Nonlinear Dynamics (see also CAS Advanced Course)

(with strong emphasis on implementation)

The menu:

Linear case (later generalization)

Non-linear elements and power series, symplecticity (how non-linear
elements)

Linear maps (usually matrices) =» non-linear maps

Action-angle variables, invariants of motion and Liouville Theorem

Thin lenses and symplectic integration
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Nonlinear Dynamics (see also CAS Advanced Course)
(with strong emphasis on implementation)

The ambition:
- Treat nonlinear dynamics without too many handwaving arguments

= Find a formalism that can be "easily" extended to deal nonlinear
dynamics !!

(extended means that it is the same for both cases)

Werner Herr, Non-Linear methods, Thessaloniki, 14.11.2018
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For what follows one should (!) always use canonical variables !

In Cartesian coordinates: R = (X, Py, Y, Py,Z, P,,1)

If the energy is constant (i.e. P, = const.), we use: (X, Py, Y, Py,Z,1)

This system is rather inconvenient, what we want is the description of the
particle in the neighbourhood of the reference orbit/trajectory:

Rd — (X,PX,Y,Py,Z,t)

which are considered now the deviations from the reference and which
are zero for a particle on the reference trajectory

Very important: it is the reference not the design trajectory !

(so far it is a straight line along the Z-direction)



The independent variable is usually the time t (Newton)

Problem: particles with different initial conditions generally require
different times to pass through an element. Better to measure the
progress using a longitudinal coordinate Z.

We therefore replace time t by Z and eventually by s using:

s =Z+ct =P R = (X,Pyx,Y,Py,s) s isthe distance along reference path

Non-trivial: strictly speaking requires the Hamiltonian formalism

==» using s is Hamiltonian in disguise ...



For a "curved" trajectory, in general not circular, with a local radius of
curvature p(s) in the horizontal (X - Z plane), we transform to a new
coordinate system (x, y, s) (co-moving frame) with (see e.g. [AW]):

X = (x + p) cos (g) - p (needed tomorrow)
Yy = y
] S
Z = (x + p) sin (—)
Je,

The new canonical momenta become:

Px = Py cos (£> + Pzsin (£>
P P

Py — Py
ps = P (1 + f) COS (£> — Py (1 + f) sin <E>
Y Y Y Y

finally for the transverse coordinates: r = (X, px, Y, Py)




Some clarification (again):

F.A.Q.: Phase Space (x, p,,..) or Trace Space (x, x’,...)

- Beam dynamics is strictly correct only with (x, p,, ...), but in general
quantities cannot be measured easily

- Beam dynamics with (x, x’, ...) needs special precaution, but quantities
much easier to measure or more relevant (e.g. crossing angle,
bumps, ...)

- Some quantities are different (e.g. emittance)

Be aware of that when you do the calculations ...



Usual starting point: Linear dynamics in synchrotrons

Each element at position s acts as a source of forces, i.e. we must write
for the forces K =% K(s) (so long harmonic oscillator ..... )]

To justify the Courant-Snyder ansatz:
linear (uncoupled !) optics in rings often introduced using 1D Hill type
equation where K(s) is assumed to be a periodic function in s:

d s?

2 o0
a7x(s) + (ao + ZZan : 008(2”S)> x(s) =0 and  K(s+C) = K(s)

n=1 .
g W, ring...
Vo

K(s)

Solution of a Boundary Value Problem (rings !) must be periodic too !

Not applicable in the general case (e.g. Linacs, Beamlines, FFAG,
Recirculators, ...), much better to treat it as an Initial Value Problem

*) What about 2D ?2?



