathbb{N}$ .

#### Phase beating and higher orders

$$\Delta \phi(s_0,s) = \int_{s_0}^s rac{\mathrm{d} s'}{eta(s')} \left( rac{1}{1 + rac{\Delta eta}{eta}(s')} - 1 
ight)$$

For first and higher order expansions see [3, 4, 5].  $\beta$ -beating from RDT:

$$f_{2000} = rac{\sum \Delta k L \overline{eta_x} e^{2i\phi_x}}{1 - e^{4i\pi Q_x}} + \mathcal{O}(\Delta k^2)$$

$$rac{\Deltaeta}{eta}(s) = 2\sinh|f_{2000}|\Big(\sinh|f_{2000}| + \cosh|f_{2000}|\sin\phi_{2000}\Big)$$

## Average beta function in a quad $(\overline{\beta})$



quadrupole (k, L)

$$\overline{\beta} \approx \frac{1}{3} \left( \beta_1 + \beta_2 + \sqrt{\beta_1 \beta_2 - L^2} \right)$$

A. Hofmann and B. Zotter [6]. Exact  $\overline{\beta}$  depends also on the quadrupole strength k [7].

## Tilted quadrupole



A tilted quadrupole is seen as a normal quadrupole plus another quadrupole tilted by  $45^{\circ}$  ( this is called a skew quadrupole).

## Skew quadrupole $\rightarrow$ x-y Coupling



Note that  $F_x = k_s y$  and  $F_y = k_s x$  making horizontal and vertical dynamics to couple.

#### Transverse coupling in the 1-turn map

In the ideal uncoupled case:

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{f} = \begin{pmatrix} M_{11} & M_{12} & 0 & 0 \\ M_{21} & M_{22} & 0 & 0 \\ 0 & 0 & M_{33} & M_{34} \\ 0 & 0 & M_{43} & M_{44} \end{pmatrix} \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{i}$$

In presence of coupling:

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{f} = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{pmatrix} \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{i}$$

#### Motion with coupling

To first order in the coupling the transverse motion can be approximated as [8, 9]

$$\begin{aligned} x(N,s) &\approx \sqrt{\beta_x(s)} \Re \left\{ \sqrt{\epsilon_x} e^{i(2\pi Q_x N + \phi_x(s) + \phi_{x0})} \\ &- 2if_{1010} \sqrt{\epsilon_y} e^{-i(2\pi Q_y N + \phi_y(s) + \phi_{y0})} \\ &- 2if_{1001} \sqrt{\epsilon_y} e^{i(2\pi Q_y N + \phi_y(s) + \phi_{y0})} \right\} \\ f_{\frac{1010}{1001}} &= \frac{\oint_s^{s+C} ds' k_s \sqrt{\beta_x \beta_y} e^{i(\phi_x \pm \phi_y)}}{4(1 - e^{2\pi i(Q_x \pm Q_y)})} \end{aligned}$$

 $f_{1001}$  drives the difference resonance  $Q_x - Q_y = N$ and  $f_{1010}$  the sum resonance  $Q_x + Q_y = N$ 

## Bothering effects of coupling

## **Lepton machines:** increases the vertical equilibrium emittance.

Hadron machines: makes it impossible to approach tunes below  $\Delta Q_{\min}$ 



## Example of mode veering

Simply supported plate with an attached oscillator:



http://past.isma-

isaac.be/downloads/isma2012/papers/isma2012\_0137.pdf

## $\Delta Q_{\min}$ formula

$$\Delta Q_{\min} = \left| \frac{1}{2\pi} \sum_{j} k_{s,j} L_j \sqrt{\beta_x \beta_y} e^{-i(\phi_x - \phi_y) + is(\hat{Q}_x - \hat{Q}_y)/R} \right|$$

$$\begin{array}{lll} \Delta Q_{\min} & = & \left| \frac{4(\hat{Q}_x - \hat{Q}_y)}{2\pi R} \oint \mathrm{d} s f_{1001} \mathrm{e}^{-i(\phi_x - \phi_y) + is(\hat{Q}_x - \hat{Q}_y)/R} \right| \\ & \lesssim & 4 |\hat{Q}_x - \hat{Q}_y| \overline{|f_{1001}|} \end{array}$$

 $f_{1001}$  defines phase space and the stopband. See [10, 11, 12] for further details.

#### $\Delta Q_{\min}$ limits the resonance-free space

LHC beam-beam tune footprint and a hypothetical large coupling:



#### Coupling control versus time



#### Sextupole field and force



$$F_x = rac{1}{2}K_2(x^2 - y^2) \;, \;\; F_y = -K_2 x y$$

Sextupoles are needed to compensate chromaticity:  $Q'=dQ/d\delta$ , with  $\delta=(p-p_0)/p_0$ 

### Offset sextupole



A sextupole horizontally (vertically) displaced is seen as a centered sextupole plus an offset quadrupole (skew quadrupole). Offset sextupoles are also sources of quadrupole and skew quadrupole errors.

## Longitudinal misalignments



Longitudinal misalignments can be seen as perturbations at both ends of the magnet with opposite signs. Tolerances are generally larger for longitudinal misalignments.

