Multi-Particle Simulation Techniques II

Ji Qiang

Accelerator Modeling Program Accelerator Technology & Applied Physics Division Lawrence Berkeley National Laboratory

CERN Accelerator School, Thessaloniki, Greece Nov. 16, 2018

Office of Science

Contrast of Non-Symplectic and Symplectic Integrator

Courtesy of S. Lund

U.S. DEPARTMENT OF

Office of Science

A Symplectic Multi-Particle Tracking Model (1)

A formal single step solution

$$\begin{split} \zeta(\tau) &= \exp(-\tau(:H:))\zeta(0) & H = H_1 + H_2 \\ \zeta(\tau) &= \exp(-\tau(:H_1:+:H_2:))\zeta(0) \\ &= \exp(-\frac{1}{2}\tau:H_1:)\exp(-\tau:H_2:)\exp(-\frac{1}{2}\tau:H_1:)\zeta(0) + O(\tau^3) \\ \hline \zeta(\tau) &= \mathcal{M}(\tau)\zeta(0) & \mathbf{M} \text{ would be symplectic if } \\ &= \mathcal{M}_1(\tau/2)\mathcal{M}_2(\tau)\mathcal{M}_1(\tau/2)\zeta(0) & \mathbf{M} \text{ would be symplectic if } \\ \end{split}$$

J. Qiang, Phys. Rev. Accel. Beams 20, 014203 (2017), Phys. Rev. Accel. Beams 21, 054201 (2018).

A Symplectic Multi-Particle Tracking Model (2)

2nd order:

$$\begin{aligned} \zeta(\tau) &= \mathcal{M}(\tau)\zeta(0) \\ &= \mathcal{M}_1(\tau/2)\mathcal{M}_2(\tau)\mathcal{M}_1(\tau/2)\zeta(0) \end{aligned}$$

4th order

rder:
$$\mathcal{M}(\tau) = \mathcal{M}_1(\frac{s}{2})\mathcal{M}_2(s)\mathcal{M}_1(\frac{\alpha s}{2})\mathcal{M}_2((\alpha - 1)s)\mathcal{M}_1(\frac{\alpha s}{2})\mathcal{M}_2(s)\mathcal{M}_1(\frac{s}{2})$$

where $\alpha = 1 - 2^{1/3}$, and $s = \tau/(1 + \alpha)$

higher order:
$$\mathcal{M}_{2n+2}(au) = \mathcal{M}_{2n}(z_0 au)\mathcal{M}_{2n}(z_1 au)\mathcal{M}_{2n}(z_0 au)$$

where $z_0 = 1/(2 - 2^{1/(2n+1)})$ and $z_1 = -2^{1/(2n+1)}/(2 - 2^{1/(2n+1)})$ Symplectic condition: $M_i^T J M_i = J$ M is the Jacobi Matrix of \mathcal{M}

where J denotes the $6N \times 6N$ matrix given by

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \text{ and } I \text{ is the } 3N \times 3N \text{ identity matrix}$$

Refs: E. Forest and R. D. Ruth, Physica D **43**, p. **105**, **1990**. H. Yoshida, Phys. Lett. A **150**, p. **262**, **1990**.

A Symplectic Multi-Particle Tracking Model (3)

$$H_1 = \sum_i \mathbf{p}_i^2 / 2 + \sum_i q \psi(\mathbf{r}_i) \longrightarrow \mathcal{M}_i$$

