Multi-Particle Simulation Techniques I

Ji Qiang

Accelerator Modeling Program Accelerator Technology & Applied Physics Division Lawrence Berkeley National Laboratory

CERN Accelerator School, Thessaloniki, Greece Nov. 15, 2018

Office of Science

ACCELERATOR TECHNOLOGY & ATA

Outline

- Introduction of the particle-in-cell method for multi-particle simulation
- Deposition/interpolation
- Self-consistent field calculations
 - FFT based Green function method for open boundary condition
 - Multigrid method for irregular shape boundary condition
- Particle advance

Introduction

• Particle-in-cell method:

"the method amounts to following the trajectories of charged particles in self-consistent electromagnetic (or electrostatic) fields computed on a fixed mesh"

• Particle-in-cell codes are widely used in accelerator physics community:

Office of Science

DEPARTMENT OF

- PARMELA, ASTRA, GPT, IMPACT-T, IMPACT-Z, GENESIS, GINGER....
- An example of 2D particle-in-cell simulation an mismatched beam transport through a FODO

ACCELERATOR TECHNOLOGY & AT

Courtesy of R. D. Ryne

Governing Equations in Space-Charge Simulation

$$\frac{\partial f(r, p, t)}{\partial t} + \dot{r} \frac{\partial f(r, p, t)}{\partial r} + \dot{p} \frac{\partial f(r, p, t)}{\partial p} = 0$$

$$\nabla^2 \phi = -\rho / \varepsilon$$

$$\rho = \iiint f(r, p, t) d^3 p$$

$$\rho = \sum w_i \delta(r - r_i)(p - p_i)$$

Particle equations:

$$\begin{array}{lll} \displaystyle \frac{d \boldsymbol{x}_p}{dt} &=& \boldsymbol{v}_p, \\ \displaystyle \frac{d m \boldsymbol{v}_p}{dt} &=& q \left(\boldsymbol{E} + \boldsymbol{v}_p \times \boldsymbol{B} \right), \end{array}$$

Office of Science ACCELERATOR TECHNOLOGY & ATA

One Step Particle-In-Cell Method

ACCELERATOR TECHNOLOGY & ATAP

Particle Deposition/Field Interpolation

Particle deposition:

$$\rho_p = \sum_i q_i w(x_i - x_p)$$
$$\mathbf{J}_p = \sum_i q_i w(x_i - x_p) \mathbf{V}_i$$

Field interpolation:

$$\mathbf{E}_{i} = \sum_{p} \mathbf{E}_{p} w(x_{i} - x_{p})$$
$$\mathbf{B}_{i} = \sum_{p} \mathbf{B}_{p} w(x_{i} - x_{p})$$

- Grid reduces the computational cost compared with direct N-body point-to-point interaction
- Grid also provides smoothness to the shot noise and close collision

Weight Function for Deposition/Interpolation

• Spatial localization of errors

- At particle separations large compared with the mesh spacing, the field error should be small

Smoothness

- The charge assigned to the mesh from a particle and the force interpolated to a particle a particle from the mesh should smoothly vary as the particle moves across the mesh

• Momentum conservation

- No self force

Weight Function for Deposition/Interpolation

- Smoothness:
 - Continuity of weight function value
 - Continuity of derivative

Momentum conservation

$$F_{self}(x_i) = \sum_{p=1}^{m} \sum_{p'=1}^{m} d(x_p; x_{p'}) w_{dep}(x_i - x_{p'}) w_{int}(x_i - x_p)$$

 $d(x_p; x_{p'}) = -d(x_{p'}; x_p)$

ACCELERATOR TECHNOLOGY & ATAP

Weight Functions for Deposition/Interpolation

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles

ACCELERATOR TECHNOLOGY & ATA

Self-Consistent Field Calculations

 $\nabla^2 \phi = -\rho / \varepsilon$

 $\rho = \iiint f(r, p) d^3 p$

Different Boundary/Beam Conditions Need Different Efficient Numerical Algorithms O(Nlog(N)) or O(N)