#### Phase-space turn-by-turn motion

$$\begin{array}{lll} x(N) &=& \sqrt{\epsilon\beta}\cos(2\pi QN) \\ x'(N) &=& -\alpha\sqrt{\epsilon/\beta}\cos(2\pi QN) + \sqrt{\epsilon/\beta}\sin(2\pi QN) \\ & \text{or equivalently} \\ \begin{pmatrix} x(N) \\ x'(N) \end{pmatrix} &=& \sqrt{\epsilon}\begin{pmatrix} \sqrt{\beta} & 0 \\ -\alpha/\sqrt{\beta} & 1/\sqrt{\beta} \end{pmatrix} \begin{pmatrix} \cos(2\pi QN) \\ \sin(2\pi QN) \end{pmatrix} \end{array}$$





#### Phase-space ellipse



#### Ellipse eccentricity vs. $\alpha$ and $\beta$



## $\alpha, \beta, \epsilon \text{ from turn-by-turn data & SVD}$ SVD of x, x' turn-by-turn data: $\begin{pmatrix} x(1) & x(2) & x(3) & \dots & x(n) \\ x'(1) & x'(2) & x'(3) & \dots & x'(n) \end{pmatrix}_{2 \times n} = U_{2 \times 2} S_{2 \times 2} V_{2 \times n}^{T}$

*U* and *V* are unitary, S is diagonal.  $V_{2\times n}$  is turn-by-turn motion in a circle (like normal form) in an arbitrary phase origin. There must be a rotation  $R(\theta)$ ,  $USV^T = USRR^{-1}V^T$ , that brings  $R^{-1}V^T$  to the Floquet Normal Form:

$$rac{1}{\sqrt{\mathsf{det}(S)}} \textit{USR}( heta) = egin{pmatrix} \sqrt{eta} & 0 \ -lpha/\sqrt{eta} & 1/\sqrt{eta} \end{pmatrix}$$

 $\theta$  is determined to make zero the element (1,2).

## Looking at x, x', V and $\epsilon$



## $\alpha, \ \beta, \ \epsilon$ from turn-by-turn data – code

```
import numpy as np
2
3
   def getbeta(x,px):
4
       U, s, V = np.linalg.svd([x, px]) # SVD
       N = np.dot(U, np.diag(s))
5
6
       theta = np.arctan(-N[0,1]/N[0,0])
                                             # Angle of rotation of matrix
7
       c = np.cos(theta); s = np.sin(theta)
8
       R = [ [c, s] , [-s, c] ]
9
       X = np.dot(N,R)
                                             # Floquet up to 1/det(USR)
10
       betx = np.abs(X[0,0]/X[1,1])
       alfx = X[1,0]/X[1,1]
12
       ex=s[0] * s[1] / (len(x) / 2.)
                                       \# \text{ emit} = \det(S)/(n/2)
13
       return betx, alfx. ex
14
15
  alpha = 0.2
16 beta = 1.
   ex = 2e - 3
17
18 Q = 0.31
19 Nturns = 600
20 x = np.sqrt(beta*ex)*np.cos(2*np.pi*Q*np.arange(0,Nturns)) #easy tracking
21 px = -alpha*x/beta + np.sqrt(ex/beta)*np.sin(2*np.pi*Q*np.arange(0,Nturns))
22 betx, alfx, exc = getbeta(x, px)
```

 $1^{\rm st}$  version of the code: P. Gonçalves Jorge and X. Buffat, CERN-THESIS-2016-317.
### How to compute $\beta$ from beam data?

- ★ Beam Position Monitors (BPMs) measure transverse beam centroid position turn-by-turn
- Excited betatron motion is required either via a single kick or via a resonant excitation

$$x(N, s) = \sqrt{\beta_x(s)\epsilon_x} \cos(2\pi Q_x N + \phi_x(s)) + CO(s)$$
  
 $\beta$  and  $\phi$  are related by:

$$\phi_{0 \rightarrow 1} = \phi(s_1) - \phi(s_0) = \int_{s_0}^{s_1} \frac{\mathrm{d}s}{\beta(s)}$$

so  $\beta$  and  $\phi$  carry the same information,  $\phi$  being a BPM calibration independent observable.

### Turn-by-turn data from single kick



















### Forced oscillations with AC dipole

- ★ An AC dipole forces betatron oscillations
- ★ If addiabatically ramped up & down causes no emittance blow up (contrary to kick)
- ★ Can be used as many times as needed with the same beam



### Simulate your own AC dipole

```
1 from numpy import *
 2 import matplotlib.pyplot as plt
 4 Q = 0.31  # Machine tune (fractional part)
5 Qac = Q + 0.02  # AC dipole tune
 6 \, q = 2 * pi * Q
7 R = array([[cos(q), -sin(q)], [sin(q), cos(q)]]) #1 turn map
 8 x = [[0.,0.]] # initial x, px
9 Nramp = 1000  # Number of turns to ramp up AC dipole strength
10 Nturn = 2048  # Number of turns to track
11
12
   def ramp(i): # define the linear ramp
      return min(1, j*1.0/Nramp)
14
15 for i in range(Nturn): # tracking loop R \times + cos(QacN)
            x.append(dot(R,x[-1]) + ramp(i)*array([0, 0.1*cos(Qac*i*2*pi)]))
16
17
18 F = np.fft.fft(array(x)[Nramp:].T[0]) # FFT data after AC ramp
```



## FFT after AC ramp (adiabaticity check)



Seeing Q in the particle motion means that the AC dipole transferred energy to the particle, so AC dipole ramp was not adiabatic.