• symplectic map for H_1 can be found from charged particle optics method

$$H_{2} = \frac{1}{2} \sum_{i} \sum_{j} q\phi(\mathbf{r}_{i}, \mathbf{r}_{j}) \longrightarrow M_{2}$$

$$\mathbf{r}_{i}(\tau) = \mathbf{r}_{i}(0)$$

$$\mathbf{p}_{i}(\tau) = \mathbf{p}_{i}(0) - \frac{\partial H_{2}(\mathbf{r})}{\partial \mathbf{r}_{i}} \tau$$

$$M_{2} = \begin{pmatrix} I & 0 \\ L & I \end{pmatrix} \text{ To satisfy the symplectic condition: } L = L^{T}$$

$$L_{ij} = \partial \mathbf{p}_{i}(\tau) / \partial \mathbf{r}_{j} = -\frac{\partial^{2} H_{2}(\mathbf{r})}{\partial \mathbf{r}_{i} \partial \mathbf{r}_{j}} \tau$$

 M_2 will be symplectic if p_i is updated from H_2 analytically

Self-Consistent Space-Charge Transfer Map (1)

$$\phi(x = 0, y) = 0$$

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -\frac{\rho}{\epsilon_0} \qquad \begin{array}{l} \phi(x = a, y) = 0 \\ \phi(x, y = a, y) = 0 \\ \phi(x, y = b) = 0 \end{array}$$

$$\phi(x, y) = \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \rho^{lm} \sin(\alpha_l x) \sin(\beta_m y)$$

$$\phi(x, y) = \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \phi^{lm} \sin(\alpha_l x) \sin(\beta_m y)$$

$$\rho^{lm} = \frac{4}{ab} \int_0^a \int_0^b \rho(x, y) \sin(\alpha_l x) \sin(\beta_m y) dxdy$$

$$\phi^{lm} = \frac{4}{ab} \int_0^a \int_0^b \phi(x, y) \sin(\alpha_l x) \sin(\beta_m y) dxdy$$
where $\alpha_l = l\pi/a$ and $\beta_m = m\pi/b$

$$\phi^{lm} = \frac{\rho^{lm}}{\epsilon_0 \gamma_{lm}^2}$$
where $\gamma_{lm}^2 = \alpha_l^2 + \beta_m^2$

0

Self-Consistent Space-Charge Transfer Map (2)

The charge density from macroparticles:

$$\rho(x, y) = \frac{1}{\Delta x \Delta y N_p} \sum_{j=1}^{N_p} S(x - x_j) S(y - y_j)$$

The solution of space-charge potential modes:

$$\phi^{lm} = \frac{4\pi}{\gamma_{lm}^2} \frac{4}{ab} \frac{1}{N_p} \sum_{j=1}^{N_p} \frac{1}{\Delta x \Delta y} \int_0^a \int_0^b S(x - x_j) S(y - y_j) \times \frac{\sin(\alpha_l x) \sin(\beta_m y) dx dy}{(1 + 1)^{1/2}}$$

The solution of space-charge potential:

$$\phi(x,y) = 4\pi \frac{4}{ab} \frac{1}{N_p} \sum_{j=1}^{N_p} \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \frac{1}{\gamma_{lm}^2} \sin(\alpha_l x) \sin(\beta_m y) \frac{1}{\Delta x \Delta y} \int_0^a \int_0^b S(\bar{x} - x_j) S(\bar{y} - y_j) \sin(\alpha_l \bar{x}) \sin(\beta_m \bar{y}) d\bar{x} d\bar{y}.$$

The space-charge potential on macroparticles:

$$\phi(x_i, y_i) = \frac{1}{\Delta x \Delta y} \int_0^a \int_0^b \phi(x, y) S(x - x_i) S(y - y_i) dx dy$$

Self-Consistent Space-Charge Transfer Map (3)

The interaction potential:

$$\begin{split} \varphi(x_i, y_i, x_j, y_j) &= 4\pi \frac{4}{ab} \frac{1}{N_p} \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \frac{1}{\gamma_{lm}^2} \frac{1}{\Delta x \Delta y} \int_0^a \int_0^b S(x - x_j) S(y - y_j) \sin(\alpha_l x) \sin(\beta_m y) dx dy \\ &\times \frac{1}{\Delta x \Delta y} \int_0^a \int_0^b S(x - x_i) S(y - y_i) \sin(\alpha_l x) \sin(\beta_m y) dx dy. \end{split}$$

