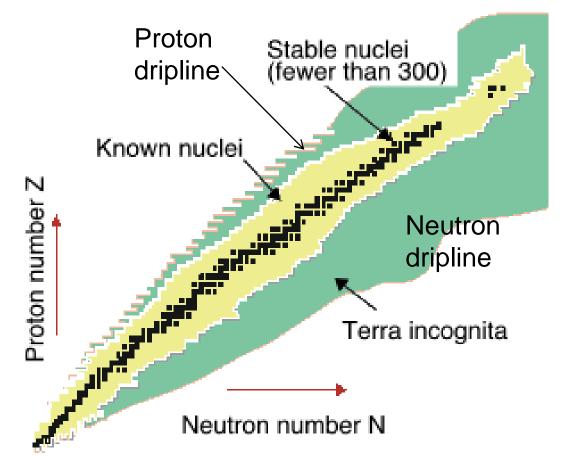

Charge breeding

Charge state boosting

aka

1+ -> n+ transformation

Fredrik Wenander


on Ion Sources, Senec Slovakia, 2012

Lecture layout

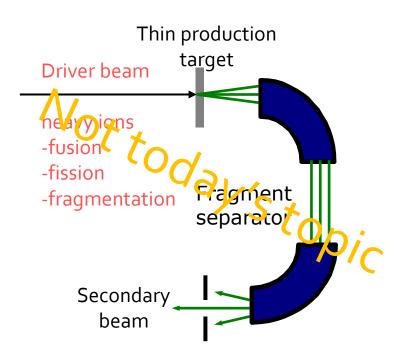
- 1. Introduction and motivation
- 2. ISOL beam parameters and breeder criteria
- 3. Atomic physics processes for multiply charged ions
- 4. The different concepts
 Stripping
 ECRIS
 EBIS
- 5. Preparatory devices and tricks
- 6. Facilities and the future

Introduction and motivation

Setting the stage

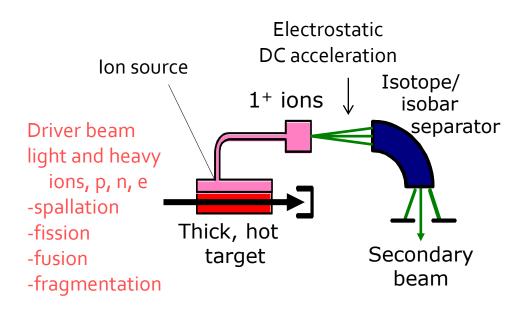
Potential beams

To this date:


~6000 nuclei believed to 'exist'

~3000 different nuclides experimentally observed Less than 10% stable

Radioactive nuclei: main interest for nuclear physics


RIB production techniques

IF (In-Flight fragment separator)

Down to us lifetimes
Large transverse emittance
Large energy spread
GeV beam energy

Isotope Separation Online (ISOL)

Pencil-like beams
Chemistry involved
Higher beam intensities than IF
Lifetimes >10 ms $W_{total} < 100 \ keV$

Interesting physics at 0.1 – 10 MeV/u

- Coulomb excitation
- Few-particle transfer (d,p), (9 Be,2α), (10 Be,2α), (p γ), (
- Fusion reactions at the Coulomb barrier

NB! $W_{kin}(total)=MeV/u*A$

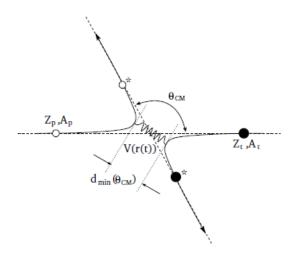
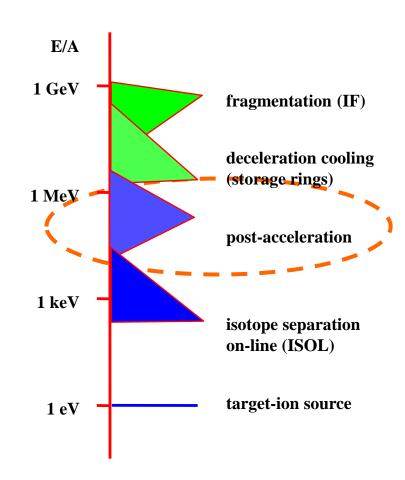



Figure 3.22: Schematic diagram of the Coulomb excitation process of a projectile nucleus (Z_p,A_p) , scattering inelastically on a target nucleus (Z_t,A_t) , in the center-of-mass system.

