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Direct Vlasov solvers

Part I
Ø Introduction: collective effects

Ø Motivation for Vlasov solvers

Ø Vlasov equation historically, and in the context of accelerators

Ø Transverse impedance and instabilities

Ø Building of a simple Vlasov solver for impedance instabilities
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Collective effects
Ø Collective effects: phenomena in which the evolution of the particle 

beam cannot be studied as if the beam was a collection of single 
particles behaving independently, but rather as an ensemble of 
interacting particles.

Ø Examples (with the potential effect on the beam):

ü Impedance & wake fields, i.e. interaction with the beam’s own self-
generated electromagnetic (EM) fields (instabilities, heat load),

ü Intra-beam scattering & Touschek effect (emittance growth, 
intensity loss),

ü Interactions with trapped ions (coherent instabilities),

ü Build up of an electron cloud and interaction with it (heat load, 
coherent instabilities),

ü Interaction with another counter-rotating beam – so-called beam-
beam effects (emittance growth, intensity loss, possibly coherent 
instabilities).



4N. MOUNET – VLASOV SOLVERS I – CAS 21/11/2018

Collective effects - modeling instabilities

Ø Coherent instability: self-enhanced, typically exponentially growing, 
oscillation of the full beam (or a significant part of it, e.g. one bunch).

Ø A first approach is simply to perform multi-particle tracking (see 
previous CAS lectures), including the collective effect under study (e.g. 
collision between particles, EM fields from ensemble of particles, etc.).

Ø This approach is, in principle:

ü simple and efficient, especially if a model is available for the self-
interaction fields (e.g. a wake function),

ü easy to extend to complex situations,

ü potentially very realistic.

So why should we do anything else than this?
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Motivation for another kind of modeling

Ø Multi-particle tracking still exhibit a number of drawbacks:

✗ It can be slow: one needs to track thousands to millions of 
macroparticles, sometimes with a complex interaction mechanism 
(PIC solver, bunch slicing for wake fields, etc.).

✗ Most importantly, it does not always help for an understanding of 
what’s happening.

⇒ It’s not always easy to understand what parameters are the 
important ones to e.g. stabilize an unstable beam.
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Motivation for another kind of modeling
Ø Multi-particle tracking can also be misleading: as a time domain 

technique, a beam that looks stable might actually be unstable if we 
track more turns.

Example: average vertical position in the LHC vs octupole current Ioct

(i.e. with increasing damping from transverse non-linearities):

110 A100 A90 A

130 A 
120 / 140 / 150 A

If we stop the 
simulation here, 
Ioct ≥100A is
stable

If we stop the 
simulation here, 
Ioct≥110A is
stable

If we stop the simulation 
here, Ioct≥120A is stable

What is the real 
threshold? Are 
we really stable 
for Ioct≥140A?
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Alternative for instability computation

Ø Multi-particles is one way to discretize the phase space – very close to 
reality as the beams are indeed made of distinct particles, albeit much 
more numerous than in typical simulations.

Ø A contrario, one can also consider the whole phase space distribution 
as a continuum, and look for modes arising from collective 
interactions, that could develop and lead to instabilities.

⇒ Vlasov solvers – named after the equation to be solved.

⇒ Switch from time to mode domain, the stability of each mode being
predictable irrespectively of its rapidity to develop.

Ø Historically, this was the first approach adopted to try to understand
instabilities in particle accelerators [L. J. Laslett, V. K. Neil, and A. M. Sessler
(1965), F. J. Sacherer (1972)].
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Distribution of particles in phase space

Ø In a classical (i.e. not quantum-mechanical) picture, each beam 
particles has a certain position and momentum for each of the three 
coordinates (x, y, z).

Ø For a 2D distribution, in e.g. vertical, such a distribution of particles can 
be easily pictured in phase space (y,py ):

py

y

⇒ the distribution function 𝜓
represents the density of 
particles in phase space

Total number of particles 𝑁 =∭ ∭ 𝜓(𝑥, 𝑝), 𝑦, 𝑝+, 𝑧, 𝑝-; 𝑡) 𝑑𝑥 𝑑𝑝) 𝑑𝑦 𝑑𝑝+ 𝑑𝑧 𝑑𝑝-2324567839:6:35

Uniform 
density

Gaussian 
fall-off
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Liouville theorem

Ø Vlasov equation is based on Liouville theorem (or equivalently, on the 
collisionless Boltzmann transport equation), which expresses that the 
local phase space density does not change when one follows the flow 
(i.e. the trajectory) of particles.

Ø In other words: local phase space area is conserved in time:

Courtesy A. W. Chao, Physics of 
Collective Beam Instabilities in High
Energy Accelerators, John Wiley & 
Sons (1993), chap. 6.

;<
;6
	= 0
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Vlasov equation [A. A. Vlasov, J. Phys. USSR 9, 25 (1945)]

Ø Vlasov equation was first written in the context of plasma physics, 
where the standard collision-based Boltzmann approach, with 
Coulomb collisions, was failing.

Ø As Coulomb interactions have a long-range character, the idea of 
Vlasov was to integrate the collective, self-interaction EM fields into 
the Hamiltonian, instead of writing them as a collision term.