First: For any linear, 1st order equation of the type

d
Z(;) = K(s) x(s) (and initial values at sg)
the solution can always be written as (Floquet, Hamilton, e.g. [AD]):
A
x(s) = a-x(sg) + b-x'(sp) X a b X
— =
xX'(s) = c-x(s9) + d-x'(50) X’ cd X’

N M)

(now K(s) does not have to be periodic)
Second: The determinant of A is always 1

Third: No need for an "ansatz" (i.e. knowing the solution)

== Much better to use matrices for our linear systems from the start
just have to know what is A between the locations s and s,



Real life: adding nonlinear elements (e.g. magnetic fields)

Nonlinear elements can be described by polynomials of higher order:

d’x(s)

ds?

+ K(9)x(s) = > pij(s)x'y’

Electromagnetic fields can be described with the multipole expansion:

(in LHC need up to n

= 201)

B, +iB, = (b + ia,)(x + iy)"™!
y
n=1

Equations of motions become (here horizontal plane):

d’> x(s)
d s?

+ K(s)x(s) =

Fx(x7y7 S) — _By(-xay7 S)

VXDp

P

(Note: we have now coupling between the planes if i # 0 and j = 0 !!)



Some problems with this approach:

It is rather hopeless to describe a complicated system

It is totally hopeless to find a closed solution

Perturbation treatment required, but does not always give satisfactory results
and does not fully exploit potential of computing and numerical techniques

Numerical methods create new problems, hopefully less important

Many concepts (more or less) valid in 1D become incorrect for 2D, hidden
approximations (often inspired by the linear treatment) can lead to misconceptions
and eventually permanent brain damage ..



The most reliable tools to study realistic models are simulations (e.g. tracking
codes)

Particle Tracking:

.. a humerical solution of the (nonlinear) Initial Value Problem:

It is a "integrator” of the equation of motion

Vast amount of tracking codes available, many analysis tools available
(Examples: Lyapunov, Chirikov, chaos detection, frequency analysis, ...)

Ambition:
Find an approach to link simulations with theoretical analysis, would allow a better
understanding of the physics in realistic machines

==p Based on finite maps i.e. discrete systems

Watch out for numerical problems !!



Look at the linear treatment first, then generalize to nonlinear theory

Linear optics was already treated in detail, | use the very basics to show
the idea and demonstrate the transition

The procedure and formalism is identical
For consistency with some (classical) textbooks and other lectures |
sometimes (where not critical) use x, x’,y,y’ instead of x, p,,y, p,

==» Linear maps are usually written as matrices

=  Some simple examples (simplified, the full version later this week)



A drift space (one dimension only) of length L, starting at position s and
endingats + L

TXEHL), X (s+L)
X(6), x'(s)
L
S S+L

The simplest description (1D, using x, x) is (should be in 3D of course):

X 1 L X x+x -L

I
o
I

/

X 0O 1 x’ X
s+L )

/

This is only an approximation, something may go badly wrong, see later ... !




Focusing quadrupole of length L and constant strength 4, (k;, > 0):

1

x _ cos(L - vki) 5 -sin(L - Vki) ) x
¥ )y \ - VEsinLe vE) o cos(L- VR g
similar for a defocusing quadrupole, i.e. for k; <0
. : d’x(s)
(it is the solution of 102 = K(s) x(s) when K(s) = k; = const.)
S

However: fundamental for the map approach =»

Can we get the maps:

1. For all elements, including nonlinear (e.g. sextupoles) where no
solution exists ?

2. From first principles (i.e. fields), without reference to their use ?
(a particle does not know what the element is (supposed) to do ?)
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Starting from a position s, and combining all matrices to get the matrix to
position s, + L (shown for 1D only):

X X

= MN ¢} MN—I ©c ... O Ml O
’ -
~

X

- /

so + L M(sp,L) 50

For a ring with circumference C we get the One-Turn-Matrix (OTM) at s,

X nmi nmio X
= (@)
X myq myo X
so + C S0
\ - ~~ J/
Morm

Without proof (trust me for a few minutes), the scalar product:

X X
- Moru - = const. = J
/ /

X X
S0 S0

is a constant of the motion: invariant of the One-Turn-Map M7,



Next: matrices can be transformed into Normal Forms

we try to find a (invertible) transformation ‘A such that (called "similarity
transformation"):

AMA! = R (or : ATRA = M)

The matrix R is:
> A "Normal Form", (or at least a very simplified form of the matrix)

> Example (most important case): K becomes a pure rotation

The matrix R describes the same dynamics as M, but:
> All coordinates are transformed by ‘A

> This transformation A "analyses" the complexity of the motion, it contains
the structure of the phase space



Transformation to Normal Form (pictorially)

M=AoRoA!' or: R=A'oMoA

Motion on an ellipse becomes motion on a circle (i.e. a rotation):
R is the "simple" part of the map - shape is "dumped" into A

How to get that (i.e. A) ? Remember lectures on Linear Algebra
(Eigenvectors, Eigenvalues ...), see also backup slides



We find the two components of the original map:

VB(s0) 0 cos(iy)  sin(uy)
A = a(so) 1 and R =

"By VB ~ siny) - cos(iy)

The Normal Form transformation gives plenty of information:

> We have stable oscillations when the eigenvalues u, (and n, etc.) are
real, (forget about the 7+(M) < 2 business). This concept is valid
also for 2D or any complicated systems, e.g. coherent motion with
6000 x 6000 matrices etc: many modes !

> U, is the "tune” Q,-2n (now we can talk about phase advance !)

> B, a, ... are the optical parameters and describe the ellipse

> The closed orbit (an invariant, identical coordinates after one turn !):

MOTM o (X, xl)co = (X, xl)co



Note 1:
- The only assumption was that particles make more than one turn !!!

- Matrices R and M are called similar (i.e. have the same eigenvalues)
(to be equivalent is not sufficient !)

Note 2:

in 2 dimensions the normal form is a 4 x 4 matrix:

( cos(u,)  sin(uy) 0 0 \
oo | TS0 cosr) 0 0 (Ao
0 0 cos(uy)  sin(uy) 0O B

\ 0 0 —sin(u,)  cos(y) )

What if the two planes (oscillators) are linearly coupled ?



Assume a one-turn-matrix in 2D (4 X 4 matrix):

coupling!

A 0 ~ = M n

O B m N

M,m,N,n are 2-by-2 block matrices.

In case of coupling: m # 0,n # O we can try to transform as:

M n »
T = =VR'V
m N

with (same procedure as before, find the simple case):

A0 yI C
R = and V=
0 B —C"  yl



A short comparison of the different approaches (not rigorous)

> Classical perturbation method:
- Transform/expand solution in terms of distortion parameter
- Analytical/symbolic expression for the solution

- Solution is approximate (eigenvalues inexact, not always useful)

> Map/Normal Form approach:

Transform Differential Equation in terms of distortion parameter
(Normal Form) to get an equation that can be solved

No symbolic expression for the solution

Requires some approximation of the model

Procedure to get solutions/eigenvalues is exact

Using the map/Normal Form approach we get an exact solution at the
expense of giving up a closed analytical form for the solution



Impact on a key concept:

A central question in physics (accelerator theory) is to find, understand
and quantify invariants:

A property of a system that is unchanged, i.e. conserved as the system
evolves (typical examples are: energy, momentum, angular momentum,
charge, invariant mass, speed of light, ..)

Given a map M we look for / with
ML = ¢

e.g. Special Relativity is all about invariants ("mechanics",
electrodynamics, ...




More appropriate for studies: using Action - Angle variables

Once the particles "travel” on a circle (i.e. always !), the motion is better
described by the canonical variables action /. and angle

X = V2J. 8, cos(‘V,)

pe = =2 (sin(P.) + @y cos(PL))

X

Jo = (X + 2a.xp; + Bupl)

> Angular position along the ring ' becomes the independent variable !

> The trajectory of a particle is now independent of the position s !

defines

» Constant Radius V2J ——— action J (invariant of motion)

«) Never call that "emittance", this is fraudulent and brain clobbering !