Field Calculation with Open Boundary Conditions

Green Function Solution of Poisson's Equation

$$\phi(r) = \int G(r, r') \rho(r') dr' \quad ; \ r = (x, y, z)$$

$$\phi(r_i) = h \sum_{i'=1}^{N} G(r_i - r_{i'}) \rho(r_{i'})$$

$$G(x, y, z) = 1/\sqrt{(x^2 + y^2 + z^2)}$$

Direct summation of the convolution scales as N² !!!! N – total number of grid points

Hockney's Algorithm or Zero Padding

- This is different from a real periodic system
- The real calculation is done in discrete coordinate instead of continuous coordinate

Office of Science ACCELERATOR TECHNOLOGY & ATA

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles

Hockney's Algorithm or Zero Padding

$$\bar{\phi}_{\rm c}(x_i, y_j) = \frac{h_x h_y}{2\pi\epsilon_0} \sum_{i=1}^{2N_x} \sum_{j=1}^{2N_y} G_{\rm c}(x_i - x_{i'}, y_j - y_{j'}) \bar{\rho}_{\rm c}(x_{i'}, y_{j'}),$$

where $i = 1, ..., 2N_x$, $j = 1, ..., 2N_y$, and

$$\bar{\rho}_{c}(x_{i}, y_{j}) = \begin{cases} \bar{\rho}(x_{i}, y_{j}) & : 1 \leq i \leq N_{x}; 1 \leq j \leq N_{y}, \\ 0 & : N_{x} < i \leq 2N_{x} \text{ or } N_{y} < j \leq 2N_{y}, \end{cases}$$

$$G_{c}(x_{i}, y_{j}) = \begin{cases} G(x_{i}, y_{j}) & : 1 \leq i \leq N_{x} + 1; \ 1 \leq j \leq N_{y} + 1, \\ G(x_{2N_{x} - i + 2}, y_{j}) & : N_{x} + 1 < i \leq 2N_{x}; \ 1 \leq j \leq N_{y} + 1, \\ G(x_{i}, y_{2N_{y} - j + 2}) & : 1 \leq i \leq N_{x} + 1; \ N_{y} + 1 < j \leq 2N_{y}, \\ G(x_{2N_{x} - i + 2}, y_{2N_{y} - j + 2}) & : N_{x} + 1 < i \leq 2N_{x}; \ N_{y} + 1 < j \leq 2N_{y}, \end{cases}$$

 $\bar{\rho}_{c}(x_{i}, y_{j}) = \bar{\rho}_{c}(x_{i} + 2(L_{x} + h_{x}), y_{j} + 2(L_{y} + h_{y})),$

$$G_{c}(x_{i}, y_{j}) = G_{c}(x_{i} + 2(L_{x} + h_{x}), y_{j} + 2(L_{y} + h_{y})).$$

Office of Science

U.S. DEPARTMENT OF

A Schematic Plot of an e⁻ Beam and Its Image Charge

Test of Image Space-Charge Calculation Numerical Solution vs. Analytical Solution

Integrated Green Function for Large Aspect Ratio Beam

- Lack of resolution along longer side if same number of grids are used for both sides
- Brute force: use more grid points along longer side
- Better way: break the original convolution integral into a sum of small cell integral and use integrated Green's function within each cell

Integrated Green Function

$$\phi_c(r_i) = \sum_{i'=1}^{2N} G_i(r_i - r_{i'}) \rho_c(r_{i'})$$

$$G_i(r,r') = \oint G_s(r,r') dr'$$

$$\bar{G}_{s}(x_{i}-x_{i'},y_{j}-y_{j'}) = \int_{x_{i'}-h_{x/2}}^{x_{i'}+h_{x/2}} dx' \int_{y_{j'}-h_{y/2}}^{y_{j'}+h_{y/2}} dy' G_{s}(x_{i}-x',y_{j}-y').$$

