Field Solvers

Prof. Dr.-Ing. Herbert De Gersem

CERN Accelerator School 2018 Thessaloniki, Greece, 11-23 November 2018

Lecture 3 : Simulating Accelerating Cavities

Motivation

Particle accelerators

- FLASH at DESY, Hamburg

TESLA 3.9 GHz Cavity

TESLA 3.9 GHz Cavity

TESLA 3.9 GHz Cavity

TESLA 3.9 GHz Cavity (Model)

Outline

- XFEL + Tesla 3.9 GHz cavities
- FE eigenmode solver + on-axis fields
- Kirchhoff integrals + symmetric meshes

Finite-Element Eigenmode Solver

- FE discretisation
 - local Ritz approach

$$ec{E} = ec{E}(ec{r})$$
 $= \sum_{i=1}^n lpha_i \, ec{w_i}(ec{r})$ Galerki

- \vec{w} vectorial function
- α_i scalar coefficient
- i global index
- n number of DOFs

$$\begin{aligned} \operatorname{curl} 1/\mu_{\mathsf{r}} \operatorname{curl} \vec{E} &= \left(\frac{\omega}{c_0}\right)^2 \varepsilon_{\mathsf{r}} \vec{E} \Big|_{\vec{r} \in \Omega} \\ \operatorname{div}(\varepsilon \vec{E}) \Big| &= 0 \\ \vec{r} \in \Omega \end{aligned} + \text{boundary conditions} \end{aligned}$$

continuous eigenvalue problem

in
$$A_{ij} = \iiint_{\Omega} 1/\mu_{r} \operatorname{curl} \vec{w}_{i} \cdot \operatorname{curl} \vec{w}_{j} d\Omega$$

 $B_{ij} = \iiint_{\Omega} \varepsilon_{r} \vec{w}_{i} \cdot \vec{w}_{j} d\Omega$
 $C_{ij} = \iiint_{\Omega} Z_{0} \sigma \vec{w}_{i} \cdot \vec{w}_{j} d\Omega$

$$A\vec{\alpha} + j\frac{\omega}{c_0}C\vec{\alpha} + (j\frac{\omega}{c_0})^2B\vec{\alpha} = 0$$

discrete eigenvalue problem

Finite-Element Eigenmode Solver

Jacobi-Davidson method

- important properties
 - direct solution difficult because of dense matrix in correction equation.
 - iterative solution not immediately applicable because vectors Δ*x* with Δ*x* ∈ R{(V_B)⊥} are not mapped back onto R{(V_B)⊥} again.
- preconditioning
 - JD preconditioner

 $PC = \{I - M^{-1}V_B[(M^{-1}V_B)^T V_B]^{-1}V_B^T\}M^{-1}$ = $M^{-1} - M^{-1}V_B[(M^{-1}V_B)^T V_B]^{-1}V_B^T M^{-1}$

retains the property $\Delta \vec{x} \in R\{(V_B)_{\perp}\}$ for any preconditioner M^{-1} .

simplest case:
$$M^{-1} = I \quad \hookrightarrow \quad PC = I - VV_B^T = P$$

Finite-Element Eigenmode Solver

parallelisation on a compute cluster

200 nodes 400 CPUs 2400 cores 90kW cooling power 80kW power 3200 GB memory ~7t weight ~1M€ investment cost 40 GBIT connection

Numerical Examples

quality factor versus frequency

Mode Atlas

collection of the first 194 modes (selected page)

magnitude of the electric field strength (longitudinal cut)

- magnitude of the magnetic flux density (longitudinal cut)
- magnitude of the electric field and the magnetic flux density (transverse cut)

resonance frequency, quality factor and shunt impedances

fundamental mode

absolute value of the electric field strength $|\vec{E}|$

logarithmic scale from 10^4 to 10^7 V/m

LPW = 20 3.337.736 tetrahedra

off-axis

- Field components parallel to the cavity axis (LPW 4,8,16)
 - Transversal offset at $x_0 = 5 \text{ mm}$, $y_0 = 5 \text{ mm}$

on-axis (standard)

• Field components parallel to the cavity axis (LPW 4,8,16)

- Transversal offset at $x_0 = 0 \text{ mm}$, $y_0 = 0 \text{ mm}$

• Field component E_z parallel to the cavity axis

on-axis (standard)

Field component E_x parallel to the cavity axis

on-axis (standard)

- Field representation in the finite-element method
 - Edge shape funktion $\vec{w}_0(\vec{r})$

example: equilateral tetrahedron

point	х	У	z
0	0	0	0
1	1	0	0
2	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	0
3	$\frac{1}{2}$	$\frac{1}{2\sqrt{3}}$	$\sqrt{\frac{2}{3}}$

- Field representation in the finite-element method
 - Representation of the electric field strength

$$\vec{f}(\vec{r}) = \sum_{i=0}^{N-1} a_i \ \vec{w}_i(\vec{r})$$

- Projection of an arbitrary electric field strength \vec{f} on the basis \vec{w}_i

- Residuals of vector fields

/1\

$$\vec{R}(\vec{r}) = \sum_{i=0}^{N-1} a_i \ \vec{w}_i(\vec{r}) - \vec{f}(\vec{r})$$

- Fundamental field components

<u>///\</u>

order	DOFs per cell
0.5	6
1	12
1.5	20
2	30
2.5	45
3	60
3.5	84
4	105

- Field representation in the finite-element method
 - Residuals of vector fields

$$\vec{R}(\vec{r}) = \sum_{i=0}^{N-1} a_i \ \vec{w}_i(\vec{r}) - \vec{f}(\vec{r})$$

- Fundamental field components

Outline

- XFEL + Tesla 3.9 GHz cavities
- FE eigenmode solver + on-axis fields
- Kirchhoff integrals + symmetric meshes

Field reconstruction using the Kirchhoff integral

- Field values inside a closed surface can be determined once the surface field components are available
- Kirchhoff integral

$$\vec{E}(\vec{r}) = \int \left(k(\vec{n}' \times ic_0 \vec{B}') \ G - (\vec{n}' \times \vec{E}') \times \nabla G - (\vec{n}' \cdot \vec{E}') \ \nabla G \right) dA'$$
$$ic_0 \vec{B}(\vec{r}) = \int \left(k(\vec{n}' \times \vec{E}') \ G - (\vec{n}' \times ic_0 \vec{B}') \times \nabla G - (\vec{n}' \cdot ic_0 \vec{B}') \ \nabla G \right) dA'$$

Field reconstruction using the Kirchhoff integral

- Surface selection

Field reconstruction using the Kirchhoff integral

- Surface selection

Field reconstruction using the Kirchhoff integral

- Surface selection

Field component E_x parallel to the cavity axis

on-axis (Kirchhoff)

Field component E_v parallel to the cavity axis

on-axis (Kirchhoff)

Outline

- XFEL + Tesla 3.9 GHz cavities
- FE eigenmode solver + on-axis fields
- Kirchhoff integrals + symmetric meshes

TESLA 3.9 GHz Cavity (Meshing)

Mathematica^{*}

- Generate symmetric mesh in the cavity region
 - Use CST mesher for the "blue" region
 - Use proper software to copy the corresponding tetrahedral mesh to the "orange" region
 - Make sure that

the interfaces

match

on-axis

Field component cB_z parallel to the cavity axis

Conclusions

- in accelerator cavities, (transversal) field maps are challenging
- noise because of unstructured tetrahedral meshes
- a-posteriori improvement by Kirchhoff integrals
- a-priori caution: use symmetric meshes