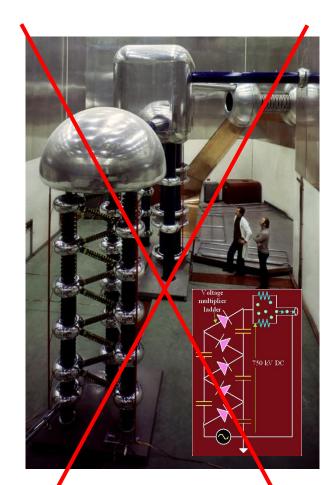
Closing the energy gap

! Fill with *post-accelerated* ISOL-beams

Motivation for Q+

1st motive for high Q

	W _{final} (MeV/u)	Time structure
Cyclotron	K*(<mark>Q/A)</mark> ²	cw (micro structure)


 $K_{(Br)^2}$, [B]=T, [r]=m (cyclotron B-field and radius)

Linac	Q/A*E(ave)*L	SC - cw
		NC - usually pulsed

E(ave)=average acceleration field ~3 MV/m for NC* [L]=m (linac length)

=> Linac length ~ A/Q

Kilpatrick limit (valid for NC) $f(MHz) = 1.64E (peak)^2 e^{(-8.5/E(peak))}$ [E(peak)]=MV/m

Old 750 kV Cockroft-Walton proton source at CERN

=> 0.015 MeV/u for A=50

2nd motive for high Q

Motivation for Q⁺

If A/Q high => require low f_{RF} to achieve adequate :

- a. transverse focusing (focal strength ~ $1/\sqrt{f_{\mathit{RF}}}$)
- b. period length (L_{period}) of the first RF structure as the source extraction velocity is limited

Example: A=220, Q=1, U_{extr}=100 kV, L_{period}=2 cm

$$f_{RF} \sim v_{extr}/L_{gap} = 15 \text{ MHz}$$

open RFQ

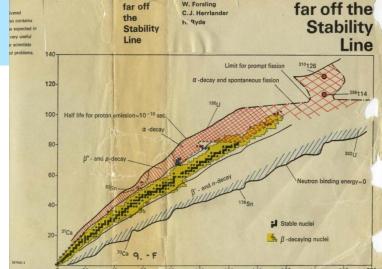
ISAC 35 MHz RFQ for A/Q<30

Transverse tank dimensions scale with 1/f_{RF}

Bottom line: low A/Q =>

+ short linac

+ small transverse dimension


Isotope/ Ion source Isobar Separator Production accelerator Thick, hot Low energy 1⁺ ions target Charge breeder Low energy Q⁺ ions Secondary beam Post-Experiment Mass accelerator analyzer High energy Q+ ions

Post accelerator layout

Isotope Separation
Online

Post accelerator

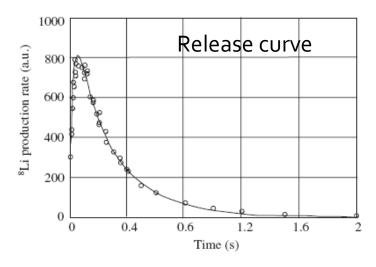
Nuclides

Edited by

Nuclides

First ideas/suggestions for post-acceleration of radioactive ion beams: "Nuclides far off the Stability Line" (1966) Sweden

