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Differential Equations: The Basics I

Ordinary differential equations are used to model change
over an independent variable (for our purposes it will
usually be t for time or x for a space like variable) without
using partial derivatives. So we have equation involving the
derivatives of an unknown function y of a single variable t
over an interval t ∈ (I).

Differential equations contain three types of variables: an
independent variable, at least one dependent variable
(these will be functions of the independent variable), and
the parameters.

ODE’s can contain multiple iterations of derivatives. They
are named accordingly (i.e. if there are only first
derivatives, then the ODE is called a first order ODE).
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Differential Equations: The Basics II

If the function F is linear in the variables a0, a1, . . . , an the
ODE is said to be linear. If, in addition, F is
homogeneous then the ODE is said to be homogeneous.

The general n-th order linear ODE can be written

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = b(x).
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General Solution of a Linear Differential Equation

It represents the set of all solutions, i.e., the set of all
functions which satisfy the equation in the interval (I).

For example, the general solution of the differential
equation y′ = 3x2 is y = x3 + C where C is an arbitrary
constant. The constant C is the value of y at x = 0. This
initial condition completely determines the solution.
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A System of ODE’s I

y′1 = G1(x, y1, y2, . . . , yn) (1)

y′2 = G2(x, y1, y2, . . . , yn) (2)

... (3)

y′n = Gn(x, y1, y2, . . . , yn) (4)

An n-th order ODE of the form y(n) = G(x, y, y′, . . . , yn−1) can
be transformed in the form of the system of first order DE’s. If
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A System of ODE’s II

we introduce dependant variables y1 = y, y2 = y′, . . . , yn = yn−1

we obtain the equivalent system of first order equations

y′1 = y2,

y′2 = y3,

...

y′n = G(x, y1, y2, . . . , yn).

For example, the ODE y′′ = y is equivalent to the system

y′1 = y2,

y′2 = y1.
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A System of ODE’s III

In this way the study of n-th order equations can be reduced to
the study of systems of first order equations. Some times, one
called the latter as the normal form of the n-th order ODE.

Systems of equations arise in the study of the motion of
particles. For example, if P (x, y) is the position of a particle of
mass m at time t, moving in a plane under the action of the
force field (f(x, y), g(x, y)), we have

m
d2x

dt2
= f(x, y),

m
d2y

dt2
= g(x, y).
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A System of ODE’s IV

The general first order ODE in normal form is

y′ = F (x, y).

If F and ∂F
∂y are continuous one can show that, given a, b, there

is a unique solution with y(a) = b.
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A Simple Example: Population Modeling

Population growth is commonly modelled with differential
equations. In the following equation: t = time, P = population
and k = proportionality constant. k represents the constant
ratio between the growth rate of the population and the size of
the population.

dP

dt
= kP

In this particular equation, the left hand side represents the
growth rate of the population being proportional to the size of
the population P . This is a very simple example of a first order,
ordinary differential equation.
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Initial Value Problems I

An initial value problem consists of a differential equation and
an initial condition. So, going back to the population example,
the following is an example of an initial value problem:

dP

dt
= kP, P (0) = P0

The solution to this set of equations is a function, call it P (t),
that satisfies both equations.
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Initial Value Problems II

Ansatz:

P (t) = Cekt
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General Solutions to a Differential Equation

Let’s look at a simple example and walk through the steps of
finding a general solution to the following equation

dy

dt
= (ty)2

We will simply “separate” the variables then integrate the both
sides of the equation to find the general solution.

dy

dt
= t2y2

1

y2
dy = t2 dt∫

1

y2
dy =

∫
t2 dt
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−y−1 =
t3

3
+ c

−1

y
=

t3

3
+ c

⇒ y(t) = − 1
t3

3 + c

where c ∈ < is any real number.
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Linear First Order Differential Equations I