Ø Assumptions:

§ conservative & deterministic system (governed by Hamiltonian) –
no damping or diffusion from external sources (no synchrotron 
radiation),

§ particles are interacting only through the collective EM fields (no 
short-range collision).
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Vlasov solvers for synchrotrons

Ø Vlasov solvers can be used in principle for various kinds of collective 
effects involving self-generated EM fields, e.g.:

§ Transverse impedance effects (see later for references),

§ Longitudinal impedance effects [e.g. M. Venturini et al, Phys. Rev. ST 
Accel. Beams 10 (2007), 054403],

§ Beam-beam effects [e.g. Y. Alexahin, Nucl. Instr. Meth. in Phys. Res. A 
480 (2002) pp. 253–288],

§ Electron-cloud, or more generally two stream effects [e.g. E. A. 
Perevedentsev, Proc. workshop on e-cloud simul. for proton & positron 
beams, Geneva, Switzerland, CERN-2002-001 (2002) pp. 171-194],

§ Space-charge (& impedance) [e.g. M.  Blaskiewicz, Phys. Rev. ST 
Accel. Beams 1 (1998), 044201].

Ø In this lecture we will rather focus on transverse impedance effects 
without space-charge, in circular machines.

Still, the approach adopted here can be applied to other collective effects.
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Impedance & wake function

Ø Impedance is a quantity that characterizes the electromagnetic (EM) 
fields generated by a single particle (“source”) on another particle (“test”) 
through interaction with the beam surroundings (vacuum pipe, cavities, 
collimators, etc.):

Ø The force felt by the test, averaged over the device length and 
normalized by source and test charges, is the wake function (here in vertical, 

length=2𝜋𝑅 for a vacuum pipe all round the ring):

Test at 𝑡 + 𝜏

Source at 𝑡
Test at 𝑡

Vacuum pipe

EM field

Induced current

Induced charges

++++++++++++ +

++++++++++++ +

distance 𝑧 = 𝑣𝜏

𝑊+ 𝑧 =
2𝜋𝑅
𝑒F

𝐹+ 𝑥6496, 𝑦6496, 𝑧 = −
𝑗
2𝜋

J 𝑑𝜔𝑒LM
-
N𝑍+(𝜔)

P

QP

It’s the inverse 
Fourier transform 
of the impedance

Imaginary unit
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Transverse instability modes

Ø Coherent instabilities are self-enhanced modes, characterized by a 
beam position growing with time (typically exponentially) :

Beam horizontal  
position vs. time

Hor. position, bunch-by-
bunch, evolving with time

Measurements in the LHC
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Transverse instability modes

Ø Typically, instabilities happen at a certain frequency, close to the tune

Ø … and an intra-bunch pattern:

Frequency spectrum over time for 
the LHC beam hor. position while 
moving a collimator jaw closer to 
the beam

Instability

Movement of 
collimator jaw

Multi-particle simulation
LHC measurement
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Vlasov solvers for transverse impedance
Ø Vlasov equation was first used to compute stability conditions for a given excitation, 

obtaining dispersion relations, by Laslett et al (1965) [1].

Ø The seminal Sacherer integral equation was derived (1972) [2], and a simple formula for 
instability growth rates obtained from it (1974) [3].

Ø Besnier devised a method to solve Sacherer Integral eq. using orthogonal polynomials (1979) 
[4], and Laclare developped an equivalent approach in frequency domain (1985) [5].

Ø Several codes were implemented over the years, e.g. MOSES (1985) [6], NHTVS (2014) [7], 
DELPHI [8] (2014) and GALACTIC (2018) [9].

Ø Extension to include synchrotron radiation for lepton machines do exist, solving Vlasov-
Fokker-Planck equation, see e.g. Ref. [10].

Ø Reviews, courses and books can be found, in e.g. Refs. [3,5] and Chao’s book [11].

[1] L. J. Laslett, V. K. Neil, and A. M. Sessler, Rev. Sci. 
Instrum. 36, 4 (1965) pp. 436–448.
[2] F. J. Sacherer, CERN/SI-BR/72-5 (1972).
[3] B. Zotter & F. J. Sacherer, Proc. 1st Int. School Part. 
Acc., Erice, Italy (1976) pp. 175– 218.
[4] G. Besnier, D. Brandt, and B. Zotter, CERN LEP-
TH/84-11, LHC Note 17 (1985).
[5] J. L. Laclare, Proc. CERN Accelerator School, Oxford, 
UK (1985) pp. 264–326.

[6] Y.-H. Chin, CERN/SPS/85-2 (1985) and  CERN/LEP-TH/88-05 (1988).
[7] A. V. Burov, Phys. Rev. ST Accel. Beams, 17 (2014) 021007.
[8] N. Mounet, CERN Yellow Reports: Conference Proceedings, 1 (2018) p. 77.
[9] E. Métral et al, Proc. IPAC’18, Vancouver, Canada (2018) pp. 3076–3079.
[10] R. L. Warnock, Nucl. Instr. Meth. in Phys. Res. A 561 (2006) pp. 186–194.
[11] A. W. Chao, Physics of Collective Beams Instabilities in High Energy 
Accelerators. John Wiley and Sons (1993), chap. 6.
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How to build a Vlasov solver

Ø It would be numerically very difficult to solve Vlasov equation with 
“brute force”, as a partial differential equation of 7 variables:

𝑑𝜓
𝑑𝑡

=
𝜕𝜓
𝜕𝑡

+
𝜕𝜓
𝜕𝑥

𝑑𝑥
𝑑𝑡

 +	
𝜕𝜓
𝜕𝑝)

𝑑𝑝)
𝑑𝑡

+
𝜕𝜓
𝜕𝑦

𝑑𝑦
𝑑𝑡

 +	
𝜕𝜓
𝜕𝑝+

𝑑𝑝+
𝑑𝑡

+
𝜕𝜓
𝜕𝑧

𝑑𝑧
𝑑𝑡

 +	
𝜕𝜓
𝜕𝑝-

𝑑𝑝-
𝑑𝑡

= 0

Moreover, we would lose any asset with respect to tracking:

• no particular insight or understanding, 

• solution in time domain → no identification of modes.