ISOL beam parameters and breeder criteria

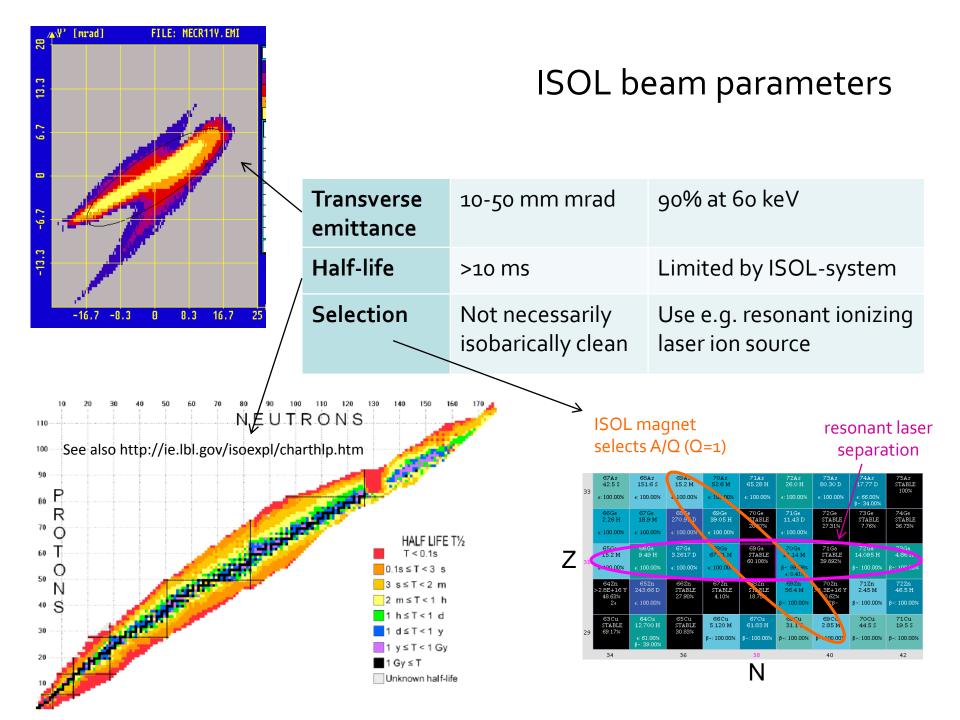

What comes in and goes out

For ion source details see T. Stora's lecture

ISOL beam parameters

Ion mass	4 to >250	He to >U
Intensity	few to >1E11 ions/s	Large dynamic range
Charge	1+	Some (undesired) 2+, 3+,
Energy	several tens keV	
Energy spread	few eV	
Temporal structure	cw or quasi-cw	Driver beam – cw or pulsed

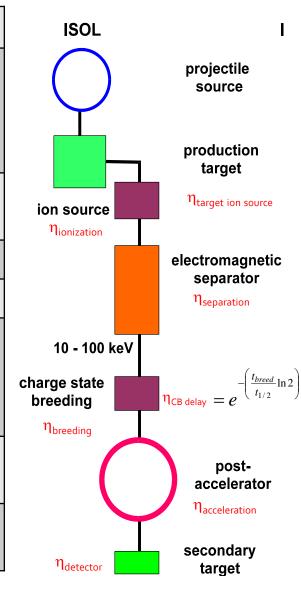
Extra


⁸Li ($T_{1/2}$ = 840 ms) produced by target fragmentation of tantalum foils

at CERN period time = n*1.2 s

$$P(t, \lambda_r, \lambda_f, \lambda_s, \alpha) = \frac{(1 - e^{-\lambda_r t})}{Norm} \left[\alpha e^{-\lambda_f t} + (1 - \alpha) e^{-\lambda_s t} \right]$$

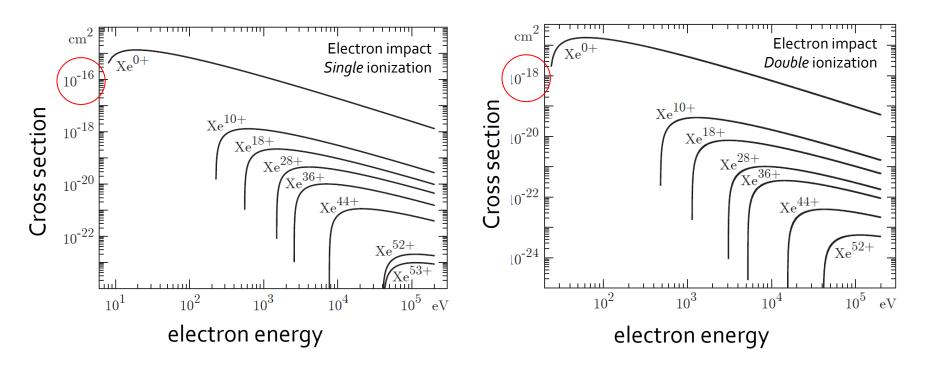
Semi-continuous


depending on release properties and ionization time typical tens ms to minutes (r=rise, f=fast, s=slow)

Checklist for breeder design

0	Achievable A/Q (3 <a q<9)<="" th="">	
1	High breeding efficiency rare radionuclides limit machine contamination chain of machines $\eta_{breed} = \frac{I(Q)}{Q \cdot I(1^+)}$	
2	Short breeding / confinement time handle short-lived ions	
3	Clean extracted beams	
4	High ion throughput capacity	
5	Good beam-quality (large α , small ϵ_{trans} , small ΔE_{extr}) good trapping efficiency high linac/separator transmission η good mass separation	
6	Pulsed or cw machine / beam extraction time structure dependent on accelerator	
7	Easy handling and reliable to be used in an accelerator chain on a production basis	

