Lectures on Partial Differential Equations

Stephan Russenschuck, CAS Thessaloniki

Foundations of Vector Analysis

Directional Derivative and the Total Differential

Space curve with $\mathbf{r}(t) = (x(t), y(t), z(t))$ parametrized such that $\mathbf{r}(0) = P$.

1-smooth scalar field $\phi : E_3 \to R : \mathbf{r} \mapsto \phi(\mathbf{r})$ expressed as $\phi(x, y, z)$, then $\phi(\mathbf{r}(t))$ at parameter (time) t.

$$\partial_{\mathbf{v}}\phi = \frac{\partial\phi}{\partial v} = \frac{\mathrm{d}}{\mathrm{d}t}[\phi(\mathbf{r}+t\mathbf{v})]_{t=0} = \lim_{t\to 0}\frac{\phi(\mathbf{r}+t\mathbf{v})-\phi(\mathbf{r})}{t}$$
$$\partial_{\mathbf{v}}\phi = \frac{\mathrm{d}}{\mathrm{d}t}\phi(\mathbf{r}(t)) = \frac{\partial\phi}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial\phi}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial\phi}{\partial z}\frac{\mathrm{d}z}{\mathrm{d}t} = \operatorname{grad}\phi \cdot \mathbf{v}$$

grad
$$\phi = \frac{\partial \phi}{\partial x} \mathbf{e}_x + \frac{\partial \phi}{\partial y} \mathbf{e}_y + \frac{\partial \phi}{\partial z} \mathbf{e}_z$$

Best linear approximation of ϕ over displacement distance dr

$$\mathbf{d}\mathbf{r} = \mathbf{v}\mathbf{d}t = \frac{\mathbf{v}}{v}v\mathbf{d}t = \mathbf{T}\,\mathbf{d}s \qquad \mathbf{d}\mathbf{a} = \mathbf{n}\,\mathbf{d}a = \left(\frac{\partial\mathbf{r}}{\partial u} \times \frac{\partial\mathbf{r}}{\partial v}\right)\mathbf{d}u\mathbf{d}v \qquad \mathbf{d}\mathbf{f} = \frac{\partial\mathbf{f}}{\partial x}\mathbf{d}x + \frac{\partial\mathbf{f}}{\partial y}\mathbf{d}y + \frac{\partial\mathbf{f}}{\partial z}\mathbf{d}z$$

Remember the Cauchy Schwarz inequality

 $|\langle a,b\rangle| \leq ||a|| ||b||,$

Thus for the directional derivative

 $|\partial_{\mathbf{v}}\phi| \leq |\operatorname{grad}\phi| |\mathbf{v}|$

This implies that the directional derivative takes its maximum when **v** points in the direction of the gradient. Therefore gradient points in the direction of the steepest ascent of Φ and is thus normal to the surface of equipotential.

The flux density **B** exits a highly permeable surface in normal direction. Therefore the pole shape of normal conducting magnets can be seen as an equipotential of the magnetic scalar potential.

Grad, Curl and Div in Cartesian Coordinates

$$\operatorname{grad} \phi := \frac{\partial \phi}{\partial x} \mathbf{e}_x + \frac{\partial \phi}{\partial y} \mathbf{e}_y + \frac{\partial \phi}{\partial z} \mathbf{e}_z$$
$$\operatorname{curl} \mathbf{g} = \left(\frac{\partial g_z}{\partial y} - \frac{\partial g_y}{\partial z}\right) \mathbf{e}_x + \left(\frac{\partial g_x}{\partial z} - \frac{\partial g_z}{\partial x}\right) \mathbf{e}_y + \left(\frac{\partial g_y}{\partial x} - \frac{\partial g_x}{\partial y}\right) \mathbf{e}_z.$$
$$\operatorname{div} \mathbf{g} = \frac{\partial g_x}{\partial x} + \frac{\partial g_y}{\partial y} + \frac{\partial g_z}{\partial z}.$$

$$\operatorname{curl} \operatorname{grad} \phi = \operatorname{curl} \left[\frac{1}{h_1} \frac{\partial \phi}{\partial u^1} \mathbf{e}_{u^1} + \frac{1}{h_2} \frac{\partial \phi}{\partial u^2} \mathbf{e}_{u^2} + \frac{1}{h_3} \frac{\partial \phi}{\partial u^3} \mathbf{e}_{u^3} \right] \\ = \frac{1}{h_2 h_3} \left(\frac{\partial^2 \phi}{\partial u^2 \partial u^3} - \frac{\partial^2 \phi}{\partial u^3 \partial u^2} \right) \mathbf{e}_{u^1} \\ + \frac{1}{h_3 h_1} \left(\frac{\partial^2 \phi}{\partial u^3 \partial u^1} - \frac{\partial^2 \phi}{\partial u^1 \partial u^3} \right) \mathbf{e}_{u^2} \\ + \frac{1}{h_1 h_2} \left(\frac{\partial^2 \phi}{\partial u^1 \partial u^2} - \frac{\partial^2 \phi}{\partial u^2 \partial u^1} \right) \mathbf{e}_{u^3} = 0,$$

Ugly and not even a universal proof (orthogonality assumed)

Coordinate Free Definition of Grad, Curl, and Div

$$\int_{\mathscr{P}_{1}}^{\mathscr{P}_{2}} \mathbf{a} \cdot d\mathbf{r} = \int_{\mathscr{P}_{1}}^{\mathscr{P}_{2}} \operatorname{grad} \phi \cdot d\mathbf{r} = \int_{\mathscr{P}_{1}}^{\mathscr{P}_{2}} d\phi = \phi(\mathscr{P}_{2}) - \phi(\mathscr{P}_{1}),$$

$$\mathbf{n} \cdot \operatorname{curl} \mathbf{g} = \lim_{a \to 0} \frac{\int_{\partial \mathscr{A}} \mathbf{g} \cdot d\mathbf{r}}{a},$$

$$\operatorname{div} \mathbf{g} = \lim_{V \to 0} \frac{\int_{\partial \mathscr{V}} \mathbf{g} \cdot d\mathbf{a}}{V},$$

$$g_{z} + \frac{\partial g_{z}}{\partial y} \Delta y + \frac{\partial g_{y}}{\partial z} \Delta z}{V}$$

$$\partial(\partial \mathscr{V}) = \emptyset, \qquad \partial(\partial \mathscr{A}) = \emptyset,$$
$$\int_{\mathscr{V}} \operatorname{div} \operatorname{curl} \mathbf{g} \mathrm{d} V = \int_{\partial \mathscr{V}} \operatorname{curl} \mathbf{g} \cdot \mathrm{d} \mathbf{a} = \int_{\partial(\partial \mathscr{V})} \mathbf{g} \cdot \mathrm{d} \mathbf{r} = 0,$$
$$\int_{\mathscr{A}} \operatorname{curl} \operatorname{grad} \phi \cdot \mathrm{d} \mathbf{a} = \int_{\partial \mathscr{A}} \operatorname{grad} \phi \cdot \mathrm{d} \mathbf{r} = \phi|_{\partial(\partial \mathscr{A})} = 0,$$

Reversal of arguments yields two important statements (next slides): Much nicer than writing it in coordinates

The second Lemma of Poincare (Contractible Domains)

div $\mathbf{b} = 0 \longrightarrow \mathbf{b} = \operatorname{curl} \mathbf{a}$. curl $\mathbf{h} = 0 \longrightarrow \mathbf{h} = \operatorname{grad} \phi$.

Lemmata of Poincare (Non-Contractible Domains)

Toroidal domain Ω in a cylindrical coordinate system (r, φ, z) :

$$H_{\varphi} = \frac{I}{2\pi r}$$

$$\operatorname{curl} \mathbf{H} = \frac{1}{r} \frac{\partial}{\partial r} (rH_{\varphi}) = 0$$

But $\oint_C \mathbf{H} \cdot d\mathbf{s} = I$ and Ω , with $\oint_C \operatorname{grad} \phi \cdot d\mathbf{s} = 0$

Domain Ω between two nested spheres centered at the origin.

$$D_R = \frac{Q}{4\pi R^2} \mathbf{e}_R$$

$$\operatorname{div} \mathbf{D} = \frac{1}{r^2} \frac{\partial}{\partial R} (R^2 D_R) = 0$$

But $\oint_a \mathbf{D} \cdot d\mathbf{a} = Q$ and $\oint_a \operatorname{curl} \mathbf{A} \cdot d\mathbf{a} = 0$

Kelvin-Stokes Theorem

Smooth vector fields, smooth surfaces with simply connected, closed, piecewise-smooth and consistently oriented boundaries, and volumes with piecewise-smooth, closed and consistently oriented surfaces.