This integration can be done analytically using the indefinite integral:

$$\int \int \ln(x^2 + y^2) \, \mathrm{d}x \, \mathrm{d}y = -3xy + x^2 \arctan(y/x) + y^2 \arctan(x/y) + xy \ln(x^2 + y^2).$$

$$\iiint \frac{1}{\sqrt{x^2 + y^2 + z^2}} dx dy dz \doteq -\frac{z^2}{2} \arctan\left(\frac{xy}{z\sqrt{x^2 + y^2 + z^2}}\right) - \frac{y^2}{2} \arctan\left(\frac{xz}{y\sqrt{x^2 + y^2 + z^2}}\right) - \frac{x^2}{2} \arctan\left(\frac{yz}{x\sqrt{x^2 + y^2 + z^2}}\right) + yz \ln(x + \sqrt{x^2 + y^2 + z^2}) + xz \ln(y + \sqrt{x^2 + y^2 + z^2}) + xy \ln(z + \sqrt{x^2 + y^2 + z^2}). \quad (2)$$

A Comparison Example: Aspect Ratio = 30

ACCELERATOR TECHNOLOGY & ATA

Poisson Solver with Finite Boundary Conditions

Finite Difference Poisson Solver: Iterative Methods

$$A X = B$$
 A: is a sparse matrix

- Direct Gaussian elimination: O(N³)
- Iterative method: O(mN)

$$X = X^i + E$$

$$A E = (B - AX^i)$$

$$A = D - L - U$$

$$X^{i+1} = X^i + S(B - AX^i)$$

Where S is an approximation of A^{-1} , i = 1,...,m

Finite Difference Poisson Solver: Iterative Methods

- Classical iterative methods:
 - Jacobi

$$S = D^{-1}$$

$$S = \omega D^{-1}$$

Successive Over Relaxation

$$S = (D-L)^{-1}$$

$$S = \omega (D - \omega L)^{-1}$$

- Problems of classical iterative methods:
 - slow convergence

Weighted Jacobi Chosen to Damp High Frequency Error

Multigrid Motivation

- Classical sparse-matrix-vector-multiply-based algorithms:
 - \circ low frequency error decreases slowly after a few iterations
 - \circ move information one grid at a time
 - $\circ~$ take $N^{1/d}$ steps to get information across grid
 - matrix-vector multiplications are done on the full fine grid
- Multigrid algorithm:
 - smooths out the numerical errors of different frequencies on different scales using multiple grids
 - \circ moves the information across grid by $\Omega(\log n)$ steps
 - $\circ~$ most multipications are done on coarse grids

Schematic Description of Multigrid

Comparison of Convergent Time for an Example: SOR vs. Multi-Grid

Office of Science

U.S. DEPARTMENT OF

Multi-Grid Iteration Method

- Basic Algorithm:
 - Replace correction problem on fine grid by an approximation on a coarser grid
 - Solve the coarse grid problem approximately, and use the solution as a correction to the fine grid problem and build a new starting guess for the fine-grid problem, which is then iteratively updated
 - Solve the coarse grid problem recursively, i.e. by using a still coarser grid approximation, etc.
- Success depends on coarse grid solution being a good approximation to the fine grid

Multigrid Sketch on a Regular 1D Mesh

- Consider a 2^m+1 grid in 1D for simplicity
- Let P⁽ⁱ⁾ be the problem of solving the discrete Poisson equation on a 2ⁱ+1 grid in 1D
- Write linear system as A(i) * x(i) = b(i)
- $P^{(m)}$, $P^{(m-1)}$, ..., $P^{(1)}$ is a sequence of problems from finest to coarsest