Breeder criteria


Atomic physics processes for multiply charged ions

Short revision

Ionization process

Electron impact ionization

more efficient than proton and photon impact $\hbar \,
u$

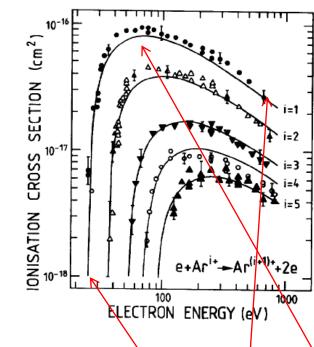
Multistep (successive) ionization the process takes time

$$e + A^{i+} -> A^{(i+1)+} + 2e$$

Ionization time has to be shorter than lingering time in the source

Average time to reach the charge state q with multistep ionization for electrons with *defined kinetic* energy:

$$\overline{\tau}_{q} = \sum_{i=1}^{q-1} \overline{\tau}_{i \to i+1} = \frac{e}{j_{e}} \sum_{i=1}^{q-1} \frac{1}{\sigma_{i \to i+1}}$$


Lotz's semi-empirical electron impact ionization cross-section formula for the case of high ionization energies $E_{kin} > P_i$ is:

$$\sigma_{q \to q+1} = 4.5 \cdot 10^{-14} \cdot \sum_{nl} \frac{\ln \left(\frac{E_{kin}}{P_i}\right)}{E_{kin} \cdot P_i} \quad [\text{cm}^2]$$

Energies in eV and nl sum over n shell and subshell l E_{kin} - energy of the incident electron P_i = E_{nl} - binding energy

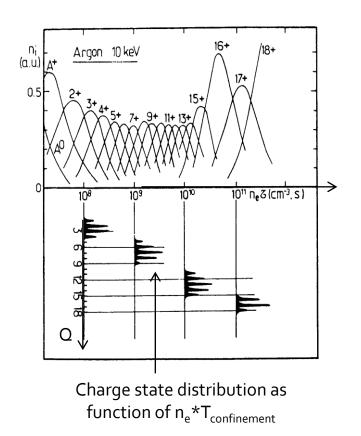
Ionization time

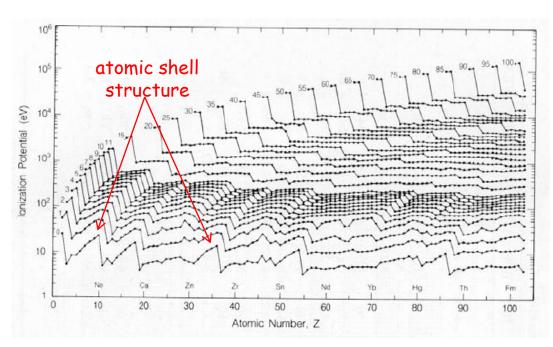
 σ – single ionization cross-section cm² j_e – electron current density A/cm² valid for electrons with fixed energy

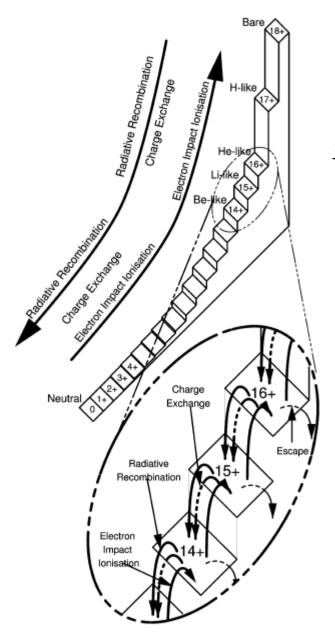
Cross-section

- * Energy threshold = ionization energy
- * Max at ~2.7 times the ionization potential
- * Decreases with charge state for very high electron energies

Charge state distribution


Electron energy


lonization a statistical process


⇒ charge state distribution

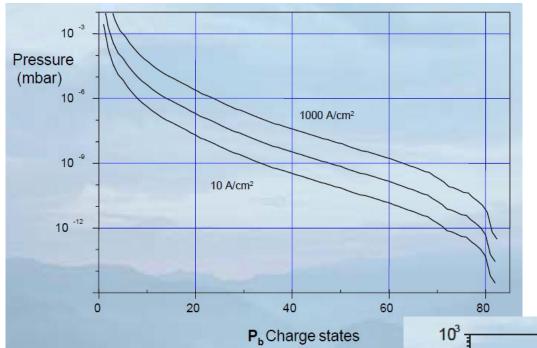
10 to 40 eV for singly charge ions several 100 eV for multi-charged states keV to tens of keV for highly charged ions

Typically 15-25% in most abundant state

Competing processes

$$\begin{split} \frac{dN_{i}}{dt} &= n_{e} \upsilon_{e} [\sigma_{i-1 \to i}^{EI} N_{i-1} - (\sigma_{i \to i+1}^{EI} + \sigma_{i \to i-1}^{RR} + \sigma_{i \to i-1}^{DR}) N_{i} \\ &+ (\sigma_{i+1 \to 1}^{RR} + \sigma_{i+1 \to i}^{DR}) N_{i+1}] \\ &- n_{0} \upsilon_{ion} [\sigma_{i \to i-1}^{CX} N_{i} - \sigma_{i+1 \to i}^{CX} N_{i+1}] - N_{i} R_{i}^{ESC} \end{split}$$