No jump discontinuities (for example, co-moving shielding devices)

$$\int_{\partial \mathscr{A}} \mathbf{g} \cdot d\mathbf{r} = \int_{\mathscr{S}_1} \mathbf{g} \cdot d\mathbf{r} + \int_{\mathscr{S}_2} \mathbf{g} \cdot d\mathbf{r} = \int_{\mathscr{S}_{11}} \mathbf{g} \cdot d\mathbf{r} + \int_{\mathscr{S}_{22}} \mathbf{g} \cdot d\mathbf{r},$$

$$\int_{\partial \mathscr{A}} \mathbf{g} \cdot d\mathbf{r} = \lim_{I \to \infty} \sum_{i=1}^{I} \int_{\partial \mathscr{A}_{i}} \mathbf{g} \cdot d\mathbf{r} = \lim_{I \to \infty} \sum_{i=1}^{I} \Delta a_{i} \frac{1}{\Delta a_{i}} \int_{\partial \mathscr{A}_{i}} \mathbf{g} \cdot d\mathbf{r}$$
$$= \lim_{I \to \infty} \sum_{i=1}^{I} (\operatorname{curl} \mathbf{g})_{i} \cdot \mathbf{n} \Delta a_{i} = \int_{\mathscr{A}} \operatorname{curl} \mathbf{g} \cdot d\mathbf{a}.$$

Gauss' Theorem

Smooth vector fields, smooth surfaces with simply connected, closed, piecewise-smooth and consistently oriented boundaries, and volumes with piecewise-smooth, closed and consistently oriented surfaces.

$$\int_{\partial \mathscr{V}} \mathbf{g} \cdot d\mathbf{a} = \lim_{I \to \infty} \sum_{i=1}^{I} \int_{\partial \mathscr{V}_i} \mathbf{g} \cdot d\mathbf{a} = \lim_{I \to \infty} \sum_{i=1}^{I} \Delta V_i \frac{1}{\Delta V_i} \int_{\partial \mathscr{V}_i} \mathbf{g} \cdot d\mathbf{a}$$
$$= \lim_{I \to \infty} \sum_{i=1}^{I} (\operatorname{div} \mathbf{g})_i \Delta V_i = \int_{\mathscr{V}} \operatorname{div} \mathbf{g} \, \mathrm{d} V.$$

Green's First

$$\int_{\mathscr{V}} \left(\operatorname{grad} \phi \cdot \operatorname{grad} \psi + \phi \nabla^2 \psi \right) \, \mathrm{d}V = \int_{\partial \mathscr{V}} \phi \, \partial_{\mathbf{n}} \psi \, \mathrm{d}a$$

Green's Second

$$\int_{\Omega} \left(\phi \nabla^2 \psi - \psi \nabla^2 \phi \right) \, \mathrm{d}V = \int_{\Gamma} \left(\phi \partial_{\mathbf{n}} \psi - \psi \partial_{\mathbf{n}} \phi \right) \, \mathrm{d}a$$

Vector Form of Green's Second

$$\int_{\mathscr{V}} \mathbf{a} \cdot \operatorname{curl} \mathbf{b} \, \mathrm{d} V = \int_{\mathscr{V}} \mathbf{b} \cdot \operatorname{curl} \mathbf{a} \, \mathrm{d} V - \int_{\partial \mathscr{V}} \mathbf{a} \cdot (\mathbf{b} \times \mathbf{n}) \, \mathrm{d} a.$$

Generalization of the Integration by Parts Rule

$$-\int_{\mathscr{V}} \mathbf{a} \cdot \operatorname{grad} \phi \, \mathrm{d} V = \int_{\mathscr{V}} \phi \operatorname{div} \mathbf{a} \, \mathrm{d} V - \int_{\partial \mathscr{V}} \phi(\mathbf{a} \cdot \mathbf{n}) \, \mathrm{d} a.$$

Stratton #1 and #2

$$\int_{\mathscr{V}} \operatorname{div}(\mathbf{a} \times \operatorname{curl} \mathbf{b}) \mathrm{d}V = \int_{\partial \mathscr{V}} (\mathbf{a} \times \operatorname{curl} \mathbf{b}) \cdot \mathbf{n} \, \mathrm{d}a$$

$$\int_{\mathscr{V}} (\mathbf{a} \operatorname{curl} \operatorname{curl} \mathbf{b} - \mathbf{b} \operatorname{curl} \operatorname{curl} \mathbf{a}) \, \mathrm{d}V = \int_{\partial \mathscr{V}} (\mathbf{b} \times \operatorname{curl} \mathbf{a} - \mathbf{a} \times \operatorname{curl} \mathbf{b}) \cdot \mathbf{n} \, \mathrm{d}a \, .$$

Maxwell's Equations in Different Avatars

Maxwell Equations

Maxwell Equations I: Global Form

Ampere + Maxwell extension

Faraday

$$V_{\rm m}(\partial \mathscr{A}) = I(\mathscr{A}) + \frac{\mathrm{d}}{\mathrm{d}t} \Psi(\mathscr{A}),$$
$$U(\partial \mathscr{A}) = -\frac{\mathrm{d}}{\mathrm{d}t} \Phi(\mathscr{A}),$$

Flux conservation

$$U(\partial \mathscr{A}) = -\frac{\partial}{\partial t} \Phi(\mathscr{A}),$$

$$\Phi(\partial \mathscr{V}) = 0,$$

Gauss $\Psi(\partial \mathscr{V}) = Q(\mathscr{V}).$

 $\partial \mathscr{A}$

Required: Orientable manifolds

No switches, no Moebius strips

Global quantity	SI unit	Relation			SI unit	Field
MMF	1 A	$V_{\rm m}(\mathscr{S})$	=	∫ _ℒ H · dr	$1 {\rm A}{\rm m}^{-1}$	Magnetic field
Electric voltage	1 V	$U(\mathscr{S})$	=	∫ _ℒ E · dr	$1\mathrm{V}\mathrm{m}^{-1}$	Electric field
Magnetic flux	$1 \mathrm{V} \mathrm{s}$	$\Phi(\mathscr{A})$	=	∫ _⊿ B · da	$1\mathrm{Vsm^{-2}}$	Magnetic flux density
Electric flux	1As	$\Psi(\mathscr{A})$	=	∫ _⊿ D · da	$1\mathrm{Asm^{-2}}$	Electric flux density
Electric current	1A	$I(\mathscr{A})$	=	∫ _⊿ J · da	$1 \mathrm{A} \mathrm{m}^{-2}$	Electric current density
Electric charge	1As	$Q(\mathscr{V})$	=	$\int_{\mathscr{V}} \rho \cdot \mathrm{d}V$	$1\mathrm{Asm^{-3}}$	Electric charge density

$$\int_{\partial \mathscr{A}} \mathbf{H} \cdot d\mathbf{r} = \int_{\mathscr{A}} \mathbf{J} \cdot d\mathbf{a} + \frac{d}{dt} \int_{\mathscr{A}} \mathbf{D} \cdot d\mathbf{a},$$
$$\int_{\partial \mathscr{A}} \mathbf{E} \cdot d\mathbf{r} = -\frac{d}{dt} \int_{\mathscr{A}} \mathbf{B} \cdot d\mathbf{a},$$
$$\int_{\partial \mathscr{V}} \mathbf{B} \cdot d\mathbf{a} = 0,$$
$$\int_{\partial \mathscr{V}} \mathbf{D} \cdot d\mathbf{a} = \int_{\mathscr{V}} \rho \, dV.$$

Required: Orientable manifolds, orientation, frame, metric, continuity

No switches, no Moebius strips

Maxwell's Equations in Local Form

$$\int_{\mathscr{A}} \operatorname{curl} \mathbf{g} \cdot d\mathbf{a} = \int_{\partial \mathscr{A}} \mathbf{g} \cdot d\mathbf{r}, \qquad \qquad \int_{\partial \mathscr{A}} \mathbf{H} \cdot d\mathbf{r} = \int_{\mathscr{A}} \mathbf{J} \cdot d\mathbf{a} + \frac{d}{dt} \int_{\mathscr{A}} \mathbf{D} \cdot d\mathbf{a}, \\ \int_{\partial \mathscr{A}} \mathbf{E} \cdot d\mathbf{r} = -\frac{d}{dt} \int_{\mathscr{A}} \mathbf{B} \cdot d\mathbf{a}, \\ \int_{\partial \mathscr{A}} \mathbf{B} \cdot d\mathbf{a} = 0, \\ \int_{\partial \mathscr{Y}} \mathbf{D} \cdot d\mathbf{a} = \int_{\mathscr{Y}} \rho \, dV. \end{cases}$$

$$\int_{\mathscr{A}} \operatorname{curl} \mathbf{H} \cdot d\mathbf{a} = \int_{\mathscr{A}} \left(\mathbf{J} + \frac{\partial}{\partial t} \mathbf{D} \right) \cdot d\mathbf{a}, \qquad \operatorname{curl} \mathbf{H} = \mathbf{J} + \frac{\partial}{\partial t} \mathbf{D}, \\ \int_{\mathscr{A}} \operatorname{curl} \mathbf{E} \cdot d\mathbf{a} = -\int_{\mathscr{A}} \frac{\partial}{\partial t} \mathbf{B} \cdot d\mathbf{a}, \qquad \operatorname{curl} \mathbf{H} = \mathbf{J} - \frac{\partial}{\partial t} \mathbf{B}, \\ \int_{\mathscr{Y}} \operatorname{div} \mathbf{B} \, dV = 0, \qquad \operatorname{div} \mathbf{B} = 0, \\ \int_{\mathscr{Y}} \operatorname{div} \mathbf{D} \, dV = \int_{\mathscr{Y}} \rho \, dV. \qquad \operatorname{div} \mathbf{D} = \rho.$$

This simple form of constitutive equations are only true for linear (field-independent), homogeneous (position-independent), isotropic (direction-independent), lossless, and stationary media

 $\operatorname{curl} \mathbf{H} = \mathbf{J} + \frac{\partial}{\partial t} \mathbf{D},$ $\operatorname{curl} \mathbf{E} = -\frac{\partial}{\partial t}\mathbf{B},$ div $\mathbf{B} = 0$, div $\mathbf{D} = \rho$.