Interlude: If we have many particles, action is related to beam emittance
(this is valid also for sources, electrons, linacs and beam lines, and
non-Gaussian beams:

If we can measure < x*> >, < p?> > and < xp, > of a beam, and define a
beam emittance ¢, (see e.g. [AW, AC2], also CERN convention):

& = <Jy>

this means:

& = V<X ><p2> — <xp,>2
We can use action-angle variables defined before as:

x = VAT B cos(P)  p. =- Zﬁjx (sin(¥,) + o, cos(V.))

X

and from above we get (/' disappears by the averaging)

2 2
<X > = i€, < XDy > = — @€y, < P> = Y&



Since other definitions often refer to the treatment by Courant and Snyder, here a
quote from Courant himself:

"The invariant J is simply related to the area enclosed by the ellipse:
Area enclosed = 2nJ.

In accelerator and storage ring terminology there is a quantity called the emit-
tance which is closely related to this invariant. The emittance, however, is a
property of a distribution of particles, not a single particle. Consider a Gaus-
sian distribution in amplitudes. Then the (rms) emittance, ¢, is given by:

(xrms)2 = ,Bx(s) * €Ex.
In terms of the action variable, J, this can be rewritten
€ = <J>.

where the bracket indicates an average over the distribution in J."

Note: this is also the CERN and CAS convention ...




Introducing nonlinear elements: various types of nonlinear maps

} Choice depends on the application, some examples:
- Taylor (Power) maps
- Lie transformations
- Truncated Power Series Algebra (TPSA), can generate maps from
tracking (see lectures by Etienne Forest)
» Not all maps are allowed !

- Key concept: Symplecticity (again) most relevant for rings !

Linear first ..



A symplectic matrix A1 has to fulfil the condition:

[0 1 0 0)

M.s M=s  win s=| > 270
0 0 0 I

\ 0 0 -1 0

lim M" =finte = requires detM=1"

n—oo

1. M is area preserving (X, p) and J is an invariant:

MJ =7

2. All eigenvalues of A are non-zero and it is invertible
3. Products of symplectic matrices are symplectic

*) (But note: det M =1 alone is not sufficient, except in 1D)



Introducing nonlinear elements (e.g. 2nd order)

Effect of a sextupole-like element with strength %, is (hormal
component):

[ [ x) ( 0 )

x x —%k2L~(x§1 - y%l)
y y 0
\ v \ LhoL-(x, ovy)

=p  Amplitudes appear as second power
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= (Normally) Cannot be written as a matrix



We need something like (here for x-coordinate), i.e. Power Series:

matrix part (power 1)
>

A ’ ’
Xnew = Ryp-x +Rpp-X +Ry-y +Ryp-y+

sextupole part (power 2)
o

~

+T111 . x2 + T112 . xx' + T122 . x'2 + T113 - Xy + T114 . xy' + ....

octupole part (power 3)
o

~

+U1q17 X3 + Ui - sz/ + ...

and the equivalent for x/_, , view, V5., @nd higher orders

Note: for sextupoles and higher we have coupling terms x"y", etc.



Normally, because one could write it as (1D, horizontal plane only):

X
X Rivw Rp Tin T Tix 5
— O X
/
X Ryt Ry Tohny T Toxp
new xx’

Just a fake, looks good but does not win anything ..

Easier to implement as (here up to 3rd order):

6 6 6

6
;" = g Rjizi + E E T jxzezy + ;J
k=1




Explicit map (2D) for a sextupole with length L and strength &,:

=y1 + Ly}

:y'l

e (B o+ B -+ )
~ ko (56 -3 + Eonxd -y + Eap - )
+ ky (L4—2X1y1 + %(M)’i +y1x)) + %(xi)’i))
+ ky (%xlyl + L4—2(X1y'1 +y1x}) + %(xiyi)>

- Can this be used in this form ?