The space-charge Hamiltonian:

$$H_{2} = 4\pi \frac{K}{2} \frac{4}{ab} \frac{1}{N_{p}} \sum_{i=1}^{N_{p}} \sum_{j=1}^{N_{p}} \sum_{l=1}^{N_{p}} \sum_{m=1}^{N_{m}} \frac{1}{\gamma_{lm}^{2}} \frac{1}{\Delta x \Delta y} \int_{0}^{a} \int_{0}^{b} S(x - x_{j}) S(y - y_{j}) \sin(\alpha_{l} x) \sin(\beta_{m} y) dx dy$$
$$\times \frac{1}{\Delta x \Delta y} \int_{0}^{a} \int_{0}^{b} S(x - x_{i}) S(y - y_{i}) \sin(\alpha_{l} x) \sin(\beta_{m} y) dx dy.$$

Symplectic Gridless Symplectic Space-Charge Model

$$\rho(x,y) = \sum_{j=1}^{N_p} w \delta(x-x_j) \delta(y-y_j)$$
w is the particle
charge weight
$$H_2 = \frac{1}{2\epsilon_0} \frac{4}{ab} w \sum_i \sum_j \sum_l \sum_m \frac{1}{\gamma_{lm}^2} \sin(\alpha_l x_j)$$

$$\sin(\beta_m y_j) \sin(\alpha_l x_i) \sin(\beta_m y_i)$$

$$p_{xi}(\tau) = p_{xi}(0) - \tau \frac{1}{\epsilon_0} \frac{4}{ab} w \sum_j \sum_l \sum_m \frac{\alpha_l}{\gamma_{lm}^2}$$

$$\sin(\alpha_l x_j) \sin(\beta_m y_j) \cos(\alpha_l x_i) \sin(\beta_m y_i)$$

$$p_{yi}(\tau) = p_{yi}(0) - \tau \frac{1}{\epsilon_0} \frac{4}{ab} w \sum_j \sum_l \sum_m \frac{\beta_m}{\gamma_{lm}^2}$$

$$\sin(\alpha_l x_j) \sin(\beta_m y_j) \sin(\alpha_l x_i) \cos(\beta_m y_i)$$

Symplectic Particle-In-Cell Model (1)