Initial value problems consist of a differential equation and an
initial value. We will work through the example below:

dx

dt
= −xt; x(0) =

1√
π

First we will need to find the general solution to dx
dt = −xt, then

use the initial value x(0) = 1√
π

to solve for c. Since we do not
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Linear First Order Differential Equations II

know what x(t) is, we will need to ”separate” the equation
before integrating.

dx

dt
= −xt

−1

x
dx = t dt∫

−1

x
dx =

∫
t dt
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Linear First Order Differential Equations Continued

− lnx =
t2

2
+ c

x = e−( t2

2
+c)

x = e−( t2

2
)e−c

x = ke−
t2

2

The above function of t is the general solution to dx
dt = −xt

where k is some constant. Since we have the initial value
x(0) = 1√

π
, we can solve for k.
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Solving Initial Value Problems

Thus we can see that the solution to the initial value problem

dx

dt
= −xt, x(0) =

1√
π

is

x(0) =
1√
π

= ke−
02

2

x(t) =
1√
π
e−

t2

2
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Second Order Differential Equations I

Second order differential equations simply have a second
derivative of the dependent variable. The following is a common
example that models a simple harmonic oscillator:

d2y

dt2
+
k

m
y = 0

where m and k are determined by the mass and spring involved.
This second order differential equation can be rewritten as the
following first order differential equation:

dv

dt
= − k

m
y
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Second Order Differential Equations II

where v denotes velocity.
If v(t) is velocity, then v = dy

dt . Thus, we can substitute in dv
dt

into our second order differential equation and essentially turn
it into a first order differential equation.

d2y

dt2
= − k

m
y ⇔ dv

dt
= − k

m
y

Now we have the following system of first order differential
equations to describe the original second order differential
equation:
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Second Order Differential Equations III

dy

dt
= v

dv

dt
= − k

m
y

With k/m = 1 consider the following initial value problem:

d2y

dt2
+ y = 0

with y(0) = 0 and y′(0) = v(0) = 1. Let’s show that
y(t) = sin(t) is a solution.
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Second Order Differential Equations IV

dy

dt
=

d

dt
sin(t) = cos(t) = v

dv

dt
= − sin(t) = −y

⇒ d2y

dt2
= − sin(t)

⇒ d2y

dt2
+ y =

d2(sin(t))

dt2
+ sin(t)

= − sin(t) + sin(t) = 0
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Reminder: Lie transformations I

A Lie transformation is written as:

M = e−t:H: (5)

where the Lie operator :H : is defined by:

:H :=
∂H

∂~q

∂

∂~p
− ∂H

∂~p

∂

∂~q
. (6)

~q are the coordinates and ~p the conjugate momenta; h is a
function of ~q and ~p. The exponential operator is defined in
terms of its series expansion:

e−t:H: = 1− t:H :+
t2

2
:H :2 − t3

3!
:H :3 + · · · (7)
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Reminder: Lie transformations II

If H is the Hamiltonian of the system, then the evolution of any
function of the phase space variables is given by:

df

dt
= −:H :f, f(t) = e−t:H:f(0). (8)
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Lie transformation

The operator e: g : is called a Lie transformation.
To see how this works, consider the example of a familiar
system: a simple harmonic oscillator in one degree of freedom.
The Hamiltonian is:

H =
1

2
p2 +

1

2
ω2q2. (9)

Suppose we want to find the coordinate q as a function of time
t. Of course, in this case, we could simply write down the
equations of motion (from Hamilton’s equations) and solve
them (because the Hamiltonian is integrable). However, we can
also write:

q(t) = e−t:H:q(0). (10)
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Lie transformation example: harmonic oscillator

To evaluate the Lie transformation, we need :H : q.