### ...and check phase space (free Vs AC dip)



What is happening?

### Forced oscillation $\neq$ Free oscillation

- $\star$   $\beta$  functions differ as if there was a quadrupole at the location of the AC dipole [3]
- ★ Non-linear dynamics also deviate from free motion [18, 19],
- ★ including Dynamic Aperture [20].
- ★ Free optics have to be reconstructed from measurements with forced oscillations.

### Denoising via SVD

$$R = U \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{pmatrix} V^T$$

Imagine  $\sigma_3 \ll \sigma_2 \leq \sigma_1$ , then just neglect  $\sigma_3$  and reconstruct R:

$$R_{denoised} = U \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} V^T$$

### SLC: Cleaning with SVD, 1999



 $B_{t-b-t} = USV^T$ bpm matrix

Bad BPMs easily identified as uncorrelated signals.

Noise removed by cutting low singular values

J. Irwin et al., Phys. Rev. Letters 82, 8

## Good and bad BPM signals (SPS)



BPM issues required bad BPM detection techniques. The **RMS** in a FFT window is a good indicator.

### Denoising data with SVD

```
1 import matplotlib.pyplot as plt
 2 from scipy import misc, ndimage
   import numpy as np
   from numpy, linalg import syd
 4
 5
 6 #Generating ideal (fake) Beam Position data
 7 \text{ im} = \text{np.zeros}((500, 500))
 8
   for i in range(500):
 9
       for j in range(500):
10
          im[i, j] = np.cos(i*0.0137*2*np.pi) *(np.cos(0.00678*j*2*np.pi)**2+1)
12 #Adding noise like measurement error
13 im = im + 0.2 * np.random.randn(*im.shape)
14
15 #Denoising with Singular Value Decomposition
16 k=2
17 U.s.V=svd(im, full_matrices=False)
18 rim = np.dot(U[:,:k], np.dot(np.diag(s[:k]),V[:k,:]))
```

# Ideal (fake) BPM Data



### Adding noise to BPM data



### Denoised data with SVD – Magic!



### Outlayer detection: Isolation forest (IF)

Principle: By applying random divisions to a data set, outlayers are identified by needing fewer divisions for isolation than core data.



### Outlayer detection: Isolation forest

```
1 import numpy as np
2 from sklearn.ensemble import IsolationForest
3
4
  N_TURNS = 500
5 \text{ N-BPMS} = 500
6 \ \# generate bpm data with some bad signal - different tune, additional noise
   bad_bpms_idx = [1, 10, 20, 30, 40]
7
8 im = np.zeros((N_TURNS, N_BPMS))
9
  for bpm in range(N_BPMS):
10
       err = 0.05 * np.random.randn()
11
       amp=(np.cos(0.00678 * bpm * 2 * np.pi) * * 2 + 1) # sqrt(beta e)
12
       for turn in range(N_TURNS):
13
           if bom in bad_boms_idx: # A bad BPM has different tune and more noise
             im[turn.bpm] = amp*np.cos(turn*(0.32+err)*2*np.pi)+0.3*np.random.randn()
14
15
           else:
                              # Good BPM
16
             im[turn, bpm] = amp*np.cos(turn*(0.32+err/10)*2*np.pi) + 0.1*np.random.
        randn()
18 \# extract frequency and amplitude – features – from bpm signal
   amplitudes = [np, max(x) for x in np, abs(np, fft, rfft(im, T))/N_TURNS]
19
   frequencies = np.array([np.argmax(x) for x in np.abs(np.fft.rfft(im.T))]) *1.0/
20
        N TURNS
   features = np.vstack((frequencies, amplitudes)).T
22
23 # fit Isolation Forest model to the data and detect anomalies (contamination is
        the fraction of anomalies)
24 iforest = IsolationForest(n_estimators=10, contamination=0.01)
25 outlier_detection = iforest.fit(features).predict(features) # Bad BPMs ==-1
```

#### Isolation forest illustration



Bad BPMs are discarded and noise is reduced.

$$x(N,s) = \sqrt{\beta_x(s)\epsilon} \cos(2\pi Q_x N + \phi_x(s)) + CO(s)$$

In absence of decoherence FFT on x(N,s) should give us a frequency  $Q_x$  with amplitude  $\sqrt{\beta_x(s)\epsilon}$  and phase  $\phi_x(s)$ , but how accurate?