Required: Orientable manifolds, orientation, frame, metric, continuity, contractible domains

No switches, no Moebius strips, no holes in surfaces, no bubbles in volumes, no internal boundaries

$$\mathbf{H} = -\operatorname{grad} \phi_{\mathrm{m}}^{\mathrm{red}} + \mathbf{T}$$

$$\mathbf{B} = \operatorname{curl} \mathbf{A}$$

$$\mathbf{E} = -\operatorname{grad} \phi - \frac{\partial}{\partial t} \mathbf{A}$$

Harmonic Fields

Field Quality

Field map

Good field region

Maxwell's House

Faraday

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \mathbf{A} = \mathbf{J}$$

$$\frac{1}{\mu_0} \operatorname{curl} \operatorname{curl} \mathbf{A} = \mathbf{J}$$

$$\nabla^2 \mathbf{A} - \operatorname{grad} \operatorname{div} \mathbf{A} = 0$$

 $\nabla^2 A_z = 0$

$$A$$

$$Curl$$

$$B$$

$$\mu$$

$$H$$

$$div$$

$$-grad$$

$$\phi_m$$

div
$$\mu$$
grad $\phi_m = 0$
 μ_0 div grad $\phi_m = 0$
 $\nabla^2 \phi_m = 0$

1. Governing equation in the air domain

 $\nabla^2 A_z = 0,$

2. Chose a suitable coordinate system

$$r^2 \frac{\partial^2 A_z}{\partial r^2} + r \frac{\partial A_z}{\partial r} + \frac{\partial^2 A_z}{\partial \varphi^2} = 0,$$

3. Find eigenfunctions. Coefficients are not know yet

$$A_z(r,\varphi) = \sum_{n=1}^{\infty} (\mathcal{E}_n r^n + \mathcal{F}_n r^{-n}) (\mathcal{G}_n \sin n\varphi + \mathcal{H}_n \cos n\varphi).$$

4. Incorporate a bit of knowledge and rename

$$A_z(r,\varphi) = \sum_{n=1}^{\infty} r^n (\mathcal{A}_n \sin n\varphi + \mathcal{B}_n \cos n\varphi).$$

5. Calculate a field component

$$B_r(r,\varphi) = \frac{1}{r} \frac{\partial A_z}{\partial \varphi} = \sum_{n=1}^{\infty} nr^{n-1} (\mathcal{A}_n \cos n\varphi - \mathcal{B}_n \sin n\varphi),$$

$$B_{\varphi}(r,\varphi) = -\frac{\partial A_z}{\partial r} = -\sum_{n=1}^{\infty} nr^{n-1} (\mathcal{A}_n \sin n\varphi + \mathcal{B}_n \cos n\varphi),$$

$$B_r(r,\varphi) = \frac{1}{r} \frac{\partial A_z}{\partial \varphi} = \sum_{n=1}^{\infty} n r^{n-1} (\mathcal{A}_n \cos n\varphi - \mathcal{B}_n \sin n\varphi),$$

6. Measure or calculate the field on a reference radius and perform Fourier analysis (develop into the eigenfunctions). Coefficients known here.

$$B_r(r_0,\varphi) = \sum_{n=1}^{\infty} (B_n(r_0)\sin n\varphi + A_n(r_0)\cos n\varphi),$$

7: Compare the known and unknown coefficients

$$B_r(r,\varphi) = \frac{1}{r} \frac{\partial A_z}{\partial \varphi} = \sum_{n=1}^{\infty} nr^{n-1} (\mathcal{A}_n \cos n\varphi - \mathcal{B}_n \sin n\varphi),$$
$$B_r(r_0,\varphi) = \sum_{n=1}^{\infty} (B_n(r_0) \sin n\varphi + A_n(r_0) \cos n\varphi),$$
$$\mathcal{A}_n = \frac{1}{n r_0^{n-1}} A_n(r_0), \qquad \mathcal{B}_n = \frac{-1}{n r_0^{n-1}} B_n(r_0).$$

8. Put this into the original solution for the entire air domain

$$A_z(r,\varphi) = -\sum_{n=1}^{\infty} \frac{r_0}{n} \left(\frac{r}{r_0}\right)^n (B_n(r_0)\cos n\varphi - A_n(r_0)\sin n\varphi).$$

9: Calculate fields and potential in the entire air domain

$$A_z(r,\varphi) = -\sum_{n=1}^{\infty} \frac{r_0}{n} \left(\frac{r}{r_0}\right)^n (B_n(r_0)\cos n\varphi - A_n(r_0)\sin n\varphi).$$

$$B_r(r,\varphi) = \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^{n-1} (B_n(r_0)\sin n\varphi + A_n(r_0)\cos n\varphi)$$
$$B_{\varphi}(r,\varphi) = \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^{n-1} (B_n(r_0)\cos n\varphi - A_n(r_0)\sin n\varphi)$$

$$B_x(r,\varphi) = \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^{n-1} (B_n(r_0)\sin(n-1)\varphi + A_n(r_0)\cos(n-1)\varphi)$$
$$B_y(r,\varphi) = \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^{n-1} (B_n(r_0)\cos(n-1)\varphi - A_n(r_0)\sin(n-1)\varphi)$$

$$B_r(r,\varphi) = \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^{n-1} \left(B_n(r_0)\sin n\varphi + A_n(r_0)\cos n\varphi\right)$$

$$B_r(r,\varphi) = B_N \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^{n-N} \left(b_n(r_0)\sin n\varphi + a_n(r_0)\cos n\varphi\right).$$

$$A_n(r_1) = \left(\frac{r_1}{r_0}\right)^{n-1} A_n(r_0), \qquad B_n(r_1) = \left(\frac{r_1}{r_0}\right)^{n-1} B_n(r_0),$$

$$b_n(r_1) = \frac{B_n(r_1)}{B_N(r_1)} = \frac{\left(\frac{r_1}{r_0}\right)^{n-1} B_n(r_0)}{\left(\frac{r_1}{r_0}\right)^{N-1} B_N(r_0)} = \left(\frac{r_1}{r_0}\right)^{n-N} b_n(r_0),$$

Rotating Coil Measurements

Tangential coil Radial flux

CERN

Radial coil Tangential flux

Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23 CAS Thessaloniki 2018 х

Rotating Coil Measurements

$$\Phi(\varphi) = N \int_{\mathscr{A}} \mathbf{B} \cdot d\mathbf{a} = N \int_{\mathscr{A}} \operatorname{curl} \mathbf{A} \cdot d\mathbf{a} = N \int_{\partial \mathscr{A}} \mathbf{A} \cdot d\mathbf{r}$$
$$= N\ell \left[A_z(\mathscr{P}_1) - A_z(\mathscr{P}_2) \right],$$

х

$$\Phi(\varphi) = N\ell \left[\sum_{n=1}^{\infty} \frac{r_0}{n} \left(\frac{r_2}{r_0} \right)^n (B_n(r_0) \cos n\varphi_2 - A_n(r_0) \sin n\varphi_2) - \sum_{n=1}^{\infty} \frac{r_0}{n} \left(\frac{r_1}{r_0} \right)^n (B_n(r_0) \cos n\varphi_1 - A_n(r_0) \sin n\varphi_1) \right],$$

$$\Phi(\varphi) = \sum_{n=1}^{\infty} S_n^{\text{rad}} \left(B_n(r_0) \cos n\varphi - A_n(r_0) \sin n\varphi \right)$$
$$+ S_n^{\text{tan}} \left(B_n(r_0) \sin n\varphi + A_n(r_0) \cos n\varphi \right)$$

$$S_n^{\text{rad}} = \frac{N\ell}{nr_0^{n-1}} \left[r_2^n \cos n(\varphi_2 - \varphi) - r_1^n \cos n(\varphi_1 - \varphi) \right],$$

$$S_n^{\text{tan}} = -\frac{N\ell}{nr_0^{n-1}} \left[r_2^n \sin n(\varphi_2 - \varphi) - r_1^n \sin n(\varphi_1 - \varphi) \right],$$

Cartesian Coordinates (Eigensolutions for the Ideal Dipole)

$$\phi_{\mathrm{m}} = X(x)Y(y) \qquad \qquad \underbrace{\frac{1}{X(x)}\frac{\mathrm{d}^{2}X(x)}{\mathrm{d}x^{2}}}_{p^{2}} + \underbrace{\frac{1}{Y(y)}\frac{\mathrm{d}^{2}Y(y)}{\mathrm{d}y^{2}}}_{-p^{2}} = 0$$

$$\begin{aligned} X_p(x) &= \mathcal{C}_p \cos px + \mathcal{D}_p \sin px ,\\ Y_p(y) &= \mathcal{E}_p \cosh py + \mathcal{F}_p \sinh py , \end{aligned} \qquad p = n \, \frac{2\pi}{\lambda} =: nk_0 \end{aligned}$$

$$B_x(x,y) = \mu_0 \sum_{n=1}^{\infty} \mathcal{A}_n \sinh\left(\frac{n\pi}{h}x\right) \sin\left(\frac{n\pi}{h}y\right),$$

$$B_y(x,y) = B_0 + \mu_0 \sum_{n=1}^{\infty} \mathcal{A}_n \cosh\left(\frac{n\pi}{h}x\right) \cos\left(\frac{n\pi}{h}y\right).$$

Cartesian Coordinates (Eigensolutions for the Wiggler)

Determining the Coefficients

$$A_{z}^{(1)}(x,y) = \sum_{n} A_{n}^{(1)} \frac{\sinh\left(n\pi \frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)}{\sinh\left(n\pi \frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)} \sin\left(n\pi \frac{x_{2}-x}{x_{2}-x_{1}}\right)$$

Field Reconstruction from Boundary Data

Theorem 5.1 If ϕ is harmonic in the closed contractible volume $\mathscr{V} \subset \Omega$ bounded by the surface $\partial \mathscr{V}$, the surface integral of the normal derivative of ϕ vanishes. Flux in = flux out

Theorem 5.2 If ϕ is harmonic in the closed, contractible volume $\mathscr{V} \subset \Omega$, bounded by the surface $\partial \mathscr{V}$, with the same magnitude at all points on that surface, then ϕ is constant throughout \mathscr{V} and equal to its value ϕ_0 on the boundary.