Multigrid Sketch on a Regular 2D Mesh

- Consider a 2^m+1 by 2^m+1 grid
- Let P⁽ⁱ⁾ be the problem of solving the discrete Poisson equation on a 2ⁱ+1 by 2ⁱ+1 grid in 2D
 - Write linear system as A(i) * x(i) = b(i)
- $P^{(m)}$, $P^{(m-1)}$, ..., $P^{(1)}$ is a sequence of problems from finest to coarsest

Office of Science ACCELERATOR TECHNOLOGY & A T

Basic Operators of Multigrid Iteration

- For problem P⁽ⁱ⁾ :
 - o b(i) is the RHS and
 - \circ x(i) is the current estimated solution
 - (A(i) is implicit in the operators below.)

both live on grids of size 2ⁱ-1

- All the following operators just average values on neighboring grid points
 - Neighboring grid points on coarse problems are far away in fine problems, so information moves quickly on coarse problems
- The restriction operator R(i) maps $P^{(i)}$ to $P^{(i-1)}$
 - \circ Restricts problem on fine grid $\mathsf{P}^{(i)}$ to coarse grid $\mathsf{P}^{(i-1)}$ by sampling or averaging
 - o b(i-1)= **R**(i) (b(i))
 - \circ Graphic representation: \mathbf{N}
- The prolongation operator P(i-1) maps an approximate solution x(i-1) to an x(i)
 - Interpolates solution on coarse grid $P^{(i-1)}$ to fine grid $P^{(i)}$
 - \circ x(i) = P(i-1)(x(i-1))
 - Graphic representation:
- The smooth operator S(i) takes P⁽ⁱ⁾ and computes an improved solution x(i) on same grid

ACCELERATOR TECHNOLOGY &

- Uses "weighted" Jacobi or Gauss-Seidel
- $\circ \quad x \text{ improved } (i) = S(i) (b(i), x(i))$
- Graph representation:

Restriction Operator R(i) - Details

- The restriction operator, R(i), takes
 - $\circ~$ a problem $P^{(i)}$ with RHS b(i) and
 - \circ maps it to a coarser problem $P^{(i-1)}$ with RHS b(i-1)
- Simplest way: sampling
- Averaging values of neighbors is better; in 1D this is
 - $\circ \ \ x_{coarse}(i) = 1/4 \ \ * \ \ x_{fine}(i-1) \ \ + \ \ 1/2 \ \ * \ x_{fine}(i) \ \ + \ \ 1/4 \ \ * \ x_{fine}(i+1)$

In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)

Office of

Science

ERATOR TECHNOLOGY & 🗡

Prolongation/Interpolation Operator

- The prolongation/interpolation operator P(i-1), takes a function on a coarse grid P⁽ⁱ⁻¹⁾, and produces a function on a fine grid P⁽ⁱ⁾
- In 1D, linearly interpolate nearest coarse neighbors
 - $x_{fine}(i) = x_{coarse}(i)$ if the fine grid point i is also a coarse one, else
 - $\circ x_{fine}(i) = 1/2 * x_{coarse}(left of i) + 1/2 * x_{coarse}(right of i)$

Office of Science

 In 2D, interpolation requires averaging with 2 or 4 nearest neighbors (NW,SW,NE,SE)

ACCELERATOR TECHNOLOGY & A

Two-Grid Iteration

• Pre-smoothing: compute approximated solution by applying v_1 steps of a relaxation method on fine grid:

 $\overline{X}^{i+1}(2) = \overline{X}^{i}(2) + S(B - A\overline{X}^{i}(2)); i = 1, \dots, \nu_{1}$

• Construct residual vectors:

 $r(2) = B - A\overline{X}^{\nu_1 + 1}(2)$

- Restrict the residual to coarser grid: r(1) = R(r(2))
- Solve exactly on the coarse grid for the error vector:

 $E(1) = A^{-1}R(r(1))$

- Prolongate/Interpolate the error vector to fine grid: E(2) = P(E(1))
- Compute the improved approximation x on fine grid:

 $\breve{X}^{1}(2) = \overline{X}^{\nu_{1}+1}(2) + E(2)$

• Post-smoothing: compute approximated solution by applying v_2 steps of a relaxation method on fine grid:

 $\breve{X}^{i+1}(2) = \breve{X}^{i}(2) + S(B - A\breve{X}^{i}(2)); i = 1, \cdots, v_{2}$

Structure of Multigrid Cycles

 γ is the number of two-grid iterations at each intermediate stage

ACCELERATOR TECHNOLOGY & AT

Multigrid V-Cycle Algorithm

```
Function MGV ( b(i), x(i) )
  ... Solve A(i)*x(i) = b(i) given b(i) and an initial guess for x(i)
  ... return an improved x(i)
 if (i = 1)
     compute exact solution x(1) of P^{(1)}
                                                     only 1 unknown
     return x(1)
 else
     x(i) = S(i) (b(i), x(i))
                                                   \rightarrow improve solution by
                                                      damping high frequency error
                                                    \rightarrow compute residual
     r(i) = A(i) * x(i) - b(i)
     r(i-1) = R(i)(r(i))
                                                    \rightarrow restrict from fine to coarser grid
     MGV(r(i-1), e(i-1))
                                                    \rightarrow solve A(i)*e(i) = r(i) recursively
     e(i) = P(i-1)(e(i-1))
                                                    \rightarrow prolongate from coarser grid to fine grid
     x(i) = x(i) - e(i)
                                                    \rightarrow correct fine grid solution
                                                    \rightarrow improve solution again
     x(i) = S(i) (b(i), x(i))
     return x(i)
```


Complexity of a V-Cycle on a 2D Grid

- At level i, the number of unknown is (2ⁱ-1)x (2ⁱ-1)
- On a serial machine
 - $\circ~$ Work at each point in a V-cycle is O(the number of unknowns)
 - Cost of Level i is $O((2^{i}-1)^{2}) = O(4^{i})$
 - If finest grid level is m, total time is:

$$0 \qquad \sum_{i=1}^{m} O(4^{i}) = O(4^{m}) = O(\# unknowns)$$

- On a parallel machine (PRAM)
 - with one processor per grid point and free communication, each step in the V-cycle takes constant time
 - Total V-cycle time is O(m) = O(log #unknowns)

Full/Nested Multigrid (FMG)

- Overview:
 - Solve the problem with 1 unknown on coarsest grid
 - $\circ~$ Given a solution to the coarser problem, $P^{(i\mathchar`linktar}$, map it to starting guess for $P^{(i)}$
 - Solve the finer problem using the Multigrid V-cycle
- Advantages:
 - \circ no need for initial guess of solution
 - \circ avoid expensive fine-grid (high frequency) cycles
 - obtain solutions at multiple grid level (can be used for error estimate or extrapolation)

Convergence Picture of Multigrid in 1D

• Error decreases by a factor >5 on each iteration

ACCELERATOR TECHNOLOGY & ATAP

Particle Advance: Numerical Integration

- Consistency
- Accuracy
- Stability
- Efficiency
- Examples of numerical integrators:
 - Runge-Kutta
 - Leap frog
 - Boris
 - Integrators beyond Boris
 - Symplectic integrators

Numerical Integration: Consistency

1D Example

$$\frac{dx}{dt} = v$$
$$\frac{dv}{dt} = F(x)$$

Euler algorithm:

$$x^{n+1} = x^n + v^n dt$$
$$v^{n+1} = v^n + F(x^n) dt$$

Consistency:

under the limit of dt->0, the discrete model -> continuous model

Numerical Integration: Accuracy

Accuracy: local truncation errors in the numerical discrete algebraic equations compared with the original differential equations

$$\frac{x^{n+1} - x^n}{dt} = \frac{dx}{dt} + \frac{1}{2}\frac{d^2x}{dt^2}dt + O(dt^2)$$