Ø To build a useful (i.e. fast and simple enough) Vlasov solver, one rather 
needs to do some analytical work first, essentially aiming at reducing the 
number of variables.

Ø Typical end results of this “pencil and paper” work is either a fully 
analytical formula (e.g. Sacherer formula), an eigenvalue problem, or a 
non-linear equation to solve against a single parameter.

Ø Now we will first focus on the initial analytical work, on an example.
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Building a simple Vlasov solver

Ø Let’s consider a simple case, to understand how it works:

§ Impedance 𝑍+(𝜔) is the only source of instability considered, and 
gives the EM force arising from the interaction of the beam with 
the resistive or geometric elements around it,

§ only vertical plane, with position and “momentum” 𝑦, 𝑦T = ;+
;9

(using for convenience 𝑦′ rather than 𝑝+)

§ purely linear, uncoupled optics in transverse, within
smooth approximation,

§ no longitudinal motion, i.e. essentially rigid bunches in z,

§ chromaticity 𝑄+T =
;WX
;Y

= 0,

§ Phase space distribution function is then

𝜓 = 	𝜓 𝑦, 𝑦T; 𝑡

Longitudinal 
coordinate along 
the accelerator 
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Building a Vlasov solver: method outline

1. Write the stationary distribution

2. Introduce a perturbation to the distribution function

3. Get the time derivatives through the equations of motion

4. Simplify and linearize Vlasov equation 

5. Transform the system of coordinates

6. Decompose appropriately the perturbation

7. Reduce the number of variables

8. Write the impedance force

9. Get the final equation
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Stationary 
distribution

Perturbation

Equations of 
motion

Simplification -
Linearization

Coordinate 
transform

Perturbation 
decomposition

Reduction 
variables

Impedance 
force

Final equation
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Stationary distribution

Let’s say there is no impedance, and only the optics plays a role 
(perfect quadrupoles, focusing the beam around the orbit):

𝑑𝜓
𝑑𝑡

= 0

is satisfied by 			 𝜓	= 𝜓 invariants	of	motion

This is a general rule: in the absence of time dependent perturbation, 
stationary solutions of Vlasov equation are simply ANY phase space 
distribution function which depends ONLY on the invariants of 
motion.

The stationary distribution is the starting point of our Vlasov solver.

Stationary 
distribution
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Stationary 
distribution

Perturbation

Equations of 
motion
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Linearization

Coordinate 
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force

Final equation

N. MOUNET – VLASOV SOLVERS I – CAS 21/11/2018

Stationary distribution

In vertical, for linear optics, the invariant is the action defined as (see 
appendix for a derivation)

𝐽+ =
1
2
𝑦F
𝑄+
𝑅
+ 𝑦TF

𝑅
𝑄+

such that the unperturbed distribution function is

𝜓(𝑦, 𝑦T; 𝑡) = 𝜓f 𝐽+

From the expression of the invariant Jy it is easy to show the existence 
of the angle variable 𝜃y such that

𝑦 =
2𝐽+𝑅
𝑄+

�
cos	𝜃+							and						𝑦T =

2𝐽+𝑄+
𝑅

�
sin𝜃+

Single particle tune

Machine physical 
radius (=circum/2𝜋)

Stationary 
distribution
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Perturbation

Equations of 
motion
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Coordinate 
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Perturbation 
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Impedance 
force

Final equation

𝜓	= 𝜓f 𝐽+ + Δ𝜓 𝑦, 𝑦T; 𝑡
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Perturbation theory

It’s rather difficult to solve Vlasov equation without making any 
assumption on the distribution function.

→ instead one typically solves it using linear perturbation theory, i.e. 
from the knowledge of a stationary distribution, that we slightly 
perturb to include the (collective) effect under study:

𝜓	= 𝜓f 𝐽+ + Δ𝜓 𝑦, 𝑦T; 𝑡
	= 𝜓f 𝐽+ + Δ𝜓 𝐽+, 𝜃+; 𝑡

Stationary distribution Perturbation, assumed 
infinitesimally small, that we 
can express indifferently in
(𝑦, 𝑦’	)	or (𝐽𝑦	, 𝜃𝑦	)	variables

Stationary 
distribution

Perturbation
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Perturbation theory

𝜓 = 𝜓f(𝐽+) + Δ𝜓 𝑦, 𝑦T; 𝑡
Vlasov equation becomes:

𝑑𝜓
𝑑𝑡
	= 0

⇔
𝜕Δ𝜓
𝜕𝑡

+
𝜕𝜓
𝜕𝑦

𝑑𝑦
𝑑𝑡

 +	
𝜕𝜓
𝜕𝑦T

	
𝑑𝑦T

𝑑𝑡
	= 0									(chain	rule)

First, how do we get these?

Stationary 
distribution

Perturbation
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𝑑𝑦
𝑑𝑡
	=
𝑑𝑦
𝑑𝑠

⋅
𝑑𝑠
𝑑𝑡
= 𝑣 ⋅ 𝑦T

𝑑𝑦
𝑑𝑡
	=
𝑑𝑦
𝑑𝑠

⋅
𝑑𝑠
𝑑𝑡
= 𝑣 ⋅ 𝑦T									

𝑑𝑦T

𝑑𝑡
	=

𝑑𝑦T

𝑑𝑡

386:t9

+
𝑑𝑦T

𝑑𝑡

:284;75t4
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Equations of motion

Next step is to express these as a function of (𝑦, 𝑦T; 𝑡). 