Faraday cage

Theorem 5.3 If ϕ is harmonic in the closed contractible volume $\mathscr{V} \subset \Omega$ bounded by $\partial \mathscr{V}$ and its value is specified at each point of that boundary, then ϕ is uniquely determined at all points inside the volume.

Determine fields by Fourier analysis on boundary

Theorem 5.5 (Liouville) If ϕ is a harmonic scalar field in E_n with an upper (or *lower*) bound, ϕ is constant.

Watch out for singularities (sources of the field), maximum field at the boundary

Complex Potentials

$$\mathbf{H} = -\operatorname{grad} \phi = -\frac{\partial \phi}{\partial x} \mathbf{e}_x - \frac{\partial \phi}{\partial y} \mathbf{e}_{y},$$
$$\mathbf{B} = \operatorname{curl} \left(\mathbf{e}_z A_z \right) = \frac{\partial A_z}{\partial y} \mathbf{e}_x - \frac{\partial A_z}{\partial x} \mathbf{e}_y.$$

This implies

$$\frac{\partial A_z}{\partial y} = -\mu_0 \frac{\partial \phi}{\partial x}$$
 and $\frac{\partial A_z}{\partial x} = \mu_0 \frac{\partial \phi}{\partial y}$

Which are the Cauchy Riemann equations of

$$w(z) := u(x, y) + iv(x, y) = A_z(x, y) + i\mu_0\phi(x, y)$$

$$-\frac{\mathrm{d}w}{\mathrm{d}z} = -\frac{\partial A_z}{\partial x} - i\mu_0 \frac{\partial \phi}{\partial x} = i\frac{\partial A_z}{\partial y} - \mu_0 \frac{\partial \phi}{\partial y} = B_y(x,y) + iB_x(x,y) =: B(z).$$

Theorem 9.2 *Real and imaginary parts of a holomorphic function are harmonic functions.*

Proof. If f(z) = f(x, y) = u(x, y) + iv(x, y) is holomorphic, the Cauchy–Riemann equations yield

$$\nabla^2 u = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial y} \left(-\frac{\partial v}{\partial x} \right) = 0,$$

$$\nabla^2 v = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial}{\partial x} \left(-\frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) = 0.$$

$$B_x = B_r \cos \varphi - B_{\varphi} \sin \varphi,$$
 $B_y = B_r \sin \varphi + B_{\varphi} \cos \varphi,$
 $B_y + iB_x = (B_{\varphi} + iB_r)e^{-i\varphi}.$

$$B_{y} + iB_{x} = \sum_{n=1}^{\infty} (B_{n}(r_{0}) + iA_{n}(r_{0})) \left(\frac{r}{r_{0}}\right)^{n-1} e^{i(n-1)\varphi}$$

= $\sum_{n=1}^{\infty} (B_{n}(r_{0}) + iA_{n}(r_{0})) \left(\frac{z}{r_{0}}\right)^{n-1}$
= $B_{N} \sum_{n=1}^{\infty} (b_{n}(r_{0}) + ia_{n}(r_{0})) \left(\frac{z}{r_{0}}\right)^{n-1}$,

$$b_n = \frac{r^{n-1}}{B_N} \frac{1}{(n-1)!} \left. \frac{\mathrm{d}^{n-1} B_y}{\mathrm{d} x^{n-1}} \right|_{x=y=0}$$

Feed-down (Holomorphic Continuation)

$$C'_{2} = C_{2} + 2C_{3}\left(\frac{z_{d}}{r_{0}}\right) + 3C_{4}\left(\frac{z_{d}}{r_{0}}\right)^{2} + \cdots,$$

Feed-down: Enemy and Friend

Elliptical Harmonics

$$B_{\eta}(\eta,\psi) = \frac{1}{h_2} \sum_{n=1}^{\infty} \left(n \,\mathcal{A}_n \sinh n\eta \cos n\psi - n \,\mathcal{B}_n \cosh n\eta \sin n\psi \right) \,.$$

$$B_{\eta} = \underbrace{\frac{1}{h_1}}_{n_1} (a \sinh \eta \cos \psi B_x + a \cosh \eta \sin \psi B_y).$$
$$B_{\eta}(\eta_0, \psi) = \sum_{n=1}^{\infty} (B_n(\eta_0) \sin n\psi + A_n(\eta_0) \cos n\psi),$$

$$h_1 = h_2 = a \sqrt{\cosh^2 \eta - \cos^2 \psi}.$$

Solution: Use covariant derivative, i.e, differential forms (Auchmann, Kurz, Petrone, Russenschuck 2015)

Metric-Free Elliptic Multipoles

$$\tilde{B}_{\eta} = \frac{\partial A_z}{\partial \psi} \qquad \qquad \tilde{B}_{\psi} = \frac{\partial A_z}{\partial \eta} \,.$$

 $\tilde{B}_{\eta}(\eta,\psi) = \sum_{n=1}^{\infty} \left(n\mathcal{A}_n \sinh n\eta \cos n\psi - n\mathcal{B}_n \cosh n\eta \sin n\psi \right) \,.$

$$\tilde{B}_{\eta}(\eta_0,\psi) = \sum_{n=1}^{\infty} \left(\tilde{B}_n(\eta_0) \sin n\psi + \tilde{A}_n(\eta_0) \cos n\psi \right),$$

$$\mathcal{A}_n = \frac{1}{n \sinh n\eta_0} \tilde{\mathcal{A}}_n(\eta_0), \qquad \qquad \mathcal{B}_n = -\frac{1}{n \cosh n\eta_0} \tilde{\mathcal{B}}_n(\eta_0)$$

Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23 CAS Thessaloniki 2018 ,

Results for the MM-Section's Calibration Magnets (ISR dipole)

$$B_{\eta}(\eta,\psi) = \frac{1}{h_2} \sum_{n=1}^{\infty} \left(\tilde{B}_n(\eta_0) \frac{\cosh n\eta}{\cosh n\eta_0} \sin n\psi + \tilde{A}_n(\eta_0) \frac{\sinh n\eta}{\sinh n\eta_0} \cos n\psi \right),$$
$$B_{\psi}(\eta,\psi) = \frac{1}{h_1} \sum_{n=1}^{\infty} \left(\tilde{B}_n(\eta_0) \frac{\sinh n\eta}{\cosh n\eta_0} \cos n\psi - \tilde{A}_n(\eta_0) \frac{\cosh n\eta}{\sinh n\eta_0} \sin n\psi \right).$$

Local transverse harmonics calculated at different reference radii and scaled with the 2D laws

$$b_n(r_1) = \left(\frac{r_1}{r_0}\right)^{n-N} b_n(r_0),$$

wrong

Integrated Harmonics

$$\nabla^2 \phi_{\mathrm{m}}(x, y, z) = \frac{\partial^2 \phi_{\mathrm{m}}(x, y, z)}{\partial x^2} + \frac{\partial^2 \phi_{\mathrm{m}}(x, y, z)}{\partial y^2} + \frac{\partial^2 \phi_{\mathrm{m}}(x, y, z)}{\partial z^2} = 0.$$
$$\overline{\phi}_{\mathrm{m}}(x, y) := \int_{-z_0}^{z_0} \phi_{\mathrm{m}}(x, y, z) \mathrm{d}z.$$

$$\begin{aligned} \frac{\partial^2 \overline{\phi}_{\mathrm{m}}(x,y)}{\partial x^2} + \frac{\partial^2 \overline{\phi}_{\mathrm{m}}(x,y)}{\partial y^2} &= \int_{-z_0}^{z_0} \left(\frac{\partial^2 \phi_{\mathrm{m}}}{\partial x^2} + \frac{\partial^2 \phi_{\mathrm{m}}}{\partial y^2} \right) \mathrm{d}z \\ &= \int_{-z_0}^{z_0} \left(-\frac{\partial^2 \phi_{\mathrm{m}}}{\partial z^2} \right) \mathrm{d}z = -\left. \frac{\partial \phi_{\mathrm{m}}}{\partial z} \right|_{-z_0}^{z_0} \\ &= H_z(-z_0) - H_z(z_0) \stackrel{!}{=} 0. \end{aligned}$$