### 3-point frequency interpolation



IEEE Signal processing letters 18, No. 6, JUNE 2011 351

### 3-point frequency interpolation

| Parabolic Interpolation [1]   | $\widehat{\delta} = ( R_{k+1}  -  R_{k-1} )/(4 R_k  - 2 R_{k-1}  - 2 R_{k+1} )$                                      |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Quinn, [4]                    | $\alpha_1 = \operatorname{Real}(R_{k-1}/R_k),  \alpha_2 = \operatorname{Real}(R_{k+1}/R_k)$                          |
| 1995                          | $\delta_1 = \alpha_1 / (1 - \alpha_1),  \delta_2 = \alpha_2 / (1 - \alpha_2)$                                        |
|                               | if $\delta_1 > 0$ and $\delta_2 > 0$ , $\delta = \delta_2$                                                           |
|                               | else $\widehat{\delta} = \delta_1$                                                                                   |
| MacLeod, [3]                  | $d = \operatorname{Real}(R_{k-1}R_k^* - R_{k+1}R_k^*) / \operatorname{Real}(2 R_k ^2 + R_{k-1}R_k^* + R_{k+1}R_k^*)$ |
|                               | $\widehat{\delta} = (\sqrt{1+8d^2} - 1)/(4d)$                                                                        |
| Jacobsen, [7]                 | $\widehat{\delta} = \text{Real}\{(R_{k-1} - R_{k+1})/(2R_k - R_{k-1} - R_{k+1})\}$                                   |
| Jacobsen with Bias Correction | $\widehat{\delta} = \frac{\tan(\pi/N)}{\pi/N} \operatorname{Real}\{(R_{k-1} - R_{k+1})/(2R_k - R_{k-1} - R_{k+1})\}$ |

IEEE Signal processing letters 18, No. 6, JUNE 2011 351

E. Asseo, CERN PS/85-3(1985):  $|R_{k+1}|/(|R_k| + |R_{k+1}|)$ CERN-SL-96-048:  $\frac{1}{\pi} \tan\{|R_{k+1}|\sin(\pi/N)/(|R_k| + |R_{k+1}|\cos(\pi/N)\}$ 

### NAFF

- ★ Instead of interpolating, find Q that maximizes  $|\sum x(N)e^{i2\pi QN}|$
- ★ then **iterate** by subtracing the found frequency component from x(n)

Some codes to do this:

- NAFF: Icarus 88, Issue 2, 1990. https://pypi.org/project/PyNAFF/
- ★ Sussix: CERN SL/Note 98-017, 1998
- ★ Harpy: IPAC2018-THPAF045 (with Jacobsen interpolation instead of maximization to speed-up), see next slide

# Harpy

```
1 import numpy as np
 2 P[2] = 2 * np. pi * complex(0, 1)
 3
 4
   def harpy(samples, num_harmonics);
 5
       n = len(samples)
 6
       int_range = np.arange(n)
 7
       coefficients = []
 8
       frequencies = []
 9
       for _ in range(num_harmonics):
10
           frequency = -jacobsen(np.fft.fft(samples), n) # Find dominant freq.
           exponents = np.exp(-P121 * frequency * np.arange(n))
12
           coef = np.sum(exponents*samples)/n # compute amplitude and phase
13
           coefficients.append( coef )
           frequencies.append(frequency)
14
15
           new_signal = coef * np.exp(Pl2l * frequency * int_range)
16
           samples = samples - new_signal # Remove dominant freq.
17
       coefficients, frequencies = zip(*sorted(zip(coefficients, frequencies)),
18
           key=lambda tuple: np.abs(tuple[0]), reverse=True))
19
       return frequencies, coefficients
20
21
   def _jacobsen(dft, n): # Interpolate to find dominant freq.
22
       k = np.argmax(np.abs(dft))
23
       delta = np.tan(np.pi / n) / (np.pi / n)
24
       kp = (k + 1) \% n
25
       km = (k - 1) \% n
26
       delta = delta * np.real((dft[km]-dft[kp])/(2*dft[k] - dft[km] - dft[kp]))
27
       return (k + delta) / n
28
29 N=4096; i = 2 * np.pi * np.arange(N)
30 data = np. \cos(0.134 * i) + np. \cos(0.244 * i) + 0.01 * np. random. randn (4096)
31 freqs, coeffs = harpy(data, 300)
```

Jaime Coello

### Jacobsen interpolation & zero padding



Zero padding: just add zeros to original signal

```
data_zeropad=np.pad(data, (0, 9*N), 'constant')
f_zeropad=np.abs(np.fft.fft(data_zeropad)/(N))
```

2 3

### FFT Vs NAFF Vs Sussix with noise

#### N. Biancacci et al, PRAB 19, 054001 (2016):



FIG. 5. Uncertainty in the tune determination with NAFF, FFT and SUSSIX versus number of turns calculated up to  $N \simeq 10^4$  turns considering amplitude Gaussian noise of NSR = 5%. Dots are the simulated data, lines are the fits. SUSSIX and NAFF both implement a hanning window.

#### Phase advance measurement

The phase advance between 2 BPMs  $\phi_{ij} = \phi_j - \phi_i$ is a fundamental optics observable, it is model and BPM calibrationi independent.

