Introduction to Machine Learning 1

Nov., 2018 D. Ratner SLAC National Accelerator Laboratory

What is machine learning?

Arthur Samuel (1959): Ability to learn without being explicitly programmed

Tom Mitchell (1998): Computer program learns from experience E with respect to task T if its performance, P, improves after experience E.

When is machine learning successful?

Tasks which humans can learn, but have trouble explaining how

Regression

Neural networks

Sentient computers

Introduction

SLAC

Topics

Supervised learning (examples with labels):

ML framework/terminology Regression vs. classification Parameteric vs. non-parametric models

Unsupervised learning (examples, no labels):

Clustering, anomaly/breakout detection, generation

Reinforcement learning (examples, partial labels):

Control, games, optimization

Goal from Lecture 1: Learn terminology and framework of ML

Goal from Lecture 2: See examples of ML in accelerator physics

Material drawn from: Stanford CS 229, EE103 Michael Nielsen, Neural Networks and Deep Learning

Least Squares Regression

Start from a simple problem: can we predict house price?

- "Training set" consists of *m* examples
- Each example has *n* attributes (**x**) and one label (y)

Our goal: given a new example, x', can we predict its label, y'?

The core of machine learning: how do we learn best θ given data x,y?

Need a metric for "best": Cost/Loss function

$$h_{\theta}(x^{(i)}) = \theta^T x^{(i)}$$

Examples: mean square error (MSE), absolute error, etc.

The core of machine learning: how do we learn best θ given data X,y?

Need a metric for "best": Cost/Loss function

$$h_{\theta}(x^{(i)}) = \theta^T x^{(i)}$$

Examples: mean square error (MSE), absolute error, etc.

"Hyper-parameters": how do we choose model itself?

e.g. pick model architecture, cost function, learning rate, etc.

SLAC

SLAC

*

1.0

"Hyper-parameters": how do we choose model itself?

e.g. pick model architecture, cost function, learning rate, etc.

Split data into training and test (and validation) sets

Typical split: 80/20 or 80/10/10

Bias-Variance Tradeoff

SLAC

High bias \rightarrow Collect new attributes, create new features, more parameters High variance \rightarrow Fewer features (e.g. "mutual information"), more data

Supervised learning: Hyper-parameter choice

SLAC

Least Squares Regression: Probabilistic interpretation

1.7

$$y^{(i)} = \theta^{T} x^{(i)} + \epsilon^{(i)}$$

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(\epsilon^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$p(e^{(i)}) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(e^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$
Define "Likelihood":
$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)};\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

Least Squares Regression: Probabilistic interpretation

SLAC

"Maximum Likelihood Estimation (MLE)"

Least Squares Regression: Bayesian interpretation

	Sick (1% of pop.)	Healthy (99% of pop.)
Positive test	90%	10%
Negative test	10%	90%

Given positive result, what is probability of correct diagnosis?

~8%

Logistic Regression

Classification problem: Did a house sell?

$$h_{\theta}(x^{(i)}) = \theta^T x^{(i)}$$

Output limited to range [0 , 1] \rightarrow full regression seems awkward

Instance-based learning

Parametric model: $h_{\theta_1,\ldots,\theta_n}(x)$ Non-parametric model: $h_{x^{(1)},\ldots,x^{(m)}}(x)$

Optimal-margin classifier

Alternative classifier definition: find hyperplane that divides classes $w^T x^{(i)} + b^T$

Optimal-margin classifier: pick line with *maximize minimum distance* from plane

SLAC

Optimal-margin classifier

0.9

0.8

×

Did house sell?

Alternative classifier definition: $w^T x^{(i)} + b^T$ find hyperplane that divides classes

Optimal-margin classifier: pick line with maximize minimum distance from plane

Support vector machine (SVM):

SLAC

Did house sell?

Support Vector Machines

What happens if classes aren't separable?

