
Control System
Integration 2

Tom Shea
ORNL

Machine Protection

Motivation

!"#$%&'($)**+ ,

Livingston type plot: Livingston type plot: -./01($2340/5$6.$37/$8/9:-./01($2340/5$6.$37/$8/9:

;<

;<

<;**

<*;**

<**;**

<***;**

< <* <** <*** <****
Momentum [GeV/c]

E
n

e
rg

y
 s

to
re

d
 i
n

 t
h

e
 b

e
a

m
 [

M
J

]

 LHC top

energy

 LHC injection

(12 SPS batches)

ISR

SNS
LEP2

 SPS fixed

 target
HERA

TEVATRON

SPS

ppbar

 SPS batch to

LHC

=9>340

?)**

>4&03/2($@;"22:9..

Issues
• Subsystem drives MPS input

• DSP detects loss of control

• Differential current measurement detects
beam loss

• Subsystem responds to MPS trip

• Communicated on timing or real-time
data broadcast system

• Circular buffers

Interface to MPS

Utility
• Temperature monitor

• for fault monitoring (filter change time)

• for correction of thermal effects

• Fan Speed

• Power supply current and voltage

• Heartbeat

• monitored

• optional watchdog timer for automatic reset

• Remote Power and Reset

• Personnel access restrictions

• Facility Size

• MTTR

Safe Reconfiguration

• avoiding the “turn antenna
away from earth”
command.

• protected boot memory
containing communication
code

• permanent communication
subsytem (tiny IOC on a
card, hard core on
FPGA,...)

• Out of band
communication as an
option - but may add
interconnect or cable in
some cases

Remote Debugging

• RHIC BPM: Overview

• Most electronics in radiation area

• SNS LLRF: In depth

• SNS Equipment gallery put under access
restrictions during commissioning

by example

RHIC Debugging Tools

Instrumentation
system

VME memory

ADO

manager

app 2

Parameter editing
Tool (PET)

Engineering
application

Snap-cdev

Snap-ADO

Snap-memory

Event links and RTDL

app 1

• Register based

• Random read and write access to ease debugging

• No "don't write during …" conditions that require tricky
timing.

• No write-only registers that one cannot verify.

• Message based interfaces were avoided

• Because they are harder to debug.

• Also harder to implement in an FPGA, requiring parser.

• One can easily trigger VME/VXI/PCI backplane analyzer on
register access. Messages are harder.

Interface to LLRF Module

Register
Documentation

• Perl scripts
convert Verilog
register
definitions into
C++ include file,
EPICS Database
config, …

"Single Source"

• Via serial
line or
"telnet"

Debugging Registers:
Console

Title_date

Debugging Registers:
Simple GUI

• Note:
Our hardware
returns value
0xBAD for
undecoded
registers
(pullups &
downs on data
lines in case
FPGA doesn't
drive them)

Title_date

End-User Register Access

Title_date

Other Debug Tools
• EPICS Sequencer and Database
− Online, remote access to internal state
− View the "raw" value behind some displayed data
− Timestamps
− Anything can be displayed on "Strip chart", or added to an

archive tool for later analysis - good for infrequent events
and unanticipated correlations

• Custom C/C++ Code
− Access to internal data must be specifically added to the

code
• "Report" methods
• Debug flags
• Time stamps

Source Code Control

Version Control Benefits
• Serves as repository
− Develop some bugfix on laptop, merge that into copy on the

main development machine
− Deploy "latest" version onto linac server

• "Roll back to state of January 18, 2006"

• View history of changes, compare different versions
− "When did we add this behavior?"
− "How was this handled 2 years ago?"

CVS - Concurrent
Versions System

• A free, open source version control system
− Available for every operating system
− Stable
− Command-line, Emacs, Eclipse, …

• Handles text very well
− Plain ASCII or LaTeX documents
− EPICS Sequencer and Database sources
− C/C++
− Verilog/VHDL
− Front-end computer startup files

• For binary files, only date & comments available, no
comparisons possible
− Images, FPGA bitfiles, LabVIEW, …

• Old
− "subversion" might be better at handling directories

CVS under Eclipse: Verilog

FPGA Firmware Handling
• Verilog sources are in CVS
− Full benefit of version comparisons

• Bitfiles also in CVS as 'binary'
− No insight into changes, but since each "place-and-route"

creates different bitfile, it's good to keep a copy of the
specific bitfile

• Front-end computer programs FPGA
− Loads bitfile via network

(For machine protection related FPGA, bitfile is in local EEPROM)

Configuration Control

IOC Application which pulls
Configuration file to IOC from RDB.
Uses HTTP Socket Library TCP/IP to
connect to Web server
Web Server uses standard RDB
connectivity: PHP, JSP, ASP

Files pulled from here.

Portion of stored procedure used when
IOC Configuration File generation UI
creates a new configuration file for a
given IOC. These selects confirm active
versions which then dictate data to be
used to create the file stored for use.

Active configuration file stored here.
Supported by rest of purple tables which include historic.

SNS Device Database

Title_date

Example: LLRF Multiplicity
• Almost 100 SNS LLRF Systems, handled by ~50

front-ends
− As different as warm vs. super-conducting cavities

• One source base for all of them
− Differences handled by configuration settings
− If possible, startup files and overview displays script-

generated from central system info.