 N_{i} – number of ions with charge i n_{e} , v_{e} – electron density and velocity n_{o} – neutral particle density $v_{ion} = \sqrt{2kT_{ion}/M_{ion}}$ – averaged ion velocity


EI – electronic ionization

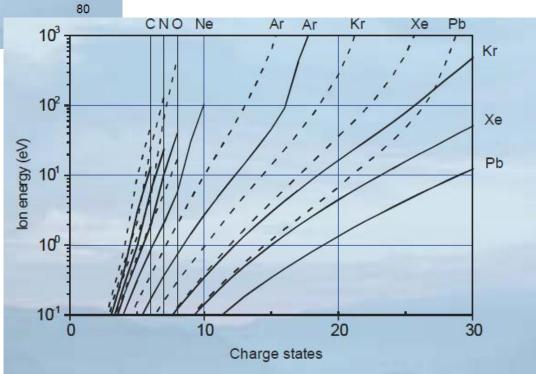
RR – radiative recombination

DR – dielectronic recombination

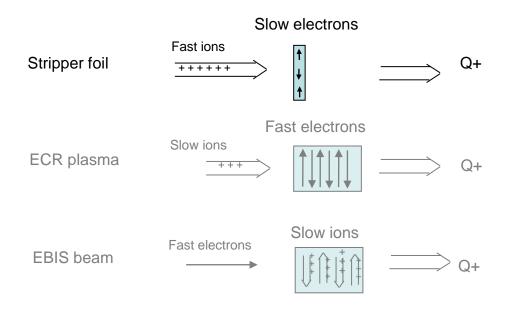
CX – charge exchange

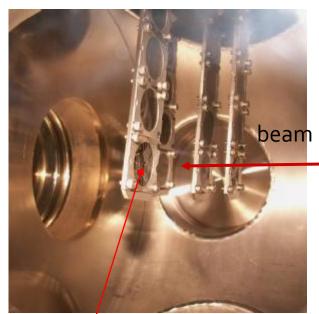
R; ESC – escape rate

Charge exchange vs ionization
Vacuum pressure at which gain
by ionization equals loss by
charge exchange for lead ions


From R. Becker

Electron ion heating

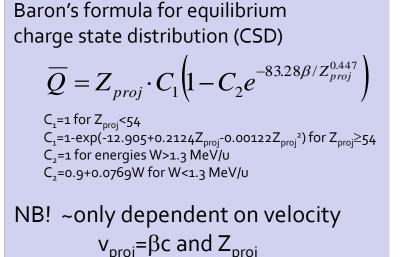

Radial well voltages eU_{trap}=kT_{ion} to trap multiply charged ions heated by electrons of 1 keV (dashed line) and 10 keV (full lines)


$$\Delta U_{radial}[V] = \frac{6.2}{Z \cdot A} e^{\sum_{i=1}^{Q} \frac{i^2}{\sigma_{i->i+1}^{ionization}}}$$

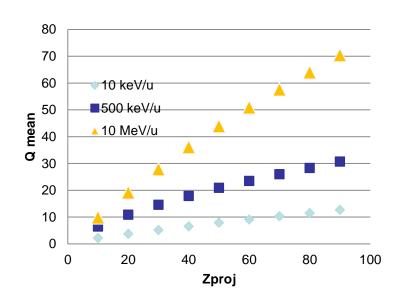
See R. Becker, Proc 3rd EBIS Workshop 1985, Ithaca, eds. V. Kostroun and B.W. Schmieder, p.185

The First Alternative

carbon foils at CERN Linac3


Classic concept – stripping

* Doesn't really classify as charge breeder


- + Simple method, passive elements.
- + Sub-us half-life isotopes easily reachable
- + Very high beam capacity >100 eμA
- + No additional beam contamination

* Foil materials: Be, C, Al, Al₂O₃, mylar

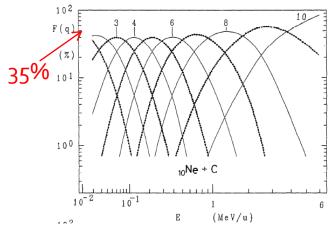
* Bohr criterion: electrons whose orbital velocity is larger than projectile velocity are retained

Extra

Extra

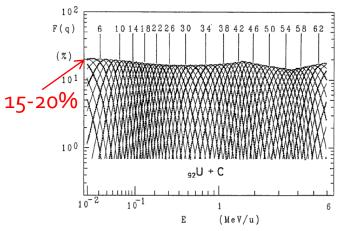
* assuming no significant atomic shell effects