The 2D scaling laws hold for the integrated harmonics

$$\phi_{\rm m}(r,\varphi,z) = \left\{ \begin{array}{c} \cos n\varphi \\ \sin n\varphi \end{array} \right\} I_n(pr) \left\{ \begin{array}{c} \cos pz \\ \sin pz \end{array} \right\}$$

$$I_n(pr) = \sum_{k=0}^{\infty} \frac{1}{k! \, \Gamma(k+n+1)} \left(\frac{pr}{2}\right)^{n+2k}$$

$$\phi_{\mathrm{m}} = \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} r^{n+2k} (\mathcal{C}_{n+2k,n}(z) \sin n\varphi + \mathcal{D}_{n+2k,n}(z) \cos n\varphi)$$

$$\begin{aligned} &\frac{1}{r}\frac{\partial}{\partial r} \Big\{ \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} (n+2k)r^{n+2k} \left(\mathcal{C}_{n+2k,n}(z)\sin n\varphi + \mathcal{D}_{n+2k,n}(z)\cos n\varphi \right) \Big\} \\ &\quad - \frac{1}{r^2} \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} n^2 r^{n+2k} \left(\mathcal{C}_{n+2k,n}(z)\sin n\varphi + \mathcal{D}_{n+2k,n}(z)\cos n\varphi \right) \\ &\quad + \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} r^{n+2k} \left(\mathcal{C}_{n+2k,n}^{(2)}(z)\sin n\varphi + \mathcal{D}_{n+2k,n}^{(2)}(z)\cos n\varphi \right) \\ &\quad = \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} (n+2k)^2 r^{n+2k-2} \left(\mathcal{C}_{n+2k,n}(z)\sin n\varphi + \mathcal{D}_{n+2k,n}(z)\cos n\varphi \right) \\ &\quad - \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} n^2 r^{n+2k-2} \left(\mathcal{C}_{n+2k,n}(z)\sin n\varphi + \mathcal{D}_{n+2k,n}(z)\cos n\varphi \right) \\ &\quad + \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} r^{n+2k-2} \left(\mathcal{C}_{n+2k,n}^{(2)}(z)\sin n\varphi + \mathcal{D}_{n+2k,n}^{(2)}(z)\cos n\varphi \right) \\ &\quad = 0, \end{aligned}$$

$$\mathcal{C}_{n+2k,n}(z)\left((n+2k)^2 - n^2\right) + \mathcal{C}_{n+2k-2,n}^{(2)}(z) = 0,$$

$$\mathcal{D}_{n+2k,n}(z)\left((n+2k)^2 - n^2\right) + \mathcal{D}_{n+2k-2,n}^{(2)}(z) = 0.$$

$$\mathcal{C}_{n+2k,n}(z) = \frac{1}{\prod_{m=1}^{k} (n^2 - (n+2m)^2)} \mathcal{C}_{n,n}^{(2k)}(z),$$

$$\begin{split} \phi_{\rm m} &= \sum_{n=1}^{\infty} \left\{ \sum_{k=0}^{\infty} \frac{1}{\prod_{m=1}^{k} (n^2 - (n+2m)^2)} \, \mathcal{C}_{n,n}^{(2k)}(z) \right\} r^n \sin n\varphi \\ &+ \sum_{n=1}^{\infty} \left\{ \sum_{k=0}^{\infty} \frac{1}{\prod_{m=1}^{k} (n^2 - (n+2m)^2)} \, \mathcal{D}_{n,n}^{(2k)}(z) \right\} r^n \cos n\varphi \,, \end{split}$$

$$\begin{split} \phi_{\rm m} &= \sum_{n=1}^{\infty} \left\{ \mathcal{C}_{n,n}(z) - \frac{\mathcal{C}_{n,n}^{(2)}(z)}{4(n+1)} r^2 \\ &+ \frac{\mathcal{C}_{n,n}^{(4)}(z)}{32(n+1)(n+2)} r^4 - \frac{\mathcal{C}_{n,n}^{(6)}(z)}{384(n+1)(n+2)(n+3)} r^6 + \dots \right\} r^n \sin n\varphi \\ &+ \sum_{n=1}^{\infty} \left\{ \mathcal{D}_{n,n}(z) - \frac{\mathcal{D}_{n,n}^{(2)}(z)}{4(n+1)} r^2 \\ &+ \frac{\mathcal{D}_{n,n}^{(4)}(z)}{32(n+1)(n+2)} r^4 - \frac{\mathcal{D}_{n,n}^{(6)}(z)}{384(n+1)(n+2)(n+3)} r^6 + \dots \right\} r^n \cos n\varphi \,, \end{split}$$

Field Components from Pseudo-Multipoles

$$\begin{split} \phi_{\mathrm{m}}(r,\varphi) &= \sum_{n=1}^{\infty} r^{n} (\widetilde{\mathcal{C}}_{n}(r,z) \sin n\varphi + \widetilde{\mathcal{D}}_{n}(z) \cos n\varphi) \,. \\ B_{r}(r,\varphi,z) &= -\mu_{0} \sum_{n=1}^{\infty} r^{n-1} (\overline{\mathcal{C}}_{n}(r,z) \sin n\varphi + \overline{\mathcal{D}}_{n}(r,z) \cos n\varphi) \,, \\ B_{\varphi}(r,\varphi,z) &= -\mu_{0} \sum_{n=1}^{\infty} n \, r^{n-1} (\widetilde{\mathcal{C}}_{n}(r,z) \cos n\varphi - \widetilde{\mathcal{D}}_{n}(r,z) \sin n\varphi) \,, \\ B_{z}(r,\varphi,z) &= -\mu_{0} \sum_{n=1}^{\infty} r^{n} \left(\frac{\partial \widetilde{\mathcal{C}}_{n}(r,z)}{\partial z} \sin n\varphi + \frac{\partial \widetilde{\mathcal{D}}_{n}(r,z)}{\partial z} \cos n\varphi \right) \,, \end{split}$$

$$\overline{\mathcal{C}}_{n}(r,z) = n \,\mathcal{C}_{n,n}(z) - \frac{(n+2)\mathcal{C}_{n,n}^{(2)}(z)}{4(n+1)}r^{2} + \frac{(n+4)\mathcal{C}_{n,n}^{(4)}(z)}{32(n+1)(n+2)}r^{4} - \dots$$
$$\widetilde{\mathcal{C}}_{n}(r,z) := \mathcal{C}_{n,n}(z) - \frac{\mathcal{C}_{n,n}^{(2)}(z)}{4(n+1)}r^{2} + \frac{\mathcal{C}_{n,n}^{(4)}(z)}{32(n+1)(n+2)}r^{4} - \dots,$$

The Leading Term is NOT the Measured One

$$B_{n}(r_{0},z) = -\mu_{0} r_{0}^{n-1} \overline{\mathcal{C}}_{n}(r_{0},z) = -\mu_{0} r_{0}^{n-1} \left(n \, \mathcal{C}_{n,n}(z) - \frac{(n+2)\mathcal{C}_{n,n}^{(2)}(z)}{4(n+1)} r_{0}^{2} + \frac{(n+4)\mathcal{C}_{n,n}^{(4)}(z)}{32(n+1)(n+2)} r_{0}^{4} - \dots \right) \,.$$

$$\mathcal{F}\{\mathcal{C}_{n,n}(z)\} = \frac{-\mathcal{F}\{B_n(r_0, z)\}}{\mu_0 r_0^{n-1} \left(n - \frac{(n+2)(i\omega)^2}{4(n+1)} r_0^2 + \frac{(n+4)(i\omega)^4}{32(n+1)(n+2)} r_0^4 - \dots\right)}$$

$$\mathcal{F}\{\mathcal{C}_{n,n}(z)\} = \frac{\mathcal{F}\{\tilde{B}_n(r_0, z)\}}{\mathcal{F}\{K_n(r_0, z)\}} \frac{-1}{\mu_0 r_0^{n-1} \left(n - \frac{(n+2)(i\omega)^2}{4(n+1)} r_0^2 + \frac{(n+4)(i\omega)^4}{32(n+1)(n+2)} r_0^4 - \dots\right)}$$

Classical Induction Coils Intercept the Bz Component

Field Singularities - The Green's Functions

Cross-section of Cryodipole

Rutherford (Roebel) Kabel, Strand, Nb-Ti Filament

The Field of Line Currents

$$\mathbf{r} \mapsto \phi(|\mathbf{r} - \mathbf{r}'|)$$

$$\mathbf{r}' \mapsto \phi(|\mathbf{r} - \mathbf{r}'|)$$

Why bother? Reciprocity; except for sign it does not matter if we exchange the source and field points

$$grad \phi(|\mathbf{r} - \mathbf{r}'|) = -grad_{\mathbf{r}'} \phi(|\mathbf{r} - \mathbf{r}'|),$$

$$div \mathbf{a}(|\mathbf{r} - \mathbf{r}'|) = -div_{\mathbf{r}'} \mathbf{a}(|\mathbf{r} - \mathbf{r}'|),$$

$$curl \mathbf{a}(|\mathbf{r} - \mathbf{r}'|) = -curl_{\mathbf{r}'} \mathbf{a}(|\mathbf{r} - \mathbf{r}'|),$$

$$\nabla^2 \phi(|\mathbf{r} - \mathbf{r}'|) = \nabla^2_{\mathbf{r}'} \phi(|\mathbf{r} - \mathbf{r}'|).$$

Greens Functions of Free Space

$$\mathcal{L}_{\mathbf{r}'}\phi(\mathbf{r}') = -f(\mathbf{r}')$$

$$\mathcal{L}_{\mathbf{r}'}G(\mathbf{r},\mathbf{r}') = -\delta(\mathbf{r}-\mathbf{r}'),$$

$$\int_{\mathcal{V}}\mathcal{L}_{\mathbf{r}'}G(\mathbf{r},\mathbf{r}')f(\mathbf{r})dV = -\int_{\mathcal{V}}\delta(\mathbf{r}-\mathbf{r}')f(\mathbf{r})dV = -f(\mathbf{r}').$$

$$\mathcal{L}_{\mathbf{r}'}\phi(\mathbf{r}') = \int_{\mathcal{V}}\mathcal{L}_{\mathbf{r}'}G(\mathbf{r},\mathbf{r}')f(\mathbf{r})dV = \mathcal{L}_{\mathbf{r}'}\int_{\mathcal{V}}G(\mathbf{r},\mathbf{r}')f(\mathbf{r})dV,$$

$$\phi(\mathbf{r}') = \int_{\mathcal{V}}G(\mathbf{r},\mathbf{r}')f(\mathbf{r})dV.$$

$$G_2(\mathbf{r},\mathbf{r}') = \frac{1}{2\pi} \ln\left(\frac{|\mathbf{r}-\mathbf{r}'|}{r_{\mathrm{ref}}}\right),$$

$$G_3(\mathbf{r},\mathbf{r}') = \frac{1}{4\pi|\mathbf{r}-\mathbf{r}'|}$$

Green's Functions of Free Space

$$\phi(\mathbf{r}') = \int_{\mathscr{V}} G(\mathbf{r}, \mathbf{r}') f(\mathbf{r}) dV.$$
$$\phi(\mathbf{r}) = \int_{\mathscr{V}} G(\mathbf{r}, \mathbf{r}') f(\mathbf{r}') dV'.$$

$$\int_{\Omega} \left(\phi \nabla^2 \psi - \psi \nabla^2 \phi \right) \, \mathrm{d}V = \int_{\Gamma} \left(\phi \partial_{\mathbf{n}} \psi - \psi \partial_{\mathbf{n}} \phi \right) \, \mathrm{d}a$$