$$\begin{split} p_{xi}(\tau) &= p_{xi}(0) - \tau 4\pi K \frac{4}{ab} \frac{1}{N_p} \sum_{j=1}^{N_p} \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \frac{1}{\gamma_{lm}^2} \frac{1}{\Delta x \Delta y} \int_0^a \int_0^b S(x - x_j) S(y - y_j) \sin(\alpha_l x) \sin(\beta_m y) dx dy \\ &\times \frac{1}{\Delta x \Delta y} \int_0^a \int_0^b \frac{\partial S(x - x_l)}{\partial x_i} S(y - y_l) \sin(\alpha_l x) \sin(\beta_m y) dx dy, \\ p_{yi}(\tau) &= p_{yi}(0) - \tau 4\pi K \frac{4}{ab} \frac{1}{N_p} \sum_{j=1}^{N_p} \sum_{l=1}^{N_m} \sum_{m=1}^{N_m} \frac{1}{\gamma_{lm}^2} \frac{1}{\Delta x \Delta y} \int_0^a \int_0^b S(x - x_j) S(y - y_j) \sin(\alpha_l x) \sin(\beta_m y) dx dy \\ &\times \frac{1}{\Delta x \Delta y} \int_0^a \int_0^b S(x - x_l) \frac{\partial S(y - y_l)}{\partial y_l} \sin(\alpha_l x) \sin(\beta_m y) dx dy, \\ p_{xi}(\tau) &= p_{xi}(0) - \tau 4\pi K \frac{4}{ab} \frac{1}{N_p} \sum_{j=1}^{N_p} \sum_{l=1}^{N_m} \sum_{m=1}^{N_m} \frac{1}{\gamma_{lm}^2} \sum_{l'} \sum_{j'} S(x_{l'} - x_j) S(y_{j'} - y_j) \sin(\alpha_l x_{l'}) \sin(\beta_m y_{j'}) \\ &\times \sum_{l} \sum_{j} \frac{\partial S(x_l - x_l)}{\partial x_i} S(y_j - y_l) \sin(\alpha_l x_l) \sin(\beta_m y_j), \\ p_{yi}(\tau) &= p_{yi}(0) - \tau 4\pi K \frac{4}{ab} \frac{1}{N_p} \sum_{j=1}^{N_p} \sum_{l=1}^{N_m} \sum_{m=1}^{N_m} \frac{1}{\gamma_{lm}^2} \sum_{l'} \sum_{j'} S(x_{l'} - x_j) S(y_{j'} - y_j) \sin(\alpha_l x_{l'}) \sin(\beta_m y_{j'}) \\ &\times \sum_{l} \sum_{j} \frac{\partial S(x_l - x_l)}{\partial x_i} S(y_j - y_l) \sin(\alpha_l x_l) \sin(\beta_m y_j), \\ p_{yi}(\tau) &= p_{yi}(0) - \tau 4\pi K \frac{4}{ab} \frac{1}{N_p} \sum_{j=1}^{N_p} \sum_{l=1}^{N_m} \sum_{m=1}^{N_m} \frac{1}{\gamma_{lm}^2} \sum_{l'} \sum_{j'} S(x_{l'} - x_j) S(y_{j'} - y_j) \sin(\alpha_l x_{l'}) \sin(\beta_m y_j), \\ &\times \sum_{l} \sum_{j} S(x_l - x_l) \frac{\partial S(y_l - y_l)}{\partial y_i} \sin(\alpha_l x_l) \sin(\alpha_l x_l) \sin(\beta_m y_j), \end{aligned}$$

Ø

Symplectic PIC Model (2)

Define charge density on grid as:

$$\bar{\rho}(x_{I'}, y_{J'}) = \frac{1}{N_p} \sum_{j=1}^{N_p} S(x_{I'} - x_j) S(y_{J'} - y_j),$$

Space-charge \mathcal{M}_{2}

$$p_{xi}(\tau) = p_{xi}(0) - \tau 4\pi K \sum_{I} \sum_{J} \frac{\partial S(x_I - x_i)}{\partial x_i} S(y_J - y_i)$$

$$\times \left[\frac{4}{ab}\sum_{l=1}^{N_l}\sum_{m=1}^{N_m}\frac{1}{\gamma_{lm}^2}\sum_{I'}\sum_{J'}\bar{\rho}(x_{I'},y_{J'})\sin(\alpha_l x_{I'})\sin(\beta_m y_{J'})\sin(\alpha_l x_I)\sin(\beta_m y_{J})\right],$$

$$p_{yi}(\tau) = p_{yi}(0) - \tau 4\pi K \sum_{I} \sum_{J} S(x_{I} - x_{i}) \frac{\partial S(y_{I} - y_{i})}{\partial y_{i}}$$

$$\times \left[\frac{4}{ab}\sum_{l=1}^{N_l}\sum_{m=1}^{N_m}\frac{1}{\gamma_{lm}^2}\sum_{I'}\sum_{J'}\bar{\rho}(x_{I'},y_{J'})\sin(\alpha_l x_{I'})\sin(\beta_m y_{J'})\sin(\alpha_l x_I)\sin(\beta_m y_{J})\right].$$

Symplectic PIC Model (3)