Care with averaging many measurements is needed, a safe approach is the **circular mean**:

$$\overline{\alpha} = \operatorname{atan2}\left(\frac{1}{n}\sum_{i}^{n}\sin\alpha_{i}, \ \frac{1}{n}\sum_{i}^{n}\cos\alpha_{i}\right)$$

- 1 from scipy.stats import circmean
- 2 import numpy as np
- 3 circmean([0., 2\*np.pi])

output:  $2\pi$ 

### Ring average $\beta$ with random errors

The average  $\beta$  in presence of random errors is well behaved [14]:  $\left\langle \frac{\Delta\beta}{\beta} \right\rangle = \text{rms}^2 \left( \frac{\Delta\beta}{\beta} \right)$ 



random errors are defocusing!

### $\beta$ from amplitude

$$x(N,s) = \sqrt{\beta_x(s)\epsilon} \cos(2\pi Q_x N + \phi_x(s)) + CO(s)$$

- ★ Having enough BPMs around the ring allows to compute the average and rms of  $\beta \epsilon$  from the square of the FFT amplitude of the tune.
- $\star$   $\epsilon$  can be computed with

$$\epsilon \approx \frac{\left<\beta\epsilon\right>}{\left<\beta_{\rm model}\right>} \left(1-{\rm rms}^2\left(\frac{\Delta\beta}{\beta}\right)\right)$$



### $\beta$ from phase



3-BPM method [15], N-BPM method [16] & analytical N-BPM method [17].
Error analysis is fundamental.  $\beta$  from phase is model dependent. In [16] impact from model uncertainties are assessed with Montecarlo. In [17] an analytical approach is taken:

$$\beta_l(s_i) \approx \frac{\cot\phi_{ij_l} - \cot\phi_{ik_l}}{\cot\phi_{ij_l}^{\mathrm{m}} - \cot\phi_{ik_l}^{\mathrm{m}} + \bar{g}_{ij_l} - \bar{g}_{ik_l}} [\beta^{\mathrm{m}}(s_i) - 2\alpha^{\mathrm{m}}(s_i)\delta s_i]$$

 $\overline{g}_{ik}$  and  $\delta s_i$  contain possible model perturbations. Random errors on  $\phi_{ik}$  and their correlations are also considered. BPMs only measure x. With 2 nearby we can reconstruct  $p_x$  in the Floquet Normal Form:

$$\begin{aligned} \hat{x}_1(N) &= \cos(2\pi Q_x N + \phi_1) \\ \hat{x}_2(N) &= \cos(2\pi Q_x N + \phi_2) \\ \hat{p}_{x1}(N) &= \sin(2\pi Q_x N + \phi_1) \\ &= \frac{\hat{x}_2(N)}{\cos \delta} + \hat{x}_1(N) \tan \delta \end{aligned}$$

with  $\delta = \phi_2 - \phi_1 - \pi/2$ .

# Measurement of Resonance Driving Terms

# From [8]: $\hat{x}_{1} - i\hat{p}_{x1} = e^{i2\pi Q_{x}N} - 2i\sum_{x} jf_{jklm} \epsilon_{x}^{\frac{j+k-2}{2}} \epsilon_{y}^{\frac{l+m}{2}} e^{i2\pi N[(1-j+k)Q_{x}+(m-l)Q_{y}]+i\varphi}$

So  $f_{jklm}$  can be measured from the complex FFT of  $\hat{x}_1 - i\hat{p}_{x1}$ . Let's illustrate this with coupling.

# Coupling RDT

Using 2 nearby double-plane BPMs to reconstruct  $\hat{x}_1 - i\hat{p}_{x1}$  and  $\hat{y}_1 - i\hat{p}_{y1}$ :



 $2|f_{1001}| = \sqrt{\operatorname{amp}_x(Q_y)}\operatorname{amp}_y(Q_x)$ 

# PEP-II, from $\phi$ to virtual model to $\beta$





#### Using SVD modes Y. Yan et al, SLAC-PUB-11925 2006

The Farey sequence  $F_n$  of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to  $N \rightarrow$ **Resonances of order** N **or lower** (in one plane)

$$F_5 = \left\{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right\}$$

# Some properties of Farey sequences

- ★ The distance between neighbors in  $F_n$  (aka two consecutive resonances) a/b and c/d is equal to 1/(bd)
- ★ The next leading resonance in between two consecutive resonances a/b and c/d is:

$$\frac{a+c}{b+d}$$

★ The number of 1D resonances of order N or lower tends asymptotically to  $3N^2/\pi^2$ 

```
def Farey(n):
         Return the nth Farey sequence, ascending."""
2
3
      seq = [[0, 1]]
4
      a, b, c, d = 0, 1, 1 , n
5
      while c \ll n:
6
          k = int((n + b)/d)
7
          a, b, c, d = c, d, k*c - a, k*d - b
8
          seq.append([a,b])
9
      return sea
```