- This is not a matrix - what about the "symplectic" condition ?

How to test it ?

(If bored: find T>34, T304 )



=» |t is the associated Jacobian matrix 7 (all 1st order partial
derivatives) which must fulfil the symplecticity condition:

e ( )
ik — C.g. Jxw = ———
j k (9zlf g j y (9)71

J mustfulfil: g7.5.-9=8

The coordinate 7 and the phase space dimension can be very high order:
(number of particles) - (humber of degrees of freedom)

(LHC ~ 10", in most of my examples n = 4)

7 = MZ]

... an interesting consequence —>



Transformation of the occupied phase space

=
L

02,

—|d"z1 = M|d"z; = /Clle = V)
021 2

41

V2 — /d”zg = /
Vo V1

Under symplectic transformations —> phase space volume is
conserved !!

This is Liouville’s theorem !!

(not to be mistaken for Poincare invariant: [ p-dg = const.)



There is also a problem:

0% ~
j'lk - aZlf (eg jxy — ay1>

J mustfulfil: g7.5.-9=8

In general: 7;; # const (i.e. depend on xj, xi,...)

Confusing ?? o.k. = example sextupoles



Jik

+ 4+
ST

N7 N7 NN

(RTINS

A
S

A
S

[l W)

— N

4

L

2
8X2 8X2 8X2 \
oxy dy; 0y
ox, Oxi, Ox)
oxy oy, 0y
Oy» dy, Oy
oxy dyr 0y
dyy,  dy; 9y,
ox; dy; 0y )

3 / / 4 / /
_y%) + %(xlxl —yiyp + 3_4(3512 _)’12 )
2 / I4 3 / I4
—y%) + Lj(xlxl —yiyp) + %(x12 _)’12 )
3 4 / 4 / </
X1y1 + %(xlyl + y1x}) + %@1)’1))

2 4 / 3 /N,
X1y1 + Lj(xlyl +y1x)) + %(x1y1>)

( 1 L 0 0)

KOOOI}



_ /2 2 L? L* o2 2
Xy =xi+Lx) -k TO7—y)+ Hax; —yiy) + (&7 -y )

_ L/.2 2 L? L, n 2
%=X ko (50 =3+ Hlax -y + SG7 D)

L3 L4
xiy1 + 5y +yixp) + g(xll)’i))

<

[\®]

I

=

+

3
(S o N

N /77 N7 NN
h
()

2 4 / 3 /N,
X1y1 + Lj(xlyl +y1x)) + %(x1y1>)

ze 8X2 8X2 axz
(0_x1 ox; Oy 8y’1\ (lLOO\

ox, 0x, Ox;, 0x)
Ox; Oxy 0Oy, 0y k=0
Ju = oy, oy oy A | T
ox,  0x, dy, Oy,
Oy, Oy, dy; 9y 0 0 0 1

K Oxl ébc’l 6y1 ay’ ) K )

0O 1 0 O

0 0 1 L

For k, # 0 coefficients depend on initial values, e.g.:

Oy

L? L’ , ,
T - 1+ k (—xl + —x’1> == Power series are not symplectic, cannot be used
Y1

- 12



Directly using finite power series maps is ruled out ...
Small error for small ., no errorfor L = 0!

Accelerator physicists love Zero length elements:
engineers don’t, they are technically difficult

Thick "magnet":
Length and Strength specified for computation

Example sextupole: . and k,

Thin "magnet™:
let the length go to zero, but keep Field Integral
finite (L and &, are not specified separately):

Example sextupole: L -k,



Moving through thin elements (shown for 1D)

AN ’
OX3

The "momentum” x’ receives an amplitude dependent
deflection, "kick" x" — x’ + AX

=»> Ax' = f(x) (polynomials of some - possibly high - order)

Always symplectic: no change of amplitude inside the
element, no dependence on initial angle



Can we approximate a thick element by one or more thin
element(s) ?