* \overline{Q} is not too close to Z

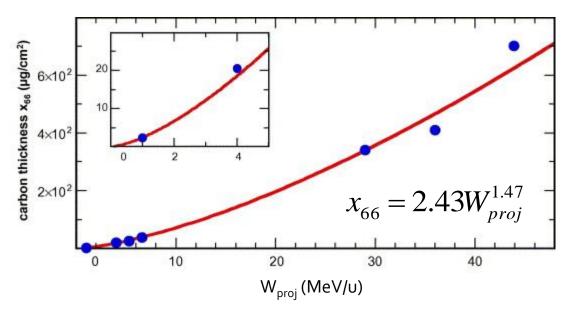

$$\sigma = 0.5 \sqrt{\overline{Q} \cdot (1 - \left(\frac{\overline{Q}}{Z_{proj}}\right)^{1.67})}$$
 for Z_{proj}<54

$$\sigma = 0.5 \sqrt{\overline{Q} \cdot (1 - \left(\frac{\overline{Q}}{Z_{proj}}\right)^{1.67}}) \qquad \sigma = \sqrt{\overline{Q} \cdot (0.07535 + 0.19(\overline{Q}/Z_{proj}) - 0.2657(\overline{Q}/Z_{proj})^2)}$$

$$\text{for } Z_{proj} \leq 54$$


Light elements (low Z_{proj})

- => narrow distribution
- => high fraction in a single charge state

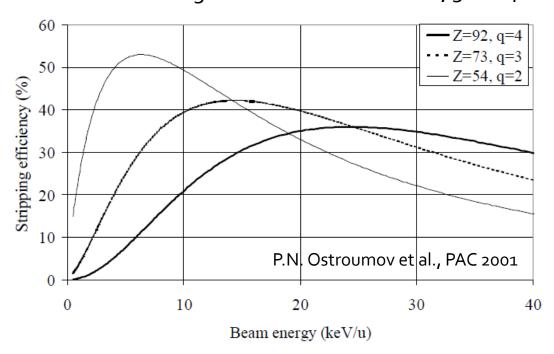

Heavy elements (high Z_{proj})

- => wide distribution
- => less fraction in a single charge state

See also: G. Schiwietz, P.L. Grande, Improved charge-state formulas NIMB 175-177 (2001) 125-131 Refined formulae for foil and gas stripping

Foil equilibrium thickness

Equilibrium thickness => CSD do not change when the target thickness is further increased


Equilibrium thickness $\approx 2 \times x_{66}$

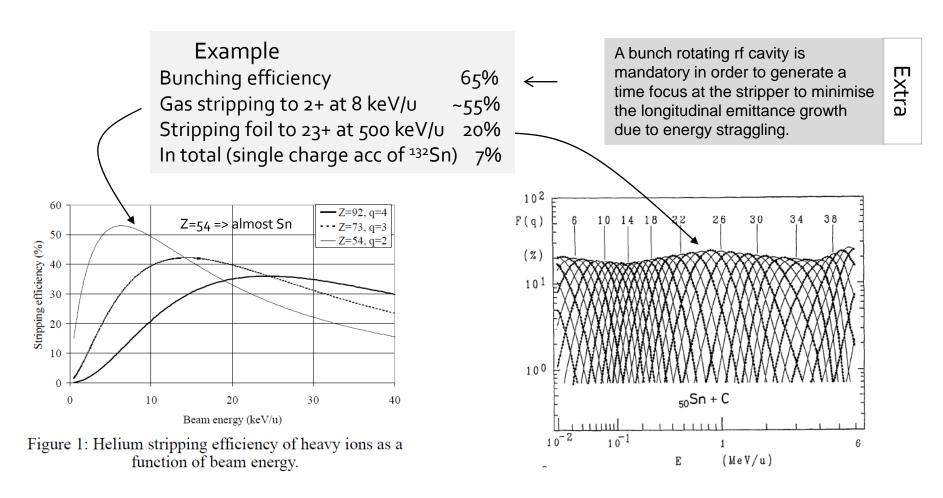
M. Toulemonde, 'Irradiation by swift...', Nucl Instrum Meth B250 (2006) 263-268

- * Typical carbon foil thicknesses: 5-1000 ug/cm² -> 25 nm to 5 um
- * Pre-acceleration to >500 keV/u
- * Foil thicknesses < 5 ug/cm² (< 25 nm) practically difficult to mount => use gas strippers for low velocity beams

Gas stripping

- * Used for very low velocity: 5-25 keV/u
- * Very thin integrated thickness: fraction of ug/cm²
- * Usually noble gases
- * Small charge increase from 1+ to 2+, 3+ or 4+