#### Resonance diagram



# Resonance diagram & Farey

#### From [21]:

- ★ The lines going trough  $Q_x = \frac{h}{k}$ ,  $Q_y = 0$  relate to the elements in  $F_N$  below  $\frac{1}{k}$ .
- ★ The number of resonance lines in the 2D diagram is

$$\frac{2N^3}{3\zeta(3)} + O\left(\frac{N^3}{\log N}\right)$$

# Plotting the resonance diagram

```
1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 \text{ fig} = \text{plt.figure}()
 4 ax = plt.axes()
 5 plt.ylim((0,1))
 6 plt.xlim((0,1))
 7 = np. linspace(0, 1, 1000)
   FN = Farey (5) # Farey function defined 3 slides ago
   for f in FN:
 9
       h \cdot k = f
                     # Node h/k on the axes
       for sf in FN:
12
           p, q = sf
13
           c = float(p*h)
14
           a=float(k*p)
                            # Resonance line a Qx + b Qy = c linked to p/q
15
           b = float(q-k*p)
16
           if a > 0:
17
                plt.plot(x, c/a - x*b/a, color='blue')
18
                plt.plot(x, c/a + x*b/a, color='blue')
19
                plt.plot(c/a - x*b/a, x, color='blue')
20
                plt.plot(c/a + x*b/a, x, color='blue')
21
                plt.plot(c/a - x*b/a, 1-x, color='blue')
                plt.plot(c/a + x*b/a, 1-x, color='blue')
           if q == k and p == 1: # FN elements below 1/k
24
                break
25
   plt.show()
```

# Apollonian gasket 0,0,1,1



# Resonance diagram & Apollonian gasket



#### Colliders in the resonance diagram



## Correction

#### $\star$ Local corrections

- Ideal correction: Error source identification and repair.
- Effective local error correction.
- Best few correctors (no guarantee of locality).
- $\star$  Global corrections
  - Pre-designed knobs for varying particular observables in the least invasive way (like tunes, coupling,  $\beta^*$ , etc.)
  - Best N correctors
  - Response matrix approach

★ Blind corrections (optimizing, scanning, etc.)

#### Local correction: segment-by-segment



Key point: Isolate a segment of the machine by imposing boundary conditions from measurements and find corrections [13].

#### Pre-designed knobs - Tunes

- ★ In most machines it is OK to use all focusing quads to change  $Q_x$  and all defocusing quads for  $Q_y$ : PSB, PS, SPS
- In the LHC dedicated tune correctors (MQT) are properly placed to minimize impact on β-beating:



# Pre-designed knobs - Coupling

- ★ The full control of the difference resonance  $(f_{1001})$  needs two independent families of skew quadrupoles.
- ★ PSB, PS and SPS can survive only with one family since  $int(Q_x) = int(Q_y)$ , making errors in phase with correctors.
- ★ In LHC there are two families to vary the real and imaginary parts of  $f_{1001}$  independently.

## Response matrix approach

- $\star$  Available correctors:  $\vec{c}$
- $\star$  Available observables:  $\vec{a}$
- ★ Assume for small changes of correctors linear approximation is good:

$$R\Delta \vec{c} = \Delta \vec{a}$$

- ★ Use, e.g., MADX to compute *R*
- ★ Invert or pseudo-invert R to compute an effective global correction based on measured  $\Delta \vec{a}$ :

$$\Delta \vec{c} = R^{-1} \Delta \vec{a}$$

 $\star$  This works for orbit,  $\Delta\beta/\beta$ , coupling, etc.

#### Pseudo-inverse via SVD

$$R = U \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{pmatrix} V^T$$

Imagine  $\sigma_3 \ll \sigma_2 \leq \sigma_1$ , then just neglect  $\sigma_3$ :

$$R^{-1} = V \begin{pmatrix} \frac{1}{\sigma_1} & 0 & 0\\ 0 & \frac{1}{\sigma_2} & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} U^T$$

## Correcting optics and coupling

 $\begin{pmatrix} \Delta \vec{\phi}_{x} \\ \Delta \vec{\phi}_{y} \\ \frac{\Delta \vec{\beta}_{x}}{\beta_{x}} \\ \frac{\Delta \vec{\beta}_{y}}{\beta_{y}} \\ \Delta \vec{D}_{x} \\ \Lambda \vec{Q} \end{pmatrix}_{\text{meas}} = \mathbf{P}_{\text{(theo)}} \cdot \Delta \vec{k}$  $\begin{pmatrix} \vec{f}_{1001} \\ \vec{f}_{1010} \\ \vec{D}_{v} \end{pmatrix} = \mathbf{T}_{\text{(theo)}} \cdot \Delta \vec{k}_{s}$ 