> Yes, when the length is small or does not matter

» Symplecticity o.k.
} What about accuracy, what have we lost ??

=P Demonstrate with some simple examples

(What follows is valid for all elements and provides the
tools 1)



Check out a quadrupole:

} Start with "exact"* map, compare with thin quadrupole

cos(L - VK) \/LE -sin(L - VK)

Ms—>s+L —
—VK -sin(L- VK)  cos(L- VK)

> Thick to thin: make L smaller and smaller, this permits:

Taylor/power expansion (of sin and cos) in "small” length L:

M=1L"- bo + L. o1 2| 2 OK + ...
0 1 -K 0 0 )

thin lens in ”’linear lectures”

<) .. itisn’t



} Keep up to first order term in L  (contribution with L? is small)

0 1 0 | 0 1
M=L". + L' -
0 1 -K 0
1L ,
M = + O(L")
-K-L 1

» Precise to first order O(L')

» det M = (1 + KL?) # 1, non-symplectic !



A possible remedy out of the blue:

If we add a term — K’ the matrix becomes symplectic:

1 L
~K-L 1-KIL?

=» detM = (1 — KL?> + KL?) = 1
- The model is exact and symplecticity is recovered, the (magnet)
model is slightly inaccurate (approximate, remember yesterday)

- We have not damaged the accuracy too much, the original truncated
matrix is inaccurate to order O(L?) anyway ...



Carry on:

Keep up to second order term in L

1 - 3KL? L X
M = + O(L)
-K-L 1-3KIL?
> Precise to second order O(L?)

> More accurate than before, but again not symplectic

Make it symplectic by adding — KL

1-1KL* L-iKL’ X
M= + O(L)
-K-L 1-3KIL?

This model is more accurate and symplectic, error is of higher order than
before



For many kicks: every "kick"” is symplectic

Is there a physical picture behind the approximations ?

Yes geometry of thin lens kicks ...

A thick element we should split into one or more thin elements with
drifts between them, (cut and shrink) e.g.:




Thick quadrupole => thin quadrupoles => "kicks"

K some options:

Represented by one or more "thin" lenses (kicks)

How many and where ?

Which is a good strategy ? = accuracy and simplicity

Be reasonable, no need to have a longitudinal position precise to
10~ m .. (it is a small step for a man but a giant leap to nonsense)



Option 1

L

One thin quadrupole "kick" and one drift combined

Myick Marift
1 0 1 L 1 L
Marife + kick = = ,
-K-L 1 0 1 -K-L 1-KL

Reminder: product of symplectic matrices is symplectic

Resembles our "symplectification” of order O(1)



Option 2

K L

L/2 L/2

One thin quadrupole "kick" between two drifts of half length

1 5L 10 1 3L 1-1KL* L- ;KD
M= =
0 1 -K-L 1 0 1 -K-L - 1KI?

Resembles more accurate "symplectification” of order O(2)

=



Accuracy of thin lenses

One kick at the end (or beginning):

=» Error (inaccuracy) of second order O(L?)

One kick in the centre:

=»> Error (inaccuracy) of third order O(L>)

It is very relevant how to apply thin lenses !
1 O
1

If you describe a quadrupole like : .

f
The aim should be to be precise and fast (and simple to implement)

Check whether the approximation is valid for you ...



Increase the number of "kicks": What about these options ?

K L/2 K L/2

or.

|
—

- L/3 2L/3

==» Home exercises: Are they symplectic ?



Can one do better ? Try a model with 3 kicks:

cl c2 c3

I I I
d1 d2 d3  d4

=% To get best accuracy (i.e. deviation from exact solution):
== You have 7 free parameters to minimize deviation:
- Kicks c1, c2, c3 (allow different strength)

- Drifts d1, d2, d3, d4 (allow any position of the kicks, but NO need to
be accurate to attometres)



The optimization gives us: (for the derivation, e.g. [AC1])

; asK L a KL ;
' a-L !
| asL ..
| T |
BeK L
with:
1 1 1 -213 1
a = =- , b = :
2 221/ 2 PIEIVE
1 1 1
_ —_ol3. =
R Y, YV T

We have a O(4) integrator ... (without proof)

Watch out: itis —(2.0!/3) and not (-2.0!/3) (remember yesterday !)