But what if boundaries are present?

$$\begin{split} \phi(\mathbf{r}) &= \int_{\mathscr{V}} G(\mathbf{r}, \mathbf{r}') f(\mathbf{r}') \mathrm{d}V' \\ &+ \int_{\partial \mathscr{V}} \Big(-\phi(\mathbf{r}') \,\partial_{\mathbf{n}'} G(\mathbf{r}, \mathbf{r}') + G(\mathbf{r}, \mathbf{r}') \,\partial_{\mathbf{n}'} \phi(\mathbf{r}') \Big) \mathrm{d}a' \,. \end{split}$$

Surface current

Surface density of dipole moments

٦

This works only in Cartesian Coordinates

$$\mathbf{B}(\mathbf{r}) = \operatorname{curl} \mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{\mathscr{V}} \operatorname{curl} \left(\frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \right) \mathrm{d}V'$$

$$A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{\mathscr{V}} \frac{1}{|\mathbf{r} - \mathbf{r}'|} \sum_{k=1}^3 J_k(\mathbf{r}') (\mathbf{e}_i(\mathbf{r}) \cdot \mathbf{e}_k(\mathbf{r}')) \mathrm{d}V'. \quad \mathrm{d}V'$$

$$= \frac{\mu_0}{4\pi} \int_{\mathscr{V}} \frac{\mathbf{J}(\mathbf{r}) \wedge (\mathbf{r} - \mathbf{r})}{|\mathbf{r} - \mathbf{r}'|^3} \mathrm{d}V'.$$

But wait a minute: Are we finished? Are we sure that the divergence of the vector potential is zero as it was required for the Laplace equation?

$$\begin{split} \operatorname{div} \mathbf{A}(\mathbf{r}) &= \frac{\mu_0}{4\pi} \int_{\mathscr{V}} \operatorname{div} \left(\frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \right) \operatorname{d}V' \\ &= \frac{\mu_0}{4\pi} \int_{\mathscr{V}} \left(\mathbf{J}(\mathbf{r}') \cdot \operatorname{grad} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) + \frac{1}{|\mathbf{r} - \mathbf{r}'|} \operatorname{div} \mathbf{J}(\mathbf{r}') \right) \operatorname{d}V' \\ &= \frac{\mu_0}{4\pi} \int_{\mathscr{V}} \mathbf{J}(\mathbf{r}') \cdot \operatorname{grad} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) \operatorname{d}V' \\ &= -\frac{\mu_0}{4\pi} \int_{\mathscr{V}} \mathbf{J}(\mathbf{r}') \cdot \operatorname{grad}_{\mathbf{r}'} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) \operatorname{d}V' \\ &= -\frac{\mu_0}{4\pi} \int_{\mathscr{V}} \left(\operatorname{div}_{\mathbf{r}'} \left(\frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \right) - \frac{1}{|\mathbf{r} - \mathbf{r}'|} \operatorname{div}_{\mathbf{r}'} \mathbf{J}(\mathbf{r}') \right) \operatorname{d}V' \\ &= -\frac{\mu_0}{4\pi} \int_{\mathscr{V}} \operatorname{div}_{\mathbf{r}'} \left(\frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \right) \operatorname{d}V' = -\frac{\mu_0}{4\pi} \int_{\partial\mathscr{V}} \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \cdot \operatorname{d}a' \, . \end{split}$$

Current loops must always be closed and must not leave the problem domain

$$\mathbf{A}(\mathbf{r}) = A_{x}\mathbf{e}_{\mathbf{x}} + A_{y}\mathbf{e}_{\mathbf{y}} + A_{z}\mathbf{e}_{\mathbf{z}} = \frac{\mu_{0}}{4\pi}\int_{\mathscr{V}}\frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}dV'.$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int_{\mathscr{C}} \frac{\mathrm{d}\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int_{\mathscr{C}} \frac{\mathrm{d}\mathbf{r}' \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3},$$

Vector Potential of a Line Current

$$A_{z}(x,y,z) = \frac{\mu_{0}I}{4\pi} \int_{a}^{b} \frac{dz_{c}}{|\mathbf{r}-\mathbf{r}'|} = \frac{\mu_{0}I}{4\pi} \int_{a}^{b} \frac{dz_{c}}{\sqrt{x^{2}+y^{2}+(z-z_{c})^{2}}}$$
$$\frac{-\mu_{0}I}{4\pi} \ln\left((z-z_{c})+\sqrt{x^{2}+y^{2}+(z-z_{c})^{2}}\right)\Big|_{a}^{b}$$
$$\frac{\mu_{0}I}{4\pi} \ln\frac{z-a+\sqrt{x^{2}+y^{2}+(z-a)^{2}}}{z-b+\sqrt{x^{2}+y^{2}+(z-b)^{2}}}.$$

Field of a Line Current (Infinitely Long)

$$\begin{split} \lim_{a,b\to\pm\infty} \ln \frac{z-a+\sqrt{x^2+y^2+(z-a)^2}}{z-b+\sqrt{x^2+y^2+(z-b)^2}} &= \lim_{a,b\to\pm\infty} \ln \frac{-a+|a|\sqrt{1+\frac{x^2+y^2}{a^2}}}{-b+|b|\sqrt{1+\frac{x^2+y^2}{b^2}}}\\ &= \lim_{a,b\to\pm\infty} \ln \frac{-a-a(1+\frac{x^2+y^2}{2a^2}+\cdots)}{-b+b(1+\frac{x^2+y^2}{2b^2}+\cdots)} &= \lim_{a,b\to\pm\infty} \ln \frac{-2a}{-b+b+\frac{x^2+y^2}{2b}}\\ &= \lim_{a,b\to\pm\infty} \ln \frac{-4ab}{x^2+y^2}\,. \end{split}$$

$$A_z(x,y) = \lim_{a,b\to\pm\infty} \frac{\mu_0 I}{4\pi} \ln\left(\frac{-4ab}{x_0^2 + y_0^2}\right) - \frac{\mu_0 I}{4\pi} \ln\left(\frac{x^2 + y^2}{x_0^2 + y_0^2}\right)$$

Arbitrarily large but constant

$$\mathbf{A}(x,y) = -\frac{\mu_0 I}{4\pi} \ln\left(\frac{x^2 + y^2}{x_0^2 + y_0^2}\right) \,\mathbf{e}_z = -\frac{\mu_0 I}{2\pi} \ln\left(\frac{r}{r_{\text{ref}}}\right) \,\mathbf{e}_z \,,$$

Field of a Line Current Segment

Expanding the Green's Function

Expanding the Green's Function II

Field of a Ring Current

$$\mathbf{r}' = \cos \varphi_{c} r_{c} \mathbf{e}_{x} + \sin \varphi_{c} r_{c} \mathbf{e}_{y}$$

$$\mathbf{d}\mathbf{r}' = -\sin \varphi_{c} r_{c} d\varphi_{c} \mathbf{e}_{x} + \cos \varphi_{c} r_{c} d\varphi_{c} \mathbf{e}_{y}$$

$$|\mathbf{r} - \mathbf{r}'| = \sqrt{(x - x_{c})^{2} + (y - y_{c})^{2} + z^{2}}$$

$$= \sqrt{(r \cos \varphi - r_{c} \cos \varphi_{c})^{2} + (r \sin \varphi - r_{c} \sin \varphi_{c})^{2} + z^{2}}$$

$$= \sqrt{r^{2} + r_{c}^{2} + z^{2} - 2rr_{c} \cos \varphi_{c}},$$

Field of a Ring Current

$$A_{y}(r,z) = \frac{\mu_{0}Ir_{c}}{2\pi} \int_{0}^{\pi} \frac{\cos\varphi_{c}d\varphi_{c}}{\sqrt{r^{2} + r_{c}^{2} + z^{2} - 2rr_{c}\cos\varphi_{c}}}$$

$$\psi := (\pi + \varphi_{c})/2 \qquad k^{2} := \frac{4rr_{c}}{(r + r_{c})^{2} + z^{2}}$$

$$A_{\varphi}(r,z) = \frac{\mu_{0}Ir_{c}}{\pi\sqrt{(r + r_{c})^{2} + z^{2}}} \int_{0}^{\pi/2} \frac{2\sin^{2}\psi - 1}{\sqrt{1 - k^{2}\sin^{2}\psi}} d\psi$$

$$K\left(\frac{\pi}{2}, k\right) = \frac{\pi}{2} \left[1 + \left(\frac{1}{2}\right)^{2}k^{2} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{2}k^{4} + \dots + \left(\frac{(2n)!}{2^{2n}(n!)^{2}}\right)^{2}k^{2n} + \dots\right]$$

$$A_{\varphi}(r,z) = \frac{\mu_0 I}{2\pi r} \sqrt{(r+r_{\rm c})^2 + z^2} \left[\left(1 - \frac{k^2}{2} \right) K\left(\frac{\pi}{2}, k\right) - E\left(\frac{\pi}{2}, k\right) \right]$$