#### Best N corrector: exact solution

```
1 import numpy as np
 2 from scipy.optimize import least_squares
 3 from itertools import product
   import matplotlib.pyplot as plt
 4
 5
6 N_corrs=7
 7
   s=np.linspace(0, N_corrs, 1000) # 1000 observation points
 8
 9
   def corrs(x,i): # Assume correctors at i=integer < N_{corrs}
10
       return np. sin(np.abs(x-i))
12 def model(x, c): # Orbit at x from corrector strengths as c
13
       if len(x) == 1:
14
           return sum(c*corrs(x,np.arange(N_corrs)))
15
       return [model([y],c) for y in x ]
16
17 def measured_orbit(x): # Target Orbit
       return np.sin(np.abs(x-0.1)) + np.sin(np.abs(x-1.9)) - np.sin(np.abs(x-4.1))
18
         - np. sin (np. abs (x - 5.9))
19
20
   def f(c): #Figure of merit for given corrector choice encoded in mask
       return model(s, c*mask) - measured_orbit(s)
22
23
   best=1e16*np.ones(N_corrs+1); bestmask=np.zeros([N_corrs+1,N_corrs])
24
   for mask in product ([0,1], repeat=N_corrs): # Try all corrector combinations
25
       res = least_squares(f, x0=np.ones(N_corrs)) #Orbit correction
       if res.cost < best[sum(mask)]:
26
27
           bestmask[sum(mask)] = mask*res.x : best[sum(mask)] = res.cost
28
29 plt.plot(s, measured_orbit(s))
30 plt.plot(s, model(s, bestmask[1]))
                                       #Best 1 corrector
31 plt.plot(s, model(s, bestmask[2]))
                                       #Best 2 correctors
```

# Measured orbit



#### Best 1 corrector

\*



#### Best 2 correctors



#### Best 3 correctors



How many combinations of 500 correctors taking 20 at a time exist?

Various algorithms to find approximations:

- ★ MICADO, CERN ISR-MA/73-17, 1973
- ★ Projection pursuit regression, J. Amer. Statist. Asso. 76 1981
- Matching pursuit, Transactions on signal processing 41, No 12, 1993.
   Later improved and named Orthogonal Matching pursuit (OMP)

# Best N corrector: OMP (= MICADO)

```
from sklearn.linear_model import OrthogonalMatchingPursuit
  import numpy as np
   import matplotlib.pyplot as plt
4
5 N_corrs=7
6 N_BPMs=1000
   s=np.linspace(0, N_corrs, N_BPMs) # 1000 BPMs
7
8
9
   def corrs(x,i):
       return np.sin(np.abs(x-i))
12 def measured_orbit(x):
13
      return np.sin(np.abs(x-0.1)) + np.sin(np.abs(x-1.9)) - np.sin(np.abs(x-4.1))
        - np.sin(np.abs(x-5.9))
14
15 def measured_orbit(x):
16
      return np.sin(np.abs(x-0.1)) + np.sin(np.abs(x-1.9)) - np.sin(np.abs(x-4.1))
       - np.sin(np.abs(x-5.9))
  17
18 X=[]
19 for i in range(N_BPMs): # Prepare response matrix for OPM
20
      X.append(corrs(s[i],np.arange(N_corrs)))
   y= measured_orbit(s)
21
  reg = OrthogonalMatchingPursuit(n_nonzero_coefs=1). fit(X, y) #Run OMP for best
        1 corr
23 print reg.coef_ # coefficient of best 1 corr
24 plt.plot(s, reg.predict(X))
```

#### OMP: Best 1 corrector



#### OMP: Best 2 correctors



#### OMP: Best 3 correctors



# Real life example: Optics drift in 4 months

LHC beam 1,  $\beta^* = 60/15$  cm, 6.5 TeV:



# Possible candidate found with OMP



The identified quadrupole is currently under investigation.

# Analytical equations

$$\delta \frac{D_{z,j}}{\sqrt{\beta_{z,j}}} = \sum_{m} \left[ \left( \pm \delta K_{0,m} + \delta J_{1,m} D_{y,m} \mp \delta K_{1,m} D_{z,m} \right) \frac{\sqrt{\beta_{z,m}}}{2} \frac{\cos(\tau_{z,mj})}{\sin(\pi Q_z)} + \frac{D_{z,j}}{\sqrt{\beta_{z,j}}} \delta K_{1,m} \frac{\beta_{z,m}}{4} \frac{\cos(2\tau_{z,mj})}{2\sin(\pi Q_z)} \right]$$

$$\delta \Phi_{z,wj} = \pm \sum_{m} \delta \mathcal{K}_{1,m} \frac{\beta_{z,m}}{4} \left[ 2 \left( \Pi_{mj} - \Pi_{mw} + \Pi_{jw} \right) + \frac{\sin(2\tau_{z,mj}) - \sin(2\tau_{z,mw})}{\sin(2\pi Q_z)} \right]$$

#### Three world records with optimizers



# Dynamic linear imperfections

- ★ Ground motion and vibrations in quadrupoles produce sinusoidal dipolar fields
- Electrical noise can cause currents in quadrupoles and dipoles to oscillate in time
- Electromagnetic pollution can act directly on the beam.
- ★ Slow variations ( $f << Q_{x,y} f_{rev}$ ) just cause a time varying orbit and optics
- ★ Fast variations  $(f \approx Q_{x,y} f_{rev})$  can cause resonances and emittance growth
#### An oscillating dipolar field

★ Let  $Q_{dip} = f_{dip}/f_{rev}$  be the tune of the dipolar field oscillation.