Configuration File
Strategy

• Track changes to configuration files
• Who made the change
• When was the change made
• Why was the change made

• Restore past configuration files when necessary
• Configuration consists of structure and data

• Structure (collection of properties that describe the
device) is typically common across devices of a
specific type

• Data typically varies for each device and represents the
values for a device’s properties

• Structure is associated with a configuration’s major
version number and data is associated with the minor
version

Configuration File
Storage/Retrieval

Implementation
Choices

• Human

• Commercial/Scripted High Level

• High Level Application (Multiuser OS)

• Low Level Application (RTOS target)

• Embedded (DSP, limited OS)

• FPGA

• ASIC

• Analog

Flexibility
Rapid development

Performance “Some folk built like this, some folk built like that
But the way I'm built, you shouldn't call me fat
Because I'm built for comfort, I ain't built for speed...”

- Willie Dixon

Flexibility or Performance?

• Flexibility in the form of
− Rapid development, independent testing,

remote access, online changes, rich set of
debug tools

 … often differs from …

• Performance
− Fast startup times, short response times,

deterministic "real time" behavior.

SNS LLRF Choices
• Software based a control system framework

(Experimental Physics and Industrial Control System, EPICS)

• Matlab scripts for test & development of algorithms

• Front-End computer uses EPICS State Machine Tool
for automation, and "runtime Database" for data
flow.

• C/C++ driver code

• Fast Feedback (~40MHz) and interlocks in Verilog,
VHDL, AHDL. Several Iterations

• Hardware as simple as possible: Analog filtering,
ADCs/DACs, then FPGA

Operator Interface: Display Manager
• Drawing package for
− Placing labels, text-monitors, meters, … on a screen
− Connecting them to online Process Variables
− Display panel Configuration instead of coding

Overall SNS LLRF
Strategy

• Requirements change, so Flexibility is key.

• Resonance Error computation, feedback loop
setup, ..:
− If possible, first developed in Matlab
− Then implemented on Front-End as State Machine or

EPICS Database
− If necessary, later moved into custom C++ driver

code, or even FPGA

State Machine
(EPICS "Sequencer")

• Used for automation
whenever possible

• "On Demand" tasks,
response times of
 .1 to 1 sec

• Safest and most flexible
tool
− Runs on host as well as

front-end
− Start/Stop/Update without

front-end reboot

EPICS "Database"
• Used for steady-state control,

data flow.

• Full remote access to any detail.

• Limited online changes.

• "Records", building blocks
− Read input, computation, write output, …

• Database Engine handles
− Periodic or event-driven scanning
− Time stamps(!)
− Check of alarm limits
− Publication of data in "Process Variables"

• Response times of millisecs possible, or more than 10000
records per front-end computer.

record(ai, "temp")
{

SCAN "1 second"
INP	
 "#C2
S3"
EGU "deg C"
HIGH "40.0"
…

}

Custom Low Level Code
• Custom C/C++

− When required for higher performance, or interrupt service routines,
low-level access to custom hardware

− Usually no online changes.
− It's really hard to understand, extend, debug somebody else's custom

code
− Debug tools vary with operating system

• SNS, using vxWorks5 with Linux hosts has currently no online source-
level debugger….

• FPGA
− Same problems as custom C/C++ code

• Probably even more so, since HDL is a "code", but often not
implemented by software engineers.

− Good simulation and offline analysis tools but online debugging limited to
scope, signal analyzer.

SNS LLRF Changes in early 2007

• Improve
performance of
tested algorithms
by converting
Sequencer (State
Machine) code and
Database Records
to C++

2209

253

2581

3600

217

1900

Before Now

C++ LOC Database Recs Sequencer LOC

Alternative DSP
Implementations

• High level environment

• Commercial

• Physics application framework

• Within control system toolkit

• Vertically integrated commercial products

Matlab Scripting
Example
Orbit correction

% Get the vertical orbit
Y = getam('BPMy');	

% Get the Vertical response matrix from the model
Ry = getrespmat('BPMy', 'VCM'); % 120x70 matrix

% Computes the SVD of the response matrix
Ivec = 1:48;
[U, S, V] = svd(Ry, 0);	

% Find the corrector changes use 48 singular values
DeltaAmps = -V(:,Ivec) * S(Ivec,Ivec)^-1 * U(:,Ivec)' * Y;

% Changes the corrector strengths
stepsp('VCM', DeltaAmps);

LabVIEW FPGA with EPICS

 S
ha

re
d

M
em

or
y

IOC
(database,

CA)

ReadData()

WaitForInterrupt()

GetIndexByName()

WriteData()

SetInterrupt()

CreateDBEntry()

DBD and
DBD files

Channel
Access

FPGA based DAQ board
(~ 40 MHz limitation)

LabVIEW
FPGA
development
environment LabVIEW

runtime

config data

Ancient Benchmarks
10th Anniversary

0.21

0.49

0.82

0.84

1.55

1.7

1.83

2

3.9

15.3

19.5

56.5

Sun IPX, Sparc (g++)

Sun, Ultra-1 (LabVIEW)

PowerMac, 120 MHz 604 (LabVIEW)

Win95, 200 MHz Pentium (LabVIEW)

Motorola 80 MHz 56301 (assembly)

Spectrum VME, 50 MHz TI 'C40 (C)

SGI, 150 MHz R4400 (g++)

Sun, Ultra-1 (g++)

MVME, 100 MHz PPC603 (g++)

PowerMac, 200 MHz PPC604e (MW C)

Linux, 266 MHz Pentium II (g++)

Altera 10K100 68 MHz pipelined

0 10 20 30 40 50 60
Sustained sample rate (MHz)

General Purpose µPs

Programmable DSPs

Hardware

RHIC BPM algorithm, circa 1997

Thank you.