:H : q =
∂H

∂q

∂q

∂p
− ∂H

∂p

∂q

∂q
= −∂H

∂p
= −p. (11)

Similarly, we find:
:H : p = ω2q. (12)

This means that:

:H : 2q = :H : (−p) = −ω2q, (13)

:H : 3q = :H : (−q) = ω2p, (14)

and so on.
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Lie transformation example: harmonic oscillator

Using the above results, we find:

q(t) = q(0)− t:H :q(0) +
t2

2
:H :2q(0)− t3

3!
:H :3q(0) +

t4

4!
:H :4q(0) · · ·

(15)

= q(0) + tp(0)− ω2 t
2

2
q(0)− ω2 t

3

3!
p(0) + ω4 t

4

4!
q(0) · · · (16)

Collecting together even and odd powers of t, we see that
equation (16) can be written:

q(t) = q(0) cos(ωt) +
p(0)

ω
sin(ωt). (17)
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Power Series Solutions I

To demonstrate how to use power series to solve a nonlinear
differential equation we will look at Hermite’s Equation 1:

d2y

dt2
− 2t

dy

dt
+ 2py = 0

We will use the following power series and its first and second
derivatives to make a guess:
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Power Series Solutions II

y(t) = a0 + a1t+ a2t
2 + a3t

3 + ... =

∞∑
n=0

ant
n (18)

dy

dt
= a1 + 2a2t+ 3a3t

2 + 4a4t
3 + ... =

∞∑
n=1

nant
n−1 (19)

d2y

dt2
= 2a2 + 6a3t+ 12a4t

2 + ... =

∞∑
n=2

n(n− 1)ant
n−2(20)

From the previous equations we can conclude that
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Power Series Solutions III

y(0) = a0

y′(0) = a1

Next we will substitute (18), (19) and (20) into Hermite’s
Equation and collect matching terms.

d2y

dt2
− 2t

dy

dt
+ 2py = 0 = (2a2 + 6a3t+ 12a4t

2 + ...)

−2t(a1 + 2a2t+ 3a3t
2 + 4a4t

3 + ...)

+2p(a0 + a1t+ a2t
2 + a3t

3 + ...)

⇒ (2pa0 + 2a2) + (2pa1 − 2a1 + 6a3)t+

(2pa2 − 4a2 + 12a4)t2 + (2pa3 − 6a3 + 20a5)t3 = 0
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Power Series Solutions IV

Then from here, we will set all coefficients equal to 0 since the
equation is equal to 0 and t 6= 0. We get the following sequence
of equations:

2pa0 + 2a2 = 0

2pa1 − 2a1 + 6a3 = 0

2pa2 − 4a2 + 12a4 = 0

2pa3 − 6a3 + 20a5 = 0

Then will several substitutions we arrive at the following set of
equations:
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Power Series Solutions V

⇒ a2 = −pa0

a3 = −p− 1

3
a1

a4 = −p− 2

6
a2 =

(p− 2)p

6
a0

a5 = −p− 3

10
a3 =

(p− 3)(p− 1)

30
a1

1Klein-Gordon equation, travelling wave solutions
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Stability Analysis I

Many realistic models of physical systems require mathematics
that are intractable, yet we still would like information about
the system. One of the most important pieces of information of
interest to us is the stability of a dynamical system, a system
that changes with time t. We use a general second-order
differential equation for stability analysis.

d2y

dt2
+ γ1(t)

dy

dt
+ γ0(t)y = 0

The second-order differential equation is transformed to a set of
first-order differential equations by defining

Λ1 = y, Λ2 =
dy

dt
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Stability Analysis II

and arrive at the set of first-order differential equations

dΛ1

dt
= Λ2 ≡ f1

dΛ2

dt
= −Λ0Λ2 − Λ1Λ2 ≡ f2 (21)

Equations 21 can be written in matrix form:

dΛ

dt
= Λ̇ = AΛ ≡ f (22)

with

Λ̇ =
d

dt

(
Λ1

Λ2

)
, f =

(
f1

f2

)
, A =

(
0 1
−Λ0 −Λ1

)
.
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Stability Analysis III

The solution x of Eq. (21) represents the state of the dynamical
system as t changes. An equilibrium state Λe is a state of the
system which satisfies the equation