$$\frac{v^{n+1} - v^n}{dt} = \frac{dv}{dt} + \frac{1}{2}\frac{d^2v}{dt^2}dt + O(dt^2)$$

$$\frac{dx}{dt} = v - \frac{1}{2}\frac{d^2x}{dt^2}dt + O(dt^2)$$

$$\frac{dv}{dt} = F(x) - \frac{1}{2}\frac{d^2v}{dt^2}dt + O(dt^2)$$

The above Euler method is the 1st order accuracy. Higher order accuracy can be obtained using more sub steps.

Numerical Integration: Accuracy

- The order of accuracy can also be expressed as the local ٠ truncation error of variables in the numerical integration method.
- The "mth order method" denotes a numerical integration ۲ method that is locally correct through order h^m and makes local errors of order h^{m+1}.

The error for one step is

 $\widetilde{\mathbf{e}}(\mathbf{h}) = \widetilde{\mathbf{x}}(\mathbf{h}) - \mathbf{x}(\mathbf{0}) = O(h^{m+1})$ for n step is $\tilde{\mathbf{e}}(n\mathbf{h}) = O(h^m)$ $\widetilde{\mathbf{x}}$ h) = $\widetilde{\mathbf{x}}$ 0) + $\int_{0}^{h} F(\widetilde{\mathbf{x}}$ t), t)dt $\widetilde{\mathbf{x}}$ t) = $\widetilde{\mathbf{x}}$ 0) + $\int_{0}^{t} F(\widetilde{\mathbf{x}}$ t), t)dt $F(\tilde{\mathbf{x}}t), \quad t) = F(\tilde{\mathbf{x}}0), 0) \quad +(\mathbf{x} - \mathbf{x}(0)) \quad F_{\mathbf{x}} + tF_{t} + ...$

Numerical Integration: Stability

Stability: propagation of errors (e.g. roundoff error) in the discrete algebraic equations . A stable numerical integration algorithm is the one that a small error at any stage does not keep on increasing as number of steps increases

Euler algorithm on computer:

 $X^{n+1} = X^n + V^n dt$ $V^{n+1} = V^n + F(X^n)dt$ $x = X + e_x$ $v = V + e_{v}$

Linearized equations of errors:

$$e_x^{n+1} = e_x^n + e_v^n dt$$

$$e_v^{n+1} = e_v^n + F'(x_n)e_x^n dt$$

Numerical Integration: Stability

$$\begin{pmatrix} e_x \\ e_v \end{pmatrix}^{n+1} = \begin{pmatrix} 1 & dt \\ F'(x_n)dt & 1 \end{pmatrix} \begin{pmatrix} e_x \\ e_v \end{pmatrix}^n$$

For an integration scheme to be numerically stable, the eigenvalues of the error transfer matrix must lie in or on the unit circle.

The explicit Euler method will be unstable

Numerical Integrator: Runge-Kutta

$$\frac{dx_i}{dt} = f_i(t, x_1, \dots, x_N)$$

$$\mathbf{k}_{1} = h \mathbf{f}(t_{n}, \mathbf{X}_{n})$$

$$\mathbf{k}_{2} = h \mathbf{f}(t_{n} + \frac{h}{2}, \mathbf{X}_{n} + \frac{\mathbf{k}_{1}}{2})$$

$$\mathbf{k}_{3} = h \mathbf{f}(t_{n} + \frac{h}{2}, \mathbf{X}_{n} + \frac{\mathbf{k}_{2}}{2})$$

$$\mathbf{k}_{4} = h \mathbf{f}(t_{n} + h, \mathbf{X}_{n} + \mathbf{k}_{3})$$

$$\mathbf{X}_{n+1} = \mathbf{X}_{n} + \frac{\mathbf{k}_{1}}{6} + \frac{\mathbf{k}_{2}}{3} + \frac{\mathbf{k}_{3}}{3} + \frac{\mathbf{k}_{4}}{6} + O(h^{5})$$