Resulting matrix M (from the 7 matrices: 4 drifts, 3 kicks) becomes:

17272 , 1 7474 17273 1213 475
[1- 12 + LKL L- 100 + 5220 kL)
2173 676 2173 677
+mk L 96(2—21/3)4k L
M(O4) =
—K*L + $k*L 1 — 3k°L* + kL
2173 675 2173 676 )
\ +24(2—21/3)2k L + 48(2_21/3)3k L

For the ambitious - Prove that it is symplectic

(MATHEMATICA® is really a good friend ...)

Why all that ? (answer in a few minutes)



What we do is a Symplectic Integration

From a lower order integration scheme (1 kick), construct higher

order scheme:

1 kick 3 kicks ? kicks
~ A ~
02) = 04 = 06 =..

Formally (for the formulation of S, see later):

From a 2nd order scheme (1 kick) S, we construct a 4th order scheme
(3 kicks = 3 x 1 kick) like:

S4=S82(x1)08,(x9) 0S,(x1) with scaling coefficients:

—21/3 1
S22 -




Can be considered an iterative scheme (see e.g.
H. Yoshida, 1990, E. Forest, 1998):

If S, is a symmetric integrator of order 2k, then:

Sorr2 = Sulx1) 0 Saulxo) 0 82 (x1)
. 2k+\1/§ 1
with : Xg = W X1 = W
Higher order integrators can be obtained in a similar way:

S == Soer T Sos T Sos = .

Stop at the desired order, rather simple to implement on a computer
(with paper and pencil makes you a lunatic)



Example: From a 4th order to 6th order

Se6 =84(x1) 0S4(x0) o S4(x1)

Replace each kick of a 4th order integrator by a 4th order
integrator, using the same scaling factors

We get 3 times 4th order with 3 kicks each, we have the 9 kick,
6th order integrator mentioned earlier



Integrator of order 2 — 4

» Replace kick by 4th order integrator



Integrator of order 4 — 6 - step by step

» Replace each kick by 4th order integrator



Integrator of order 4 — 6 - step by step

» Replace each kick by 4th order integrator



Integrator of order 4 — 6 - step by step

> Replace each kick by 4th order integrator, requires 9 kicks

> We have 3 interleaved 4th order integrators (compute M(06)),
repeat the procedure to go to higher orders



We have used a linear map (quadrupole) to demonstrate the
integration

Can that be applied for other maps (solenoids, higher order,
nonlinear maps) ?

> Yes !!
} One gets the same coefficients !

} Proof and systematic (and easy) extension in the form of
Lie operators (see tomorrow)

= Without proof: best possible accuracy for thin lenses
(be smart: a scheme with more thin lenses may be less
precise, even if the position is as accurate as attometres !)




To remember:

Given a truncated Power map we construct a symplectic map
whose lower order terms agree with the exact non-symplectic
Power expansion and whose higher order (neglected) terms are
small.

Key question:

How can we say that the neglected terms do not exceed a tolerable
limit ?



What is the point 2??