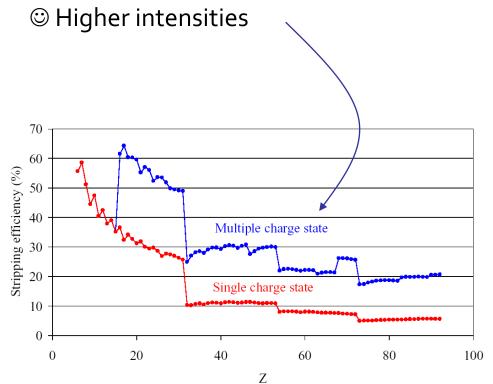
Helium stripping efficiency of heavy ions as a function of beam energy.

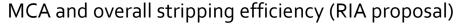

Extra

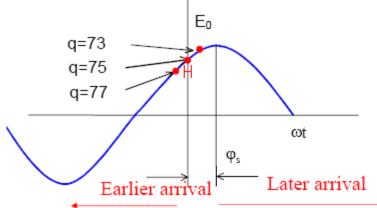
In solid stripper the collision frequency is larger the frequency of Auger and radiative decays => higher Q than in same integrated thickness for gas stripper

Facility based on stripping technique

Ideally strip as soon the increased velocity enables a higher charge state

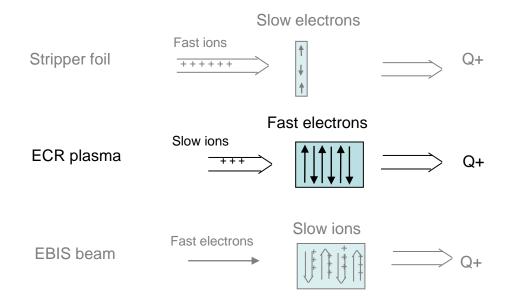

- + make maximum use of the accelerating voltage
- but at each stripping stage the transmission is reduced due to the CSD





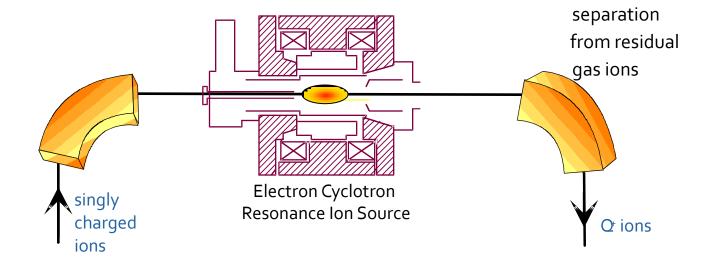
Multi-charge state acceleration

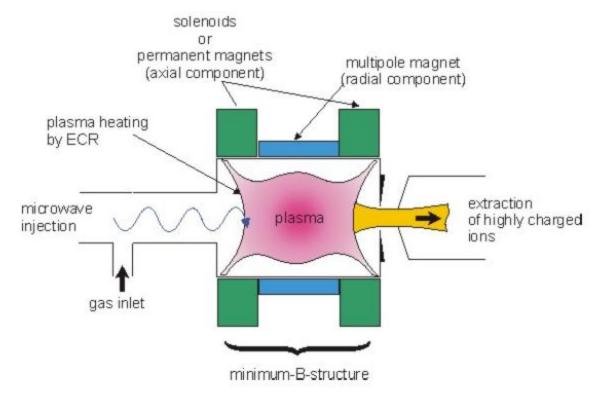
- * Accelerate multiple q after the stripper
- * Δ q/q of ~20% can be accepted


- * Synchronous phase of multi-q beam
- * The same final energy for all charge states

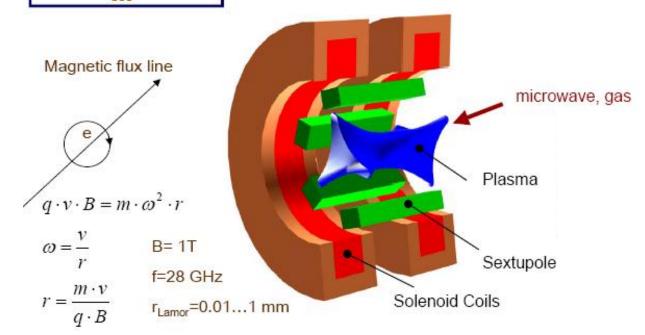
 \odot ϵ (trans. and long.) ~3 larger compared with single charge state acceleration