Λ̇ = 0

The stability of a dynamical system can be determined by
calculating what happens to the system when it is slightly
perturbed from an equilibrium state. Stability calculations are
relatively straightforward for linear systems, but can be very
difficult or intractable for nonlinear problems. Since many
dynamical models are nonlinear, approximation techniques
must be used to analyze their stability. One way to analyze the
stability of a nonlinear, dynamical model is to first linearize the
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Stability Analysis IV

problem. As a first approximation, the nonlinear problem is
linearized by performing a Taylor series expansion of Eq. (21)
about an equilibrium point.
Let

u ≡ Λ−Λe

the displacement of the system from its equilibrium state, then
result is

u = Ju + ξ(u), (23)

and ξ(u) contains terms of second-order or higher from the
Taylor series expansion. The Jacobian matrix J is evaluated at
the equilibrium point Λe thus

J =

(
∂f1
∂Λ1

∂f1
∂Λ2

∂f2
∂Λ1

∂∂f2
∂Λ2

)
Λe

=

(
0 1
−Λ0 −Λ1

)
Λe

.
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Stability Analysis V

In this case, the matrices A and J are equal. Neglecting
higher-order terms in Eq. (23) gives the linearized equation

u̇ = Ju. (24)

We solve Eq. (24) by trying a solution with the exponential
time dependence

u̇ = eλtg (25)

where g is a nonzero vector and λ indicates whether or not the
solution will return to equilibrium after a perturbation.
Substituting Eq. (25) into Eq. (24) gives an eigenvalue problem
of the form
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Stability Analysis VI

(J− λI)g = 0. (26)

The eigenvalues λ are found from the characteristic equation

det(J− λI) = 0. (27)

where det denotes the determinant. The following summarizes
the interpretation of λ if we assume that the independent
variable t is monotonically increasing:

EV Interpretation

λ > 0 Diverges from equilibrium solution
λ = 0 Transition point
λ < 0 Converges to equilibrium solution
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Stability Analysis VII

The linearized form of Eq. (21), namely, Eq. (24), exhibits
stability when the product lt is less than zero because the
difference u→ 0 as λt→ −∞ in Eq. (25). If the product lt is
greater than zero, the difference u diverges. This does not mean
the solution of the nonlinear problem is globally divergent
because of our linearization assumption. It does imply that a
perturbation of the solution from its equilibrium value is locally
divergent. Thus an estimate of the stability of the system is
found by calculating the eigenvalues from the characteristic
equation.
EXERCISE: calculate λ for our particular case.
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Numerical Solution with the Runge-Kutta Method I

Systems of linear ODEs may be solved numerically using
techniques such as the Runge-Kutta fourth-order numerical
algorithm. Suppose the initial conditions are

x(t0) = x0

at t = t0 for the system of equations

d

dt
x = f(x, t).

Values of x as functions of t are found by incrementally stepping
forward in t. The fourth-order Runge-Kutta method calculates
new values of xn+1 from old values xn using the algorithm
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Numerical Solution with the Runge-Kutta Method II

xn+1 = xn +
h

6
(w1 + 2w2 + 2w3 + w4) +O(h5)

where h is an incremental step size 0 < h < 1. The terms of the
algorithm are

tn+1 = tn + h (28)

w1 = f(xn, tn) (29)

w2 = f(xn +
1

2
hw1, tn +

1

2
h) (30)

w3 = f(xn +
1

2
hw2, tn +

1

2
h) (31)

w4 = f(xn + hw3, tn + h) (32)
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Numerical Solution with the Runge-Kutta Method III

The calculation begins at n = 0 and proceeds iteratively. At the
end of each step, the new values are defined as present values at
the nth level and another iteration is performed.
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Numerical Solution with the Runge-Kutta Method IV

Exercice:
Suppose we want to solve a system of two first-order ODEs of
the form

dx1

dt
= x2 (33)

dx2

dt
= −x1 (34)

with inital conditions

x(t0) = (0, 1)T .

Write a Python RK-4 program to solve this ODE.
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