Exact quadrupole versus thin lens approximation
0.0004 T T T T T T T

o.0ooo8 Exact map
0.000p
0.000

O

pX

-0.0001

-0.0002

-0.0003

-0.00064

Phase space ellipse - quadrupole exact solution



Quadrupole non-symplectic solution L'

0.00@4

Exact quadrupole versus thin lens approximation

o.0o08 Exact map and non-symplectic map

0.000
0.000R

il /Q 4 i

-0.0001 |

pX

-0.0002 ] _

-0.00083 i

-0.00064

Non-symplecticity: particles spiral towards outside, artifact of
approximation (of the algorithm)



Quadrupole symplectic O(L') solution

Exact quadrupole versus thin lens approximation
0.0004 T T T T T T T

o.oo0B Exact map and symplectic map O(1) o
0.000
0.000Rr

O

pX

-0.0001
-0.0002

-0.0003 Ry

-0.00064

symplectic, solution order O(L'), but visible inaccuracy



Quadrupole symplectic O(L?) solution

Exact quadrupole versus thin lens approximation

0.00G4
o.ooo8 Exact map and symplectic map O(2) e
e ;.
e R
0.000R :
0.000}
>
o o
ﬂ/’
-0.000
v
/7
-0.0002 i e
3 e
-0.0003 s e
-0.0064 '
-2 1.5 1 0.5 (6] 0.5 1 1.5

symplectic, solution order O(L?), but good accuracy



Quantitatively: Accuracy of (nonlinear) thin lenses

Nonlinear elements are usually thin (thinner than dipoles, quadrupoles ...)

Dipoles: ~ 14.3 m

Quadrupole: *2-5m

Sextupoles, Octupoles: ~ 0.30 m

Decapole: ~ 0.07 m

Assume a kick from a general function of x:
deflection: Ax" = f(x)

e.g. quadrupole f(x) = k- x!
e.g. sextupole f(x) = k- x*

e.g. octupole f(x) = k- x°

== Can try our simplest thin lens approximation O(2) first ...



Drift - Kick - Drift

Ax' = f(x)
-— /2 ——|-—L12——
X 1 £ X0
1.Step = 2 o
x’ 0 1 X
S1+L/2 51
)6 X X
Step = =
x’ X'+ Ax’ X'+ f(x)
s1+L/2 s1+L/2 s1+L/2
X 1 ]5 X
3.5tep = o
x' 0 1 x



Putting it together and written in explicit form:

L
x(L) X+ 5 - (xg + X'(1))
- L
x'(L) Xo+ L f(xo + 5x)
L? L,
w—p> X(L)%X()‘FL'X(’) +7'f(X()+§XO)

Vo

(using: f(z+Az) = f(z) + f'(z)- Az for small Az)

2 L3
=»> | x(L)=xo+L-x5, + 5 - f(xg) + vy - [T (x0)x

It is symplectic !!



Comparison:

the (exact, but non-symplectic) Taylor expansion of f(x) gives:
L2 3
x(L) = xo+xyL+ Tf(x()) + gf’(x())x(') + ...
the (approximate, but symplectic) algorithm gives:
2 L3

L
x(L) = xo+xyL+ Tf(x()) + Zf’(x())x(') + ...

> Errors are O(L’) (is correct to O(L?) by construction)
Errors are O(L°) for the O(L*) (3 kicks) scheme

» For small L acceptable, and symplectic

3
Ldeca pole -7
3 ~ 10
dipole

just for illustration :



An application, a (1D) sextupole with:
f) = k-x*

using the thin lens approximation gives:

1

—kxoxy L
o
1 1 N
x(L) = xo+xoL+ ikx%Lz + Ekxox(')L3 + ...
1
X (L) = x{+kxiL+kxoxyL* + ka62L3 + ...

Map for thick sextupole of length L in thin lens approximation,
accurate to O(L?)



Short summary: thin lens computations
- Are exactly symplectic
- Simulations based on thin lenses fast and efficient

successfully applied to large (storage) rings (e.g. SPS, Tevatron, LHC,
LEP, ...)

But they do not represent an exact model of the accelerator

If used blindly: .. an exact solution to a wrong problem

For (large) accelerators the thin lenses are usually a good approximation
and tool (because we do not have to go to very high-order integrators to
get proper resulits).

An extension and more accurate treatment in particular for non-linear
elements in terms of Hamiltonian dynamics