Stripping technique drawbacks


Needs pre-acceleration	in gas stripping 8 to 20 keV/u in foil stripping ~500 keV/u
Emittance increase	Energy straggling $\theta_{T1/2}^2 = \theta_{I1/2}^2 + \theta_{S1/2}^2$ $\mathcal{E}_T = \pi \cdot x_{T1/2} \cdot \theta_{T1/2}$ $x_{T1/2} = x_{11/2} = \text{incident beam spot size}$ $\theta_{T1/2} = \text{divergence exiting beam}$ $1 = \text{Incident, T=traverse, S=Scattering}$
No macro-bunching capability	=> CW accelerator needed
? Foil lifetime	 1. Radiation damage 2. Sublimation at high power levels (>150 W/cm2) => Not limiting for radioactive beam intensities


The Second Alternative

ECRIS as charge breeder


General principle

- inject very slow ions through a plasma of hot e-

$$\omega_e = \frac{e \cdot B}{m} = \omega_{rf}$$

Plasma is resonantly heated with microwaves

ECRIS physics

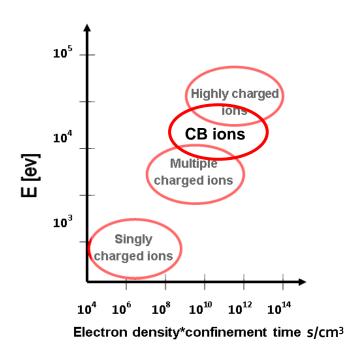


Photo of plasma

'Magnetic bottle' confinement of plasma

- * Longitudinally by Helmholtz coils
- * Radially by powerful permanent multipole => min-B field – increases in all directions

e- temperature distributions

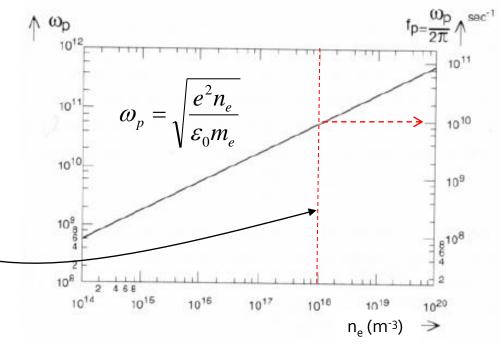

Cold <200 eV: lowest confinement time Warm < 100 keV: ionization process (main source of bremstrahlung) Hot > 100 keV: highly confined

Extra

Electron confinement time:

$$\tau_e = \frac{T_e^{3/2}}{n_e} \cdot const$$

What RF is needed?



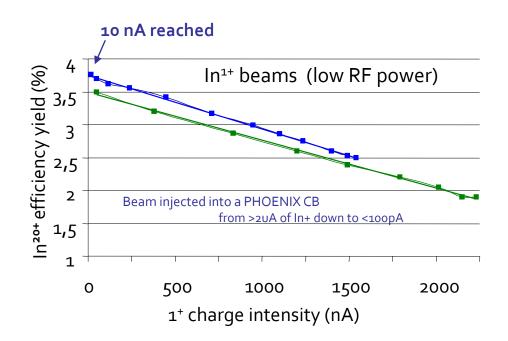
Typical confinement time 0.1 s => need $n_e \sim 1E_{12} \text{ cm}^{-3}$

Compare with stripper foils $n_e \sim 1E_{24} \text{ cm}^{-3}$ inside the foil $v_{ion} = 1E_9 \text{ cm/s}$, $d_{carbon_foil} = 0.5 \text{ um} = > n_e * \tau = 5E_{10} \text{ s/cm}^3$

 f_{RF} needs to be higher than the plasma frequency f_p (cut-off frequency)

n_e < 1.2E10 f_{RF}² cm⁻³ f_{RF}= in gigahertz

Plasma frequency versus plasma density


Extra

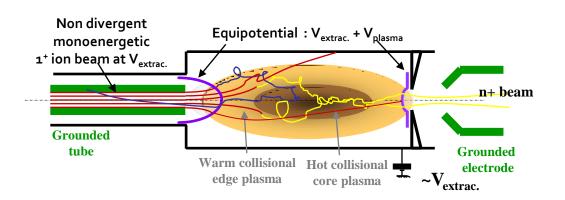
ECRIS capacity

We know $n_e \sim 1E12 \text{ cm}^{-3}$ for charge breeding ECRIS

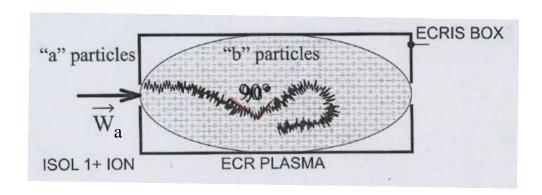
Assume:

- * plasma volume r=2 cm, l=10 cm
- * confinement time o.1 s
- * 10% radioactive