Beam velocity	= 𝛽𝑐

Stationary 
distribution

Perturbation

Equations of 
motion
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𝑑𝑦T

𝑑𝑡

:284;75t4

	 	

𝑑𝑦T

𝑑𝑡

:284;75t4

=
𝑑
𝑑𝑡

𝑑𝑦
𝑑𝑡
⋅
𝑑𝑡
𝑑𝑠

	

	 	

𝑑𝑦T

𝑑𝑡

:284;75t4

=
𝑑
𝑑𝑡

𝑑𝑦
𝑑𝑡
⋅
𝑑𝑡
𝑑𝑠

=
𝑑
𝑑𝑡

𝑣+
𝑣

	 	

	 	

𝑑𝑦T

𝑑𝑡

:284;75t4

=
𝑑
𝑑𝑡

𝑑𝑦
𝑑𝑡
⋅
𝑑𝑡
𝑑𝑠

=
𝑑
𝑑𝑡

𝑣+
𝑣

	=
1

𝑚f𝛾𝑣
𝑑𝑝+
𝑑𝑡

	

	 	

𝑑𝑦T

𝑑𝑡

386:t9

=
𝑑
𝑑𝑡

𝑑𝑦
𝑑𝑠

𝑑𝑦T

𝑑𝑡

386:t9

=
𝑑
𝑑𝑡

𝑑𝑦
𝑑𝑠

=
𝑑F𝑦
𝑑𝑠F

⋅ 𝑣

𝑑𝑦T

𝑑𝑡

:284;75t4

=
𝑑
𝑑𝑡

𝑑𝑦
𝑑𝑡
⋅
𝑑𝑡
𝑑𝑠

=
𝑑
𝑑𝑡

𝑣+
𝑣

	=
1

𝑚f𝛾𝑣
𝑑𝑝+
𝑑𝑡

	

	=
𝐹+
:284;75t4

𝑚f	𝛾𝑣
	

Equations of motion

𝑑𝑦T

𝑑𝑡

386:t9

=
𝑑
𝑑𝑡

𝑑𝑦
𝑑𝑠

=
𝑑F𝑦
𝑑𝑠F

⋅ 𝑣 = −𝑣𝑦
𝑄+
𝑅

F

Using Hill’s equation in the 
smooth approximation

𝑑F𝑦
𝑑𝑠F

+	
𝑄+
𝑅

F

𝑦 = 0

Relativistic mass factor 𝛾 = y
yQz{�

Particle rest mass

Stationary 
distribution

Perturbation

Equations of 
motion
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𝜕Δ𝜓
𝜕𝑡

+
𝜕𝜓
𝜕𝑦

𝑑𝑦
𝑑𝑡
+
𝜕𝜓
𝜕𝑦T

𝑑𝑦T

𝑑𝑡
= 0

	

							
𝜕Δ𝜓
𝜕𝑡

+
𝜕𝜓
𝜕𝑦

𝑑𝑦
𝑑𝑡
+
𝜕𝜓
𝜕𝑦T

𝑑𝑦T

𝑑𝑡
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𝜕Δ𝜓
𝜕𝑡

+
𝜕𝜓
𝜕𝑦

𝑣𝑦T+
𝜕𝜓
𝜕𝑦T

𝐹+
:284;75t4
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𝑅
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𝜕𝑦T

𝑑𝑦T

𝑑𝑡
= 0

	⇔
𝜕Δ𝜓
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𝜕𝑦

𝑣𝑦T+
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𝜕𝑦T
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𝑚f𝛾𝑣
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𝑅

F
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𝜕Δ𝜓
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𝑣𝑦T +
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𝜕𝑦T
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𝜕Δ𝜓
𝜕𝑦T
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:28

𝑚f𝛾𝑣
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𝑄+
𝑅

F
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= 0																																

	⇔
𝜕Δ𝜓
𝜕𝑡

+
𝜕𝜓f
𝜕𝑦

+
𝜕Δ𝜓
𝜕𝑦

𝑣𝑦T +
𝜕𝜓f
𝜕𝑦T

+
𝜕Δ𝜓
𝜕𝑦T

𝐹+
:28

𝑚f𝛾𝑣
− 𝑣𝑦

𝑄+
𝑅

F

	= 0

	⇔
𝜕Δ𝜓
𝜕𝑡

+
𝜕𝜓f
𝜕𝑦

𝑣𝑦T −
𝜕𝜓f
𝜕𝑦T

𝑣𝑦
𝑄+
𝑅

F

																																																							

							+
𝜕Δ𝜓
𝜕𝑦

𝑣𝑦T −
𝜕Δ𝜓
𝜕𝑦T

𝑣𝑦
𝑄+
𝑅

F

+
𝜕𝜓f
𝜕𝑦T

𝐹+
:28

𝑚f𝛾𝑣
+
𝜕Δ𝜓
𝜕𝑦T

𝐹+
:28

𝑚f𝛾𝑣
= 0

2nd order

Identically zero from 
Vlasov eq. on 𝜓0

𝜓 = 𝜓f + Δ𝜓

N. MOUNET – VLASOV SOLVERS I – CAS 21/11/2018
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Transformation of coordinates

Since the unperturbed distribution is a function of the action 𝐽+ alone, 
it’s natural to switch to action-angle variables:

𝑦	=
2𝐽+𝑅
𝑄+

�
cos	𝜃+	, 	𝑦T 	=

2𝐽+𝑄+
𝑅

�
sin𝜃+

𝐽+ 	=
1
2
𝑦F
𝑄+
𝑅
+ 𝑦TF

𝑅
𝑄+

,					𝜃+ 	= atan
𝑅
𝑄+

𝑦T

𝑦

and for the partial derivatives:

𝜕𝐽+
𝜕𝑦

	=
𝑦	𝑄+
𝑅

, 	
𝜕𝐽+
𝜕𝑦T

	=
𝑦T𝑅
𝑄+

𝜕𝜃+
𝜕𝑦

	= −
𝑄+
2𝐽+𝑅

�
sin 𝜃+ ,						

𝜕𝜃+
𝜕𝑦T

	=
𝑅

2𝐽+𝑄+
�

cos 𝜃+

Stationary 
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motion

Simplification -
Linearization

Coordinate 
transform



27

Stationary 
distribution

Perturbation

Equations of 
motion

Simplification -
Linearization

Coordinate 
transform

Perturbation 
decomposition

Reduction 
variables

Impedance 
force

Final equation

Using the partial derivatives computed previously:

𝜕𝜓f
𝜕𝑦′

=
𝑑𝜓f
𝑑𝐽+

⋅
𝜕𝐽+
𝜕𝑦T

= 𝜓fT 𝐽+
𝑦T𝑅
𝑄+

Using the partial derivatives computed previously:

𝜕𝜓f
𝜕𝑦′

=
𝑑𝜓f
𝑑𝐽+

⋅
𝜕𝐽+
𝜕𝑦T

= 𝜓fT 𝐽+
𝑦T𝑅
𝑄+

𝜕Δ𝜓
𝜕𝑦

=
𝜕Δ𝜓
𝜕𝐽+

⋅
𝜕𝐽+
𝜕𝑦

+
𝜕Δ𝜓
𝜕𝜃+

⋅
𝜕𝜃+
𝜕𝑦

	=
𝜕Δ𝜓
𝜕𝐽+

⋅
𝑦	𝑄+
𝑅

	+
𝜕Δ𝜓
𝜕𝜃+

⋅ −
𝑄+
2𝐽+𝑅

�
sin 𝜃+

Transformation of coordinates

Using the partial derivatives computed previously:

𝜕𝜓f
𝜕𝑦′

=
𝑑𝜓f
𝑑𝐽+

⋅
𝜕𝐽+
𝜕𝑦T

= 𝜓fT 𝐽+
𝑦T𝑅
𝑄+

𝜕Δ𝜓
𝜕𝑦

=
𝜕Δ𝜓
𝜕𝐽+

⋅
𝜕𝐽+
𝜕𝑦

+
𝜕Δ𝜓
𝜕𝜃+

⋅
𝜕𝜃+
𝜕𝑦

	=
𝜕Δ𝜓
𝜕𝐽+

⋅
𝑦	𝑄+
𝑅

	+
𝜕Δ𝜓
𝜕𝜃+

⋅ −
𝑄+
2𝐽+𝑅

�
sin 𝜃+

𝜕Δ𝜓
𝜕𝑦T

=
𝜕Δ𝜓
𝜕𝐽+

⋅
𝜕𝐽+
𝜕𝑦T

+
𝜕Δ𝜓
𝜕𝜃+

⋅
𝜕𝜃+
𝜕𝑦T

	=
𝜕Δ𝜓
𝜕𝐽+

⋅
𝑦T𝑅
𝑄+

	+
𝜕Δ𝜓
𝜕𝜃+

⋅
𝑅

2𝐽+𝑄+
�

cos 𝜃+

such that

𝜕Δ𝜓
𝜕𝑦

𝑣𝑦T −
𝜕Δ𝜓
𝜕𝑝+

𝑣𝑦
𝑄+
𝑅

F

= −
𝜕Δ𝜓
𝜕𝜃+

𝑄+
𝑣
𝑅

×	𝑣𝑦T

×	𝑣𝑦
𝑄+
𝑅

F

Stationary 
distribution

Perturbation

Equations of 
motion

Simplification -
Linearization

Coordinate 
transform
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Angular revolution 
frequency 𝜔f =

N
}



28

Stationary 
distribution

Perturbation

Equations of 
motion

Simplification -
Linearization

Coordinate 
transform

Perturbation 
decomposition

Reduction 
variables

Impedance 
force

Final equation

N. MOUNET – VLASOV SOLVERS I – CAS 21/11/2018

An already simpler Vlasov equation

𝑑𝜓
𝑑𝑡

= 0

⇔
𝜕Δ𝜓
𝜕𝑡

−
𝜕Δ𝜓
𝜕𝜃+

𝑄+𝜔f +	𝜓fT 𝐽+
1

𝑚f𝛾𝑣
2𝐽+𝑅
𝑄+

�
sin 𝜃+ 𝐹+

:28 	= 0

→ Only one partial derivative of the coordinates is left.
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motion

Simplification -
Linearization

Coordinate 
transform
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Now it’s time to take a closer look at Δ𝜓: 

Ø We first make just one assumption: its time dependence is that of a 
single mode of coherent angular frequency Ω, close to 𝜔f𝑄+ (with 

𝜔f ≡
N
}

the angular revolution frequency) – well justified when one 

computes a growing instability mode, which supersedes 
exponentially any other mode:

Δ𝜓 𝐽+, 𝜃+; 𝑡 = Δ𝜓y 𝐽+, 𝜃+ 𝑒L�6

Ø Then we decompose this mode using a Fourier series of the angle 𝜃+:

Δ𝜓 𝐽+, 𝜃+; 𝑡 = 𝑒L�6 � 𝑓8 𝐽+ 𝑒L8�X
�P

8�QP

N. MOUNET – VLASOV SOLVERS I – CAS 21/11/2018
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Injecting the perturbation into Vlasov equation, we can simplify it 
even more:

𝜕Δ𝜓
𝜕𝑡

−
𝜕Δ𝜓
𝜕𝜃+

𝑄+𝜔f +	𝜓fT 𝐽+
2𝐽+𝑅
𝑄+

�
sin 𝜃+

𝐹+
:28

𝑚f𝛾𝑣
= 0

	
	

Injecting the perturbation into Vlasov equation, we can simplify it 
even more:

𝜕Δ𝜓
𝜕𝑡

−
𝜕Δ𝜓
𝜕𝜃+

𝑄+𝜔f +	𝜓fT 𝐽+
2𝐽+𝑅
𝑄+

�
sin 𝜃+

𝐹+
:28

𝑚f𝛾𝑣
= 0

⇔ 𝑒L�6 � 𝑓8 𝐽+ 𝑒L8�X 𝑗Ω − 𝑗𝑝𝑄+𝜔f = −𝜓fT (𝐽+)
�P

8�QP

2𝐽+𝑅
𝑄+

�
sin 𝜃+

𝐹+
:28

𝑚f𝛾𝑣

	
	

Injecting the perturbation into Vlasov equation, we can simplify it 
even more:

𝜕Δ𝜓
𝜕𝑡

−
𝜕Δ𝜓
𝜕𝜃+

𝑄+𝜔f +	𝜓fT 𝐽+
2𝐽+𝑅
𝑄+

�
sin 𝜃+

𝐹+
:28

𝑚f𝛾𝑣
= 0

⇔ 𝑒L�6 � 𝑓8 𝐽+ 𝑒L8�X 𝑗Ω − 𝑗𝑝𝑄+𝜔f = −𝜓fT (𝐽+)
�P

8�QP

2𝐽+𝑅
𝑄+

�
sin 𝜃+

𝐹+
:28

𝑚f𝛾𝑣

⇔ 𝑒L�6 � 𝑓8 𝐽+ 𝑒L8�X 𝑗Ω − 𝑗𝑝𝑄+𝜔f = −𝜓fT 𝐽+

�P

8�QP

2𝐽+𝑅
𝑄+

� 𝑒L�X − 𝑒QL�X

2𝑗
𝐹+
:28

𝑚f𝛾𝑣
	
	

Reducing the number of variables

Term by term identification leads to
𝑓8 𝐽+ = 0	for	any	𝑝 ≠ ±1

Then, the assumption Ω ≈ 𝑄+𝜔f , gives

𝑓Qy 𝐽+ ≈ 0

Stationary 
distribution

Perturbation

Equations of 
motion

Simplification -
Linearization

Coordinate 
transform

Perturbation 
decomposition

Reduction 
variables

N. MOUNET – VLASOV SOLVERS I – CAS 21/11/2018



31

Stationary 
distribution

Perturbation

Equations of 
motion

Simplification -
Linearization

Coordinate 
transform

Perturbation 
decomposition

Reduction 
variables

Impedance 
force

Final equation

N. MOUNET – VLASOV SOLVERS I – CAS 21/11/2018

Reducing the number of variables

We end-up with (taking away the 𝑒L�X on both sides):

𝑒L�6𝑓y 𝐽+ Ω − 𝑄+𝜔f = 𝜓fT 𝐽+
𝐽+𝑅
2𝑄+

�
	
𝐹+
:28 𝑡
𝑚f𝛾𝑣

This already gives us the Jy dependency of the perturbative 
distribution!

𝑓y 𝐽+ ∝ 𝜓fT 𝐽+
𝐽+𝑅
2𝑄+

�
	

⇒ Δ𝜓 𝐽+, 𝜃+; 𝑡 = 𝐷𝑒L�6𝑒L�X𝜓fT 𝐽+
𝐽+𝑅
2𝑄+

�

Constant
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Electronic charge (we 
assume here particles 
of charge ± e)

𝑊+ 𝑧 =
2𝜋𝑅
𝑒F

𝐹+ 𝑥6496, 𝑦6496, 𝑧

Test at 𝑡 + 𝜏

Source at 𝑡
Test at 𝑡

Vacuum pipe

EM field

++++++++++++ +

++++++++++++ +

distance 𝑧 = 𝑣𝜏

𝐹+
:28 	=

𝑒F

2𝜋𝑅
� �𝑑𝑦	𝑑𝑦T	𝜓 𝑦, 𝑦T; 𝑡 − 𝑘

2𝜋𝑅
𝑣

𝑦𝑊+ 2𝜋𝑘𝑅
�

�

�P

��QP

					
	

Force from impedance

Wake function, assumed 
constant within a single-bunch

Summing the wakes from the 
bunch passage at all previous 
(and subsequent) turns

Integration over phase space Revolution time
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Test at 𝑡

Source at 𝑡 − F�}
N

Vacuum pipe

EM field

++++++++++++ +

++++++++++++ +
Source at 𝑡 − 2 F�}

N

Source at 𝑡 − 3 F�}
N
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𝐹+
:28 	=

𝑒F

2𝜋𝑅
� �𝑑𝑦	𝑑𝑦T	𝜓 𝑦, 𝑦T; 𝑡 − 𝑘

2𝜋𝑅
𝑣

𝑦𝑊+ 2𝜋𝑘𝑅
�

�

�P

��QP

					

	

𝐹+
:28 	=

𝑒F

2𝜋𝑅
� �𝑑𝑦	𝑑𝑦T	𝜓 𝑦, 𝑦T; 𝑡 − 𝑘

2𝜋𝑅
𝑣

𝑦𝑊+ 2𝜋𝑘𝑅
�

�

�P

��QP

					