Expanding the Green's Function

$$\begin{split} A_{\varphi} &= \frac{\mu_0 I r_c}{2\pi} \int_0^{\pi} \frac{\cos \varphi_c d\varphi_c}{\sqrt{r^2 + r_c^2 + (z - z_c)^2 - 2rr_c \cos \varphi_c}} \\ &= \frac{\mu_0 I r_c}{2\pi} \int_0^{\pi} \frac{\cos \varphi_c d\varphi_c}{\sqrt{|\mathbf{r}|^2 + |\mathbf{r}'|^2 - 2|\mathbf{r}| |\mathbf{r}'| (\cos \vartheta \cos \vartheta_c + \sin \vartheta \sin \vartheta_c \cos \varphi_c)}} \\ &= \frac{\mu_0 I r_c}{2} \frac{1}{|\mathbf{r}'|} \sum_{n=1}^{\infty} \left(\frac{|\mathbf{r}|}{|\mathbf{r}'|}\right)^n \frac{(n-1)!}{(n+1)!} P_n^1(\cos \vartheta) P_n^1(\cos \vartheta_c) \,. \end{split}$$

$$\mathcal{A}_n = \frac{Ir_{\rm c}}{2} \frac{1}{R_{\rm c}^{n+1}} \frac{1}{n(n+1)} P_n^1(\cos\vartheta_{\rm c})$$

Field approximation up to first order (at different radii)

Optimization of the field homogeneity (suppressing the 3rd zonal harmonic)

Magnetic Dipole Moment

Far field approximation

$$A_{\varphi}(R, \vartheta) \approx \frac{\mu_0 I r_c^2 \pi}{4\pi} \frac{\sin \vartheta}{R^2} = \frac{\mu_0 m}{4\pi} \frac{\sin \vartheta}{R^2},$$
$$R = \sqrt{r^2 + z^2} \text{ and } \sin \vartheta = r/R,$$
$$[m] = 1 \text{ A m}^2. \qquad \text{Definition} \qquad m := I r_c^2 \pi$$

 $\mathbf{m} = I\mathbf{a}$,

$$\mathbf{m} = \frac{I}{2} \int_{\mathscr{C}} \mathbf{r} \times d\mathbf{r},$$
$$\mathbf{M}(\mathbf{r}) := \frac{d\mathbf{m}}{dV} = \frac{1}{2}\mathbf{r} \times \mathbf{J}(\mathbf{r}),$$

Solid Angle and Magnetic Scalar Potential

$$\begin{split} \mathbf{d}\Theta &= -\int_{\partial\mathscr{A}} \frac{1}{|\mathbf{r} - \mathbf{r}'|^2} (\mathbf{d}\mathbf{l} \times \mathbf{d}\mathbf{r}') \cdot \mathbf{e}_R = -\int_{\partial\mathscr{A}} \frac{(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} \cdot (\mathbf{d}\mathbf{l} \times \mathbf{d}\mathbf{r}') \\ &= -\mathbf{d}\mathbf{l} \int_{\partial\mathscr{A}} \frac{\mathbf{d}\mathbf{r}' \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} \,. \end{split}$$

Expressing $d\Theta$ as $\operatorname{grad} \Theta \cdot d\mathbf{l}$

grad
$$\Theta = -\int_{\partial \mathscr{A}} \frac{\mathrm{d}\mathbf{r}' \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int_{\partial \mathscr{A}_c} \frac{d\mathbf{r}' \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} = \mu_0 \mathbf{H} = -\mu_0 \operatorname{grad} \phi_m$$

$$\phi_{\rm m}({\bf r}) = rac{I}{4\pi} \Theta$$

Solid angle (easy to compute) yields the magnetic scalar potential of a current loop

Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23 CAS Thessaloniki 2018 $\mathbf{r} - \mathbf{r}'$

r

dr'

r

Solid Angle and Magnetic Scalar Potential

$$\Theta = \int_{\mathscr{A}} \frac{\cos \gamma}{R^2} da = \int_{\mathscr{A}} \frac{(\mathbf{r} - \mathbf{r}') \cdot \mathbf{n}}{|\mathbf{r} - \mathbf{r}'|^3} da,$$

$$\tan\left(\frac{\Theta}{2}\right) = \frac{\mathbf{r_1} \cdot (\mathbf{r_2} \times \mathbf{r_3})}{r_1 r_2 r_3 + (\mathbf{r_1} \cdot \mathbf{r_2}) r_3 + (\mathbf{r_1} \cdot \mathbf{r_3}) r_2 + (\mathbf{r_2} \cdot \mathbf{r_3}) r_1}.$$

Total Magnetic Scalar Potential

Finite-Element Shape Functions

The Model Problem (1-D)

$$u_n = \alpha_{j1} + \alpha_{j2} x_n$$

$$u_j(x) = \alpha_{j1} + \alpha_{j2}x = \frac{x_n - x}{x_n - x_{n-1}}u_{n-1} + \frac{-x_{n-1} + x}{x_n - x_{n-1}}u_n$$

CERN

$$N_{j1}(x) = \frac{x_n - x}{x_n - x_{n-1}}$$

What have we won? We can express the field in the element as a function of the node potentials using known polynomials in the spatial coordinates

The Weighted Residual

What have we won? Removal of the second derivative, a way to incorporate Neumann boundary conditions

Galerkin's Method

$$\int_{\Omega_j} \frac{\mathrm{d}w_l(x)}{\mathrm{d}x} \sum_{k=1,2} \frac{\mathrm{d}N_{jk}(x)}{\mathrm{d}x} u^{(k)} \,\mathrm{d}\Omega_j = -\int_{\Omega_j} w_l(x) f(x) \,\mathrm{d}\Omega_j \,, \qquad l=1,2.$$

Linear equation system for the node potentials

$$\{f_j\} = -\int_{x_{n-1}}^{x_n} \binom{N_{j1}}{N_{j2}} C dx = -C \int_{x_{n-1}}^{x_n} \binom{\frac{x_n - x}{x_n - x_{n-1}}}{\frac{-x_{n-1} + x}{x_n - x_{n-1}}} dx$$

$$\begin{pmatrix} u_2 \\ u_3 \\ u_4 \end{pmatrix} = - \begin{pmatrix} \frac{3L}{4} & \frac{L}{2} & \frac{L}{4} \\ \frac{L}{2} & L & \frac{L}{2} \\ \frac{L}{4} & \frac{L}{2} & \frac{2L}{4} \end{pmatrix} \begin{pmatrix} CL \\ CL \\ CL \end{pmatrix} = \begin{pmatrix} -0.375 \\ -0.5 \\ -0.375 \end{pmatrix}$$

$$u^{(1)} = \alpha_{j1} + \alpha_{j2}x_1 + \alpha_{j3}x_1^2$$

$$u^{(2)} = \alpha_{j1} + \alpha_{j2}x_2 + \alpha_{j3}x_2^2$$

$$u^{(3)} = \alpha_{j1} + \alpha_{j2}x_3 + \alpha_{j3}x_3^2$$

$$u_j(x) = \sum_{k=1}^3 N_{jk}(x) u^{(k)}$$

$$N_{j1}(x) = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)}, \qquad N_{j2}(x) = \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)},$$
$$N_{j3}(x) = \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}.$$

CERN

$$\begin{split} [k_{j}] &= \int_{x_{1}}^{x_{3}} \begin{pmatrix} \frac{dN_{j1}}{dx} \frac{dN_{j1}}{dx} \frac{dN_{j1}}{dx} \frac{dN_{j2}}{dx} \frac{dN_{j2}}{dx} \frac{dN_{j2}}{dx} \frac{dN_{j3}}{dx} \frac{dN_{j3}}{dx}}{dx} \frac{dN_{j2}}{dx} \frac{dN_{j3}}{dx} \frac{dN_{j3}}{dx}} \frac{dN_{j3}}{dx}}{dx} \frac{dN_{j3}}{dx} \frac{dN_{j3}}{dx}} \frac{dN_{j3}}{dx} \frac{dN_{j3}}{dx}} \frac{dN_{j3}}{dx}}{dx} \frac{dN_{j3}}{dx}} \end{pmatrix} dx \qquad [k_{j}] = \begin{pmatrix} \frac{7}{6l} & -\frac{8}{6l} & \frac{1}{6l} \\ -\frac{8}{6l} & -\frac{8}{6l} & -\frac{8}{6l} \\ \frac{1}{6l} & -\frac{8}{6l} & -\frac{7}{6l} \end{pmatrix} \\ \frac{1}{6l} & -\frac{8}{6l} & \frac{7}{6l} \end{pmatrix} \\ \{f_{j}\} &= -\int_{x_{1}}^{x_{3}} \begin{pmatrix} N_{j1} \\ N_{j2} \\ N_{j3} \end{pmatrix} f(x) dx \qquad \qquad \{f_{j}\} = -\frac{1}{3}c \begin{pmatrix} l \\ 4l \\ l \end{pmatrix} \\ \frac{1}{2} & -\frac{1}{3}c \begin{pmatrix} l \\ 4l \\ l \end{pmatrix} \end{pmatrix} \\ \frac{2}{l} & -\frac{1}{l} & 0 \\ -\frac{1}{l} & \frac{2}{l} & \frac{1}{l} \end{pmatrix} \begin{pmatrix} u_{2} \\ u_{3} \\ u_{4} \end{pmatrix} = -\begin{pmatrix} cl \\ cl \\ cl \\ cl \end{pmatrix} \\ = -\begin{pmatrix} -0.375 \\ -0.55 \\ -0.375 \end{pmatrix} \end{split}$$