- "one of the most popular schemes for integrating ODEs"
- applicable to arbitrary ODEs
- 4th order accuracy
- variable time step size
- auxiliary storage
- 4 field calculations per step

Numerical Integrator: Leap-Frog

- easy to implement, low memory storage
- 2nd order accuracy
- time reversible
- stable for $h < \frac{2}{\Omega}$; $\Omega = \left(\left| \frac{df}{dx} \right|_{\max} \right)^{1/2}$ single field calculation per step
- •

Numerical Integrator: Boris Algorithm

Lorentz equations of motion

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}$$
$$m\frac{d\mathbf{v}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Boris Algorithm $\mathbf{v}^{n-\frac{1}{2}} = \mathbf{v}^{-} - \frac{q\mathbf{E}}{m}\frac{h}{2}$ $\mathbf{v}^{n+\frac{1}{2}} = \mathbf{v}^{+} + \frac{q\mathbf{E}}{m}\frac{h}{2}$ $\mathbf{v}^{+} - \mathbf{v}^{-} = \frac{qh}{2m}(\mathbf{v}^{+} + \mathbf{v}^{-}) \times \mathbf{B}$ $\tan(\frac{\theta}{2}) = \frac{qB}{2m}h$ $\mathbf{t} = \frac{q\mathbf{B}}{m}\frac{h}{2}$ $\mathbf{v}' = \mathbf{v}^- + \mathbf{v}^- \times \mathbf{t}$ 2

$$\mathbf{S} = \frac{2\mathbf{t}}{1+t^2}$$

 $\mathbf{V}^+ = \mathbf{V}^- + \mathbf{V}' \times \mathbf{S}$

- widely used in plasma/accelerator community
- 2nd order accuracy
- time reversible

Office of Science

ACCELERATOR TECHNOLOGY & ATA

New Numerical Integrator Needed to Include Space-Charge Fields in Relativistic Electron Beam

• 50 MeV electron beam transports in free space

ACCELERATOR TECHNOLOGY & ATA

Fast Numerical Integrator for Relativistic Charged Particle Tracking

Lorentz Force Equations:

$$\frac{d\mathbf{r}}{dt} = \frac{\mathbf{p}c}{\gamma}$$
$$\frac{d\mathbf{p}}{dt} = q(\frac{\mathbf{E}}{mc} + \frac{1}{m\gamma}\mathbf{p} \times \mathbf{B})$$

Widely Used Boris Integrator

$$\mathbf{p}_{-} = \mathbf{p}(0) + \frac{q\mathbf{E}\tau}{2mc}$$
$$\gamma_{-} = \sqrt{1 + \mathbf{p}_{-} \cdot \mathbf{p}_{-}}$$
$$\mathbf{p}_{+} - \mathbf{p}_{-} = (\mathbf{p}_{+} + \mathbf{p}_{-}) \times \frac{q\mathbf{B}\tau}{2m\gamma_{-}}$$
$$\mathbf{p}(\tau) = \mathbf{p}_{+} + \frac{q\mathbf{E}\tau}{2mc}$$

J. Boris, in Proceedings of the Fourth Conference on the Numerical Simulation of Plasmas (Naval Research Laboratory, Washington, DC, 1970), pp. 367.

$$\mathbf{r} = (x, y, z)$$
$$\mathbf{p} = (p_x/mc, p_y/mc, p_z/mc)$$

New Fast Relativistic Integrator

$$\mathbf{p}_{-} = \mathbf{p}(0) + \frac{q}{mc} (\mathbf{E} + \mathbf{v}(0) \times \mathbf{B}) \tau$$
$$\mathbf{v}_{+} = \frac{\mathbf{v}(0) + \mathbf{v}_{-}}{2}$$
$$\mathbf{p}(\tau) = \mathbf{p}(0) + \frac{q}{mc} (\mathbf{E} + \mathbf{v}_{+} \times \mathbf{B}) \tau$$