	=
𝑒F

2𝜋𝑅
� �𝑑𝑦	𝑑𝑦T	Δ𝜓 𝑦, 𝑦T; 𝑡 − 𝑘

2𝜋𝑅
𝑣

𝑦𝑊+ 2𝜋𝑘𝑅
�

�

�P

��QP

𝐹+
:28 only depends on the perturbation Δ𝜓	because the stationary 

distribution is centered around the orbit (𝑦 = 0):

∬𝑑𝑦	𝑑𝑦T	𝜓f 𝑦, 𝑦T 𝑦 = 0�
�
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After the usual change of variables (𝑦, 𝑦T) → (𝐽+, 𝜃+): 

𝐹+
:28 	=

𝑒F

2𝜋𝑅
� 𝑊+ 2𝜋𝑘𝑅
�P

��QP

									×�𝑑𝐽+	𝑑𝜃+	Δ𝜓 𝐽+, 𝜃+; 𝑡 − 𝑘
2𝜋𝑅
𝑣

2𝐽+𝑅
𝑄+

�
cos 𝜃+

�

� 									
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Using what we know from the perturbation

Δ𝜓 𝐽+, 𝜃+; 𝑡 = 𝐷𝑒L�6𝑒L�X𝜓fT 𝐽+
�X}
FWX

�

we get

𝐹+
:28 	=

𝑒F𝐷𝑒L�6

2𝜋𝑄+
� 𝑒

QLF���}
N 𝑊+ 2𝜋𝑘𝑅 �𝑑𝐽+	𝑑𝜃+𝐽+𝜓fT 𝐽+ cos 𝜃+𝑒L�X

�

�

�P

��QP

	
									

Using what we know from the perturbation

Δ𝜓 𝐽+, 𝜃+; 𝑡 = 𝐷𝑒L�6𝑒L�X𝜓fT 𝐽+
�X}
FWX

�

we get

𝐹+
:28 	=

𝑒F𝐷𝑒L�6

2𝜋𝑄+
� 𝑒

QLF���}
N 𝑊+ 2𝜋𝑘𝑅 �𝑑𝐽+	𝑑𝜃+𝐽+𝜓fT 𝐽+ cos 𝜃+𝑒L�X

�

�

�P

��QP

	= −
𝑁𝑒F𝐷
4𝜋𝑄+

𝑒L�6 � 𝑒
QLF���}

N 𝑊+ 2𝜋𝑘𝑅
�P

��QP 									

from

J 𝑑𝐽+	𝐽+𝜓fT 𝐽+
P

f
	= 𝐽+𝜓f 𝐽+ f

P − J 𝑑𝐽+𝜓f 𝐽+
P

f
= −

𝑁
2𝜋

and											 J 𝑑𝜃+ e��Xcos 𝜃+ = 𝜋
F�

f
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Recall the definition of a wake function as a Fourier transform of the 
impedance:

𝑊+ 𝑧 = −
𝑗
2𝜋

J 𝑑𝜔𝑒LM
-
N𝑍+(𝜔)

P

QP

We get

� 𝑒
QLF���}

N 𝑊+ 2𝜋𝑘𝑅
�P

��QP

	=
−𝑗
2𝜋

J 𝑑𝜔𝑍+(𝜔)
�P

QP
� 𝑒

QLF��}
N (�Q�)

�P

��QP

	

	
									

Recall the definition of a wake function as a Fourier transform of the 
impedance:

𝑊+ 𝑧 = −
𝑗
2𝜋

J 𝑑𝜔𝑒LM
-
N𝑍+(𝜔)

P

QP

We get

� 𝑒
QLF���}

N 𝑊+ 2𝜋𝑘𝑅
�P

��QP

	=
−𝑗
2𝜋

J 𝑑𝜔𝑍+(𝜔)
�P

QP
� 𝑒

QLF��}
N (�Q�)

�P

��QP

	=
−𝑗
2𝜋

J 𝑑𝜔𝑍+(𝜔)
�P

QP
� 𝛿

Ω𝑅
𝑣
+ 𝑘 −

𝜔𝑅
𝑣

�P

��QP

	
									

Recall the definition of a wake function as a Fourier transform of the 
impedance:

𝑊+ 𝑧 = −
𝑗
2𝜋

J 𝑑𝜔𝑒LM
-
N𝑍+(𝜔)

P

QP

We get

� 𝑒
QLF���}

N 𝑊+ 2𝜋𝑘𝑅
�P

��QP

	=
−𝑗
2𝜋

J 𝑑𝜔𝑍+(𝜔)
�P

QP
� 𝑒

QLF��}
N (�Q�)

�P

��QP

	=
−𝑗
2𝜋

J 𝑑𝜔𝑍+(𝜔)
�P

QP
� 𝛿

Ω𝑅
𝑣
+ 𝑘 −

𝜔𝑅
𝑣

�P

��QP

	=
−𝑗𝜔f
2𝜋

� 𝑍+

�P

��QP

Ω + 𝑘𝜔f
									

Force from impedance

𝜔f =
𝑣
𝑅

Dirac comb
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Final expression of Vlasov equation…

Dropping 𝐷, 𝑒L�6, 𝜓fT 𝐽+ , �X}
FWX

�
on both sides:

𝛺 − 𝑄+𝜔f =
𝑗𝜔f𝑁𝑒F

8𝜋F𝑚f𝛾𝑣𝑄+
� 𝑍+

�P

��QP

𝛺 + 𝑘𝜔f

In principle, this is a non-linear equation of Ω.