Try adding new features: e.g. $x_1^2 + x_2^2$

 $x \implies \phi(x)$

 $x \implies \phi(x) \qquad \langle x, z \rangle \implies \langle \phi(x), \phi(z) \rangle$ Feature mapping: mSVM equation: $w^T x + b = \sum \alpha_i y^{(i)} \langle \phi(x^{(i)}), \phi(x) \rangle + b$ i=1Define "kernel": $K(x,z) = \left\langle \phi(x), \phi(z) \right\rangle = \phi(x)^T \phi(z)$ New SVM equation: $w^T x + b = \sum \alpha_i y^{(i)} K(x^{(i)}, x) + b$ i=1 $K(x,z) = (x^T z)^2 \quad \Longleftrightarrow \quad \phi(x) = \sum x_i x_j$ i, j=1

SVMs and Kernels

SLAC

SVMs and Kernels

Feature mapping:
$$x \implies \phi(x) \quad \langle x, z \rangle \implies \langle \phi(x), \phi(z) \rangle$$

SVM equation: $w^T x + b = \sum_{i=1}^m \alpha_i y^{(i)} \langle \phi(x^{(i)}), \phi(x) \rangle + b$
Define "kernel": $K(x, z) = \langle \phi(x), \phi(z) \rangle = \phi(x)^T \phi(z)$
New SVM equation: $w^T x + b = \sum_{i=1}^m \alpha_i y^{(i)} K(x^{(i)}, x) + b$
 $K(x, z) = e^{-||x-z||^2/2\sigma^2} \longleftrightarrow \phi(x)$

Mercer's theorem: K(x,z) is kernel iff symmetric, positive, semi-definite

O(n) "Kernel trick"

Presenting Classification Results

How do I report how well my model works?

h(x) = 0 99% accurate!

Presenting Classification Results

How do I report how well my model works?

How do I pick the threshold for classification?

SLAC

Presenting Classification Results

SLAC

scikit-learn

The Perceptron

SLAC

Michael Nielsen, Neural Networks and Deep Learning, Determination Press (2015)

Artificial Neural Networks

Problem: $O(n^2)$

SLAC

Clever idea to the rescue: Use the chain rule! Backpropagation

Michael Nielsen, Neural Networks and Deep Learning, Determination Press (2015)

Convolutional Neural Networks

-HO000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	200
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	000

ANNs practical tips

SLAG

test

train

- 1. Training is slow \rightarrow use GPUs
- Large models can have millions of parameters, prone to over-fitting
 → Use regularization, drop-out, noise-layers, lots of data
- 3. Always plot training AND validation loss \rightarrow shows bias vs. variance
- Not training? → Try different loss functions, activations, architectures, mini-batch parameters, optimization algorithms, learning rates, data quality ...

What can be accomplished without labels?

Supervised learning: **X**, **y** Unsupervised learning: **X**

What can we hope to accomplish?

- 1. Clustering (classification)
- 2. Decomposition (e.g. separating audio signals)
- 3. Anomaly/breakout detection (e.g. fault detection/prediction)
- 4. Generation (e.g. creating new examples within a class)

What can be accomplished without labels?

Clustering: Divide x into k categories

K-means algorithm:

- a. Pick 'k' random centroids
- b. Loop until convergence {
 - 1. Assign examples to nearest centroid
 - 2. Update centroids to mean of clusters

See also: Hierarchical clustering, DBSCAN, etc...

http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Time series data: Anomaly/Breakout/Changepoint Detection

Sep 26 12h

Sep 27 12h

Anomaly detection:

identify points that are statistical outliers from a distribution

Find point in time at which distribution changed

$$\mathcal{E}(X,Y) = 2E|X-Y| - E|X-X'| - E|Y-Y'|$$

D.91% Anomalies (alpha=0.05, direction=both)

SLAC

Leveraging Cloud Data to Mitigate User Experience

12h Oct 1

12h Oct 2 12h Oct 3 12h Oct 4 12h

Sep 29 12h Sep 30

from 'Breaking Bad'

Generating new data

Unsupervised learning with neural networks: train a model to generate new examples based on training set

Deep dreaming of dogs

If you train a network to recognize dogs...

...it will hallucinate dogs

Style transfer

Gatys, et al.

SLA

Unsupervised learning

Generating new data

SLAC

Generative Adversarial Network (GAN)

SLAC

Reinforcement Learning

Third category: partial supervision

e.g. when playing a game, will not have a known label for every position

Goal is to find "policy": optimal action a_s , given state s

r = +5

D = 0.10

Actions: *a* States: *s* Transition probability: *p* Rewards: *r*