J. Qiang, Nucl. Intrum. Meth. Phys. Res. A, 2017.

ACCELERATOR TECHNOLOGY & A 7

Another Relativistic Integrator (Vay)

$$\begin{split} \gamma_0 &= \sqrt{1 + \mathbf{p} \cdot \mathbf{p}} \\ \mathbf{p}_- &= \mathbf{p}(0) + \frac{q\tau}{2mc} (\mathbf{E} + c\mathbf{p}/\gamma_0 \times \mathbf{B}) \\ \mathbf{p}_+ &= \mathbf{p}_- + \frac{q\mathbf{E}\tau}{2mc} \\ \gamma_1 &= \sqrt{1 + \mathbf{p}_+ \cdot \mathbf{p}_+} \\ \mathbf{t} &= \frac{q\mathbf{B}\tau}{2m} \\ \lambda &= \mathbf{p}_+ \cdot \mathbf{t} \\ \sigma &= \gamma_1^2 - \mathbf{t} \cdot \mathbf{t} \\ \gamma_2 &= \sqrt{\frac{\sigma + \sqrt{\sigma^2 + 4(\mathbf{t} \cdot \mathbf{t} + \lambda^2)}}{2}} \\ \mathbf{t}^* &= \mathbf{t}/\gamma_2 \\ s &= 1/(1 + \mathbf{t}^* \cdot \mathbf{t}^*) \\ \mathbf{p}(\tau) &= s[\mathbf{p}_+ + (\mathbf{p}_+ \cdot \mathbf{t}^*)\mathbf{t}^* + \mathbf{p}_+ \times \mathbf{t}^*] \end{split}$$

J. V. Vay, Phys. Plasmas 15, 056701 (2008).

Numerical Test of an Electron Co-Moving with a Positron **Coasting Beam with Uniform Transverse Density**

space-charge electric and magnetic fields from positron beam:

$$E_x = E_0 x \gamma_0$$

$$E_y = E_0 y \gamma_0$$

$$E_z = 0$$

$$B_x = -E_0 y \gamma_0 \beta_0 / c$$

$$B_y = E_0 x \gamma_0 \beta_0 / c$$

$$B_z = 0$$

Numerical Examples Show 2nd Order Accuracy of the New Fast Algorithms in Space-Charge Fields

• Boris algorithm shows much larger error than the other two algorithms

Numerical Integrator: Symplectic Integrator

Hamiltonian equations of motion:

$$\frac{d\mathbf{x}}{dt} = \frac{\partial \mathsf{H}}{\partial \mathbf{p}}$$
$$\frac{d\mathbf{p}}{dt} = -\frac{\partial \mathsf{H}}{\partial \mathbf{x}}$$

Symplectic Integrator preserve:

- the symplectic nature of Hamlitonian equations
- the phase space structure

Numerical integrator:

$$\boldsymbol{\xi}^{n+1} = f(\boldsymbol{\xi}^n)$$

Define its Jacobian matrix M:

$$M_{ij} = \frac{\partial \xi_i^{n+1}}{\partial \xi_j^n}$$

Symplectic condition:

$$M^{t}JM = J$$

$$J = \begin{pmatrix} J_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & J_{1} \end{pmatrix} \quad J_{1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

This corresponds to more constraints

Summary

- Deposition/interpolation in particle-in-cell method
- Self-consistent space-charge field calculations through solving the Poisson equation at each time step using the updated charge density distribution
 - FFT based Green function methods for open boundary condition
 - Spectral (and finite) methods for regular shape boundary condition
- Numerical integrators for particle advance
 - Euler method
 - Runge Kutta method
 - Leap-frog method
 - Boris method
 - Relativistic particle integrator
 - Symplectic integrator