Still 𝑍+ 𝜔 is typically is very smooth (at the level of the tune shifts we 
are looking for) such that in the right-hand side one can make the 
approximation:

Ω ≈ 𝑄+𝜔f
and we get finally

𝛺 − 𝑄+𝜔f =
𝑗𝜔f𝑁𝑒F

8𝜋F𝑚f𝛾𝑣𝑄+
� 𝑍+

�P

��QP

𝑄+𝜔f + 𝑘𝜔f

which is a fully analytical formula giving the frequency shift of the mode 
→ that’s our Vlasov solver!
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Direct Vlasov solvers – Summary part I 
Ø We introduced the topic of collective effects, and more specifically 

transverse instabilities from impedance.

Ø We provided some motivation for an alternative to multi-particle 
simulations.

Ø We sketched a brief overview of the underlying principles of Vlasov
equation, and its historical uses.

Ø We built our first “naive” Vlasov solver for longitudinally rigid bunches, 
providing a general outline of the method.

⇒ Some algebra is required, but not much advanced knowledge is 
needed, in order to build a Vlasov solver.

⇒ But with a few more tools, we can do it more efficiently and elegantly –
this is part II.
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V.K Danilov, E.A. Perevedentsev I Nucl. Instr. and Meth. in Phys. Rex A 391 (1997) 77-92 81 

K = mm’ I Ti 

cos m’cj’ d4’ 
0 s (TI 

cos m+W(a cos 4 - a cos 4’) d+ 
4’ 

and introducing new variables @ = rr - #, @’ = rr - 4’: 

K = mm’ I 

71 @’ 
cos(m’m - m’@‘) d@’ 

0 s 
cos(m~ - m@)W(a COS(T - @) - a cos(n - a’)) d@ 

0 

co’ 

= (-l)m+,‘k 
I 

z cos ml@‘,’ d@’ 
I 

cos m@W(a cos a, - a cos @J) d@ = (- l)m+m’K,,,,, , 
0 0 

we come to a relation of “chess board symmetry” between the matrix elements: 

K mm, = (- l)m+m’K,., . 

Then we will use the equations for the “hollow” beam for a.demonstration of the algorithm of elimination of 
the threshold of the strong head-tail effect. 

For a nonhollow beam we have to divide the synchrotron plane into rings and use equations for an infinite 
number of rings and an infinite number of azimuthal modes for finding the eigen-frequencies. It was shown in 
Ref. [7], that the “chess board” property of coupling coefficients holds for coupling of rings with different 
synchrotron amplitudes, so it is general. The antisymmetry of the odd-even terms is the mathematical reason of 
merging of modes and TMC instability. 

In the next section a more general approach is developed for exact (nonaveraged) equations. 

3. General case 

Let us start again with a hollow beam. The particles of a hollow beam occupy a ring in synchrotron phase 
space. Let us divide this ring into 2k + 1 mesh elements with the prth one centred at the synchrotron phase 55,: 

2rrn 
+‘n = 2k + 1 --& (lInS2k+l). 

Each mesh element comprises a group of real particles which are at this moment in this position of the phase 
space (and have a total dipole moment 0, and angle DA). 

The division of the ring implies that all particles with the numbers n and 2k + 2 - n have equal synchrotron 
coordinates and opposite synchrotron “velocities” AEIE, with the exception of the last particle in the bunch; 
this has no counterpart (see Fig. 2). 

N=5 

Fig. 2. Division of the longitudinal phase space into mesh elements for the hollow beam model. 

II. COHERENT OSCILLATIONS 

Ø It is also possible to adopt an approach “in-between” multi-particle 
simulations and Vlasov solvers, still computing instability modes:

§ assume a single “macro-particle” in transverse

§ discretize the longitudinal phase space using a 2D mesh, in polar 
coordinates
→ transfer map in matrix form 
→ diagonalization 
→ modes

⇒ circulant matrix model [1], later extended by S. White and X. Buffat [2].

[1] V. V. Danilov & E. A. Perevedentsev, Nucl. Instr. Meth. in Phys. Res. A 391 (1997) pp. 77-92.
[2] S. White et al, Phys. Rev. ST Accel. Beams 17 (2014), 041002.
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Another alternative for instability computation

Courtesy V. V. Danilov & 
E. A. Perevedentsev [1]
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Invariant of motion: linear optics

Starting from Hill’s equation (in the smooth approximation):

	
𝑑F𝑦
𝑑𝑠F

+	
𝑄+
𝑅

F

𝑦 	= 0

×
𝑑𝑦
𝑑𝑠

																	⇒ 	
𝑑F𝑦
𝑑𝑠F

⋅
𝑑𝑦
𝑑𝑠

+
𝑄+
𝑅

F

𝑦
𝑑𝑦
𝑑𝑠

	= 0

⇒ 	
1
2

𝑑
𝑑𝑠

𝑑𝑦
𝑑𝑠

F

+
𝑄+
𝑅

F 𝑑
𝑑𝑠

𝑦F 	= 0

×
𝑅
𝑄+

∫ 𝑑𝑠							 ⇒ 	
1
2
𝑅
𝑄+

𝑑𝑦
𝑑𝑠

F

+
𝑄+
𝑅

F

𝑦F 	= constant

⇒ 	
1
2

𝑅
𝑄+

𝑝+
𝑚f𝛾𝑣

F
+
𝑄+
𝑅
𝑦F 	= constant

using				
𝑑𝑦
𝑑𝑠

=
𝑑𝑦
𝑑𝑡
𝑑𝑡
𝑑𝑠

=
𝑣+
𝑣
=

𝑝+
𝑚f𝛾𝑣