- ★ This causes the appearance of new resonances
- **★** Linear resonances:  $Q_x \pm Q_{dip} = N$
- ★ Non-linear resonances of sextupolar order:

$$Q_x \pm 2Q_{dip} = N$$

$$2Q_x \pm Q_{dip} = N$$

★ Note that  $mQ_{dip} = N$  is not a problem

#### Oscillating dipolar field, $\mathit{Q}_{\mathsf{x}} eq \mathit{Q}_{\mathit{dip}}$



Orbit oscillates with  $Q_{dip}$  but there is no emittance growth far from resonances.

# Oscillating dipolar field, $\mathit{Q}_{\mathsf{x}} = \mathit{Q}_{\mathit{dip}}$



Linear growth in time  $\rightarrow$  Emittance growth.

#### An oscillating quadrupolar field

- ★ Let  $Q_{quad} = f_{quad}/f_{rev}$  be the tune of the quadrupolar field oscillation.
- $\star$  This causes the appearance of new resonances
- ★ Linear resonances:  $2Q_x \pm Q_{quad} = N$

## Oscillating quadrupolar field, $2 Q_{x} eq Q_{quad}$



Tune is modulated with  $Q_{quad}$ , displaying sidebands at  $Q_x \pm Q_{quad}$  but there is no emittance growth far from resonances.

# Oscillating quadrupolar field, $2Q_x = Q_{quad}$



Exponential growth, clear signatures depending on the oscillating field type.

#### Outlayer detection: Linear correlation

```
1 import numpy as np
 2 from scipy.stats import t
   import matplotlib.pyplot as plt
 3
 4
 5
   def get_filter_mask(data, x_data=None, limit=0.0, niter=20):
 6
          "Assumes linear correlation , normal distr . Returns a filter mask for the
         original arrav"""
 7
       mask = np.ones(len(data), dtype=bool)
 8
       nsigmas = t.ppf([1 - 0.5 / len(data)], len(data))
       prevlen = np.sum(mask) + 1
 9
10
       for _ in range(niter):
11
           if not ((np.sum(mask) < prevlen) and (np.sum(mask) > 2)):
                break
13
           prevlen = np.sum(mask)
14
           if x_data is not None:
15
               m, b = np.polyfit(x_data[mask], data[mask], 1)
16
               y, y_orig = data[mask] - b - m * x_data[mask], data - b - m * x_data
           else
17
18
               y, y_orig = data[mask], data[:]
19
           mask = np.abs(y_orig - np.mean(y)) < np.max([limit, nsigmas * np.std(y))
        1)
20
       return mask
22
   if ______ '____ '____ '_____ ':
       x_data = 100 * np.random.rand(1000);
24
       y_data = 0.35 * x_data + np.random.randn(1000); y_data[-100:] = y_data
        [99::-1]
25
       mask = get_filter_mask(y_data, x_data=x_data)
26
       f, ax = plt.subplots(1)
27
       ax.plot(x_data, v_data, 'ro')
28
       ax.plot(x_data[mask], y_data[mask], 'bo')
29
       plt.show()
```

# Outlayer detection: Assuming linear correlation and normal distribution



# Bibliography

[1][2] [3] [4] [5] [6] [7] [8] [9] [10] 111 E.D. Courant and H.S. Snyder, Annals of Physics 3 (1958).

- R. Tomás et al, Phys. Rev. Accel. Beams 20 054801 (2017)
- R. Miyamoto, PhD thesis, Uni. of Texas at Austin (2008).
  - N. Biancacci et al., Phys. Rev. Accel. Beams 19, 054001 (2016).
- A. Franchi, arXiv:1603.00281 (2016).
- A. Hofmann and B. Zotter, Issued by: ISR-TH-AH-BZ-amb, Run: 640-641-642 (1975).
  - F. Carlier et al., Phys. Rev. Accel. and Beams, 2016.
  - F. Schmidt and R. Bartolini, LHC Project Report 132 (1997).
- R. Tomás et al., Phys. Rev. ST Accel. Beams 8, issue 2, 024001.

M. Minty and F. Zimmermann, *Measurement and Control of* 

Charged Particle Beams, Springer, Berlin (2003).
[11] Y. Alexahin et al., Journal of Instrumentation 6, P10006 (2011).
[12] T. H. B. Persson et al., Phys. Rev. ST Accel. Beams 17, 051004.
[13] R. Tomás et al., Phys. Rev. ST Accel. Beams 15, 091001 (2012).

R. Tomás et al., CERN-ACC-NOTE-2018-0025.

#### [15] P. Castro, Thesis CERN-SL-96-070-BI

- [16] A. Langner et al, Phys. Rev. ST Accel. Beams **18**, 031002 (2015)
- [17] A. Wegscheider et al, Phys. Rev. Accel. Beams 20, 111002 (2017)
- [18] R. Tomás, Phys. Rev. ST Accel Beams **5** 54001 (2002)
- [19] S. White et al., Phys. Rev. ST Accel. Beams 16 071002 (2013)
- [20] F. Carlier et al., doi:10.18429/JACoW-IPAC2018-MOPMF033
- [21] R. Tomás, Phys. Rev. ST Accel. Beams 17 014001 (2014) & arXiv:1406.6991v2