Define potential on grid as:

$$\phi(x_I, y_J) = \frac{4}{ab} \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \frac{1}{\gamma_{lm}^2} \sum_{I'} \sum_{J'} \bar{\rho}(x_{I'}, y_{J'}) \sin(\alpha_l x_{I'}) \sin(\beta_m y_{J'}) \sin(\alpha_l x_I) \sin(\beta_m y_J).$$

$$S(x_{I} - x_{i}) = \begin{cases} \frac{3}{4} - (\frac{x_{i} - x_{I}}{\Delta x})^{2}, & |x_{i} - x_{I}| \leq \Delta x/2, \\ \frac{1}{2} \left(\frac{3}{2} - \frac{|x_{i} - x_{I}|}{\Delta x}\right)^{2}, & \Delta x/2 < |x_{i} - x_{I}| \leq 3/2\Delta x, \\ 0 & \text{otherwise,} \end{cases}$$
$$\frac{\partial S(x_{I} - x_{i})}{\partial x_{i}} = \begin{cases} -2(\frac{x_{i} - x_{I}}{\Delta x})/\Delta x, & |x_{i} - x_{I}| \leq \Delta x/2, \\ (-\frac{3}{2} + \frac{(x_{i} - x_{I})}{\Delta x})/\Delta x, & \Delta x/2 < |x_{i} - x_{I}| \leq 3/2\Delta x, x_{i} > x_{I}, \\ (\frac{3}{2} + \frac{(x_{i} - x_{I})}{\Delta x})/\Delta x, & \Delta x/2 < |x_{i} - x_{I}| \leq 3/2\Delta x, x_{i} \leq x_{I}, \\ 0 & \text{otherwise.} \end{cases}$$

 M_2

Non-Symplectic PIC Model

$$\begin{aligned} \frac{d\mathbf{r}_i}{ds} &= \mathbf{p}_i \\ \frac{d\mathbf{p}_i}{ds} &= q(\mathbf{E}_i/v_0 - a_z \times \mathbf{B}_i) \\ \mathbf{r}(\tau/2)_i &= \mathbf{r}(0)_i + \frac{1}{2}\tau\mathbf{p}_i(0) \\ E_x(x_I, y_J) &= -\sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \alpha_l \phi^{lm} \cos(\alpha_l x) \sin(\beta_m y) \\ E_y(x_I, y_J) &= -\sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \beta_m \phi^{lm} \sin(\alpha_l x) \cos(\beta_m y) \\ p_{xi}(\tau) &= p_{xi}(0) + \tau(\frac{qE_x^{ext}}{v_0} - qB_y^{ext}) + \tau 4\pi K \sum_I \sum_J S(x_I - x_i) S(y_J - y_i) E_x(x_I, y_J) \\ p_{yi}(\tau) &= p_{yi}(0) + \tau(\frac{qE_y^{ext}}{v_0} + qB_x^{ext}) + \tau 4\pi K \sum_I \sum_J S(x_I - x_i) S(y_J - y_i) E_y(x_I, y_J) \\ \mathbf{r}(\tau)_i &= \mathbf{r}(\tau/2)_i + \frac{1}{2}\tau\mathbf{p}_i(\tau) \end{aligned}$$

Benchmark Case 1: FODO Lattice, Below 2nd Order Envelop Instability

╶╶┎╶╷╶┎╶╔╶╔╶╔╶╔╶╔╶╔╶

- 1 GeV proton beam
- FODO lattice
- 0 current phase advance: 85 degrees
- Initial 4D Gaussian distribution

Significant Difference in Final 4D Emittances Between the Symplectic and the Non-Symplectic Methods (Strong Space-Charge: Phase Advance Change 85 -> 42)

Two symplectic approaches show good agreement.

Office of Science

Final Beam X-Px Phase Spaces Have Similar Shapes Non-Symplectic Model Has Smaller Area

Final Y-Py Phase Space Show Similar Shapes

Horizontal and Vertical Density Profiles from the Symplectic Gridless Model, the Symplectic PIC Model, and the Non-Symplectic Spectral PIC

- Two symplectic solvers produce similar density profiles
- Non-symplectic solver produces larger core density

Finer Step Size Needed for Non-Symplectic PIC (Symplectic PIC vs. Non-Symplectic PIC)

19

Benchmark Case 2: 1 Turn = 10 FODOs + 1 Sextupole

╶┨┨┨┨┨┨┨┨

- 0 current tune 2.417, 30 A current, tune shift 0.113
- sextupole KL = 10 T/m/m

Non-Symplectic PIC Shows Much Less Emittance Growth Compared with Two Symplectic Models (4D Emittance Evolution with Different Currents)

Final Beam X-Px Phase Spaces Have Similar Shapes

Final Beam Y-Py Phase Spaces Have Similar Shapes

Comparison of Density Profiles

- Two symplectic solvers produce similar density profiles
- Non-symplectic solver produces larger less shoulder

Extra Numerical Emittance Growth with Small Number of Macroparticles

- Little emittance growth in the linear lattice
- Small emittance growth driven by the 3rd order resonance
- Sufficient number of macroparticles needed to suppress numerical emittance growth

RGY Office of Science

Understand the Numerical Emittance Growth from a 1D Model

The *smooth* and the reconstructed Gaussian distributions from macroparticle sampling with *linear*, *quadratic*, and *Gaussian kernel* deposition

BERKELEY LA

ERGY Office of Science

ACCELERATOR TECHNOLOGY & AT

The mode amplitude of the smooth and the reconstructed

Gaussian distributions from macroparticle sampling with

Quantify the Mode Amplitude Fluctuation with Standard Deviation

Higher order macroparticle deposition scheme leads to smaller fluctuation

Office of Science

Mode Amplitude Fluctuation Decreases with the Increase of Macroparticle Number

Mode Amplitude Fluctuation Increases with the Increase of Grid Number

Numerical Errors of in the Charge Density Distribution from Macroparticles Results in Numerical Emittance Growth

ACCELERATOR TECHNOLOGY & AT

30

Removing Small Amplitude Fluctuation Modes Using Relative Amplitude Threshold (1)

Spectral amplitude of a 2D Gaussian density (64x64 mode)

ACCELERATOR TECHNOLOGY & APPLIED PHYSICS DIVISION

Removing Small Amplitude Fluctuation Modes Using Relative Amplitude Threshold (2)

Spectral amplitude of a 2D Gaussian density with 2 sigma threshold

Mitigate the Numerical Emittance Growth by Removing High Frequency Modes in Linear Lattice

sextupole KL = 0, current = 30 A, 25 k macroparticles

Both numerical filters work well

> Numerical emittance growth is mainly due high frequency errors

Mitigate the Numerical Emittance Growth through Threshold Filtering in Nonlinear Lattice

sextupole KL = 10, current = 30 A, 25 k macroparticles

- Direct brute force cut-off filtering is not efficient
- Numerical emittance growth can be mitigated with threshold filtering
- The numerical growth is mainly due low frequency errors

Office of Science

Predefined Maximum Fraction and Four Sigma Threshold Filtering Yields Similar Emittance Growth

Maximum Fraction

Standard Deviation

Con – another hyperparameter

Pro – easy to calculate the threshold value Pro – calculate the threshold value dynamically Con – computationally expensive

Computational Complexity

- Symplectic PIC/Spetral PIC: O(Np) + O(Ng log(Ng)), parallelization can be a challenge
- Symplectic gridless particle: O(Nm Np), easy parallelization

Z. Liu and J. Qiang, "Symplectic multi-particle tracking on GPUs," Computer Physics Communications, 226, 10 (2018).

Summary

- Symplectic space-charge model will help improve the accuracy of simulation for long-term simulation.
- Numerical emittance growth from finite macroparticle sampling can be mitigated using threshold filtering in frequency domain.
- For small number of modes and particles used, the symplectic gridless particle model can be computationally efficient; otherwise, the symplectic PIC model would be more efficient.