Shape Functions

$$A^{(1)} = \alpha_1 + \alpha_2 x_1 + \alpha_3 y_1$$
$$A^{(2)} = \alpha_1 + \alpha_2 x_2 + \alpha_3 y_2$$
$$A^{(3)} = \alpha_1 + \alpha_2 x_3 + \alpha_3 y_3$$

$$x = x(\xi, \eta, \zeta), \qquad \qquad y = y(\xi, \eta, \zeta), \qquad \qquad z = z(\xi, \eta, \zeta)$$

Use of the same shape functions for the transformation of the elements

Higher accuracy of the field solution, but also better modeling of the iron contour

Transformation of Differential Operators

Collinear Sides yield Singular Jacobi Matrices

Note: Bad meshing is not a trivial offence

Numerical Methods for the Curl-Curl Equation

Saturation Effects in the Dipole Iron Yoke

The Problem Domain

$$\mathbf{B} = \operatorname{curl} \mathbf{A} \quad \operatorname{in} \Omega$$

curl $\frac{1}{\mu}$ curl $\mathbf{A} = \mathbf{J} \quad \operatorname{in} \Omega$

$$\mathbf{H}_{\mathsf{t}} = \mathbf{0} \rightarrow \frac{1}{\mu} (\operatorname{curl} \mathbf{A}) \times \mathbf{n} = \mathbf{0} \text{ on } \Gamma_{H}$$
$$B_{\mathsf{n}} = \mathbf{0} \rightarrow \mathbf{B} \cdot \mathbf{n} = \operatorname{curl} \mathbf{A} \cdot \mathbf{n} = \mathbf{0} \text{ on } \Gamma_{B}$$

$$\begin{bmatrix} \frac{1}{\mu} (\operatorname{curl} \mathbf{A}) \times \mathbf{n} \end{bmatrix}_{ai} = \mathbf{0} \quad \text{on } \Gamma_{ai}$$
$$[\mathbf{A}]_{ai} = \mathbf{0} \quad \text{on } \Gamma_{ai}$$

Problem in 3-D: Gauging

$$\mathbf{A}
ightarrow \mathbf{A}' : \mathbf{A}' = \mathbf{A} + \operatorname{grad} \psi$$

div $\mathbf{A}' = q$
 $q = \operatorname{div} \mathbf{A} + \nabla^2 \psi$

$$\frac{1}{\mu}$$
 div $\mathbf{A} = 0$ in Ω

$$\mathbf{A} \cdot \mathbf{n} = 0$$
 on Γ_H

curl
$$rac{1}{\mu}$$
 curl $\mathbf{A}-\,$ grad $rac{1}{\mu}$ div $\mathbf{A}=\mathbf{J}~$ in Ω

Weak Form in the FEM Problem

Weak Form in the FEM Problem

Magnet Extremities

Vector Potential and Total Scalar Potential

BEM-FEM Coupling (Elementary Model Problem)

The Elementary Model Problem in Magnet Design

Green's First and Second Identities in FEM and BEM

 $\int_{\Gamma} \left(\phi \nabla^2 \psi - \psi \nabla^2 \phi \right) \, \mathrm{d}V = \int_{\Gamma} \left(\phi \partial_{\mathbf{n}} \psi - \psi \partial_{\mathbf{n}} \phi \right) \, \mathrm{d}a \,,$

$$\begin{aligned} -\frac{1}{\mu_0} \nabla^2 \mathbf{A} &= \mathbf{J} + \operatorname{curl} \mathbf{M} & \text{in } \Omega_i, \\ \mathbf{A} \cdot \mathbf{n} &= 0 & \text{on } \Gamma_H, \\ \frac{1}{\mu_0} \operatorname{div} \mathbf{A} &= 0 & \text{on } \Gamma_B, \\ \mathbf{n} \times (\mathbf{A} \times \mathbf{n}) &= \mathbf{0} & \text{on } \Gamma_B, \\ \frac{1}{\mu} (\operatorname{curl} \mathbf{A}) \times \mathbf{n} &= \mathbf{0} & \text{on } \Gamma_H, \\ \left[\frac{1}{\mu_0} \operatorname{div} \mathbf{A}_a\right]_{ai} &= 0 & \text{on } \Gamma_{ai}, \\ \frac{1}{\mu_0} (\operatorname{curl} \mathbf{A}_i - \mu_0 \mathbf{M}) \times \mathbf{n}_i + \frac{1}{\mu_0} (\operatorname{curl} \mathbf{A}_a) \times \mathbf{n}_a &= \mathbf{0} \\ \mathbf{A}_{ai} &= \mathbf{0} & \text{on } \Gamma_{ai}, \\ \mathbf{A}_{ai} &= \mathbf{0} & \text{on } \Gamma_{ai}, \end{aligned}$$

FEM Part

$$\frac{1}{\mu_0} \int_{\Omega_{\mathbf{i}}} \operatorname{grad} \left(\mathbf{A} \cdot \mathbf{e}_a \right) \cdot \operatorname{grad} w_a \, \mathrm{d}\Omega_{\mathbf{i}} - \frac{1}{\mu_0} \oint_{\Gamma_{\mathbf{a}\mathbf{i}}} \left(\frac{\partial \mathbf{A}}{\partial n_{\mathbf{i}}} - \left(\mu_0 \mathbf{M} \times \mathbf{n}_{\mathbf{i}} \right) \right) \cdot \mathbf{w}_a \, \mathrm{d}\Gamma_{\mathbf{a}\mathbf{i}} = \int_{\Omega_{\mathbf{i}}} \mathbf{M} \cdot \operatorname{curl} \mathbf{w}_a \, \mathrm{d}\Omega_{\mathbf{i}}$$

$[K]{A} - [T]{Q} = {F(\mathbf{M})}$

BEM Part

Vector Laplace

Weighted Residual

From Green's second theorem:

$$\int_{\Omega_{\mathbf{a}}} A \nabla^2 w \mathrm{d}\Omega_{\mathbf{a}} = -\int_{\Omega_{\mathbf{a}}} \mu_0 J w \, \mathrm{d}\Omega_{\mathbf{a}} + \int_{\Gamma_{\mathbf{a}\mathbf{i}}} A \frac{\partial w}{\partial n_a} \mathrm{d}\Gamma_{\mathbf{a}\mathbf{i}} - \int_{\Gamma_{\mathbf{a}\mathbf{i}}} \frac{\partial A}{\partial n_a} w \mathrm{d}\Gamma_{\mathbf{a}\mathbf{i}}$$

$$\frac{\Theta}{4\pi}A(\mathbf{r}) = \int_{\Gamma} \partial_{\mathbf{n}_{a}}A(\mathbf{r}') \, u^{*}(\mathbf{r},\mathbf{r}') \, \mathrm{d}a' - \int_{\Gamma} A(\mathbf{r}') \, q^{*}(\mathbf{r},\mathbf{r}') \, \mathrm{d}a'$$

Single-layer potential

$$\boldsymbol{\alpha}(\mathbf{r}') := -\frac{1}{\mu} \partial_{\mathbf{n}_a} A(\mathbf{r}')$$

$$[\boldsymbol{\alpha}] = 1 \, \mathrm{A} \, \mathrm{m}^{-1}$$

 $\boldsymbol{\alpha} = \mathbf{n} \times (\mathbf{H}_1 - \mathbf{H}_2)$

Double-layer potential

$$\boldsymbol{\tau}(\mathbf{r}') := \frac{1}{\mu} A(\mathbf{r}')$$
$$[\boldsymbol{\tau}] = 1 \text{ A}$$

Point-Collocation (Compute One from the Other)

$$\frac{\Theta}{4\pi}A(\mathbf{r}) = \int_{\Gamma} \partial_{\mathbf{n}_{a}}A(\mathbf{r}') \, u^{*}(\mathbf{r},\mathbf{r}') \, \mathrm{d}a' - \int_{\Gamma} A(\mathbf{r}') \, q^{*}(\mathbf{r},\mathbf{r}') \, \mathrm{d}a'$$
$$C(\mathbf{r}_{p})A(\mathbf{r}_{p}) + \sum_{e=1}^{E} \int_{\Gamma_{e}} -\partial_{\mathbf{n}_{a}}A(\mathbf{r}) \, u^{*}(\mathbf{r},\mathbf{r}_{p}) \mathrm{d}a + \sum_{e=1}^{E} \int_{\Gamma_{e}} A(\mathbf{r}) \, q^{*}(\mathbf{r},\mathbf{r}_{p}) \mathrm{d}a = 0$$

Ωa	00%	00° C	TT 10	
	90°Corner	90° Cone inner	Half-space	90° Cone outer
Θ	$\frac{1}{2}\pi$	$(2-\sqrt{2})\pi$	Half-space 2π	$(2+\sqrt{2}) \pi$

Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23 CAS Thessaloniki 2018

1

BEM

$$\{Q\} = -[G]^{-1}[H]\{A\} + [G]^{-1}\{A_s\}$$

FEM

$$[K]{A} - [T]{Q} = {F(\mathbf{M})}$$

$$\left([K] + [T][G]^{-1}[H] \right) \{A\} = \{F(\mathbf{M})\} + [T][G]^{-1}\{A_s\}$$
$$[\overline{K}]\{A\} = \{\overline{F}(A_s, \mathbf{M})\}$$

Open Boundary Problems (1)

LHC Beam Screen

Open Boundary Problem (2)

Collared Coil Field Problem

Collared Coil Measurements in Industry

Forces (N) in the Connection Ends of the LHC Main Dipole

I	Fx	Fy	Fz
1	-39.7	-44.0	-45.4
2	-6.5	3.7	-41.7
3	-6.1	88.3	-38.2
4	1.25	3.9	-28.5
5	48.1	-46.7	-48.5
Su m	-2.95	5.2	-202.3

Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23 CAS Thessaloniki 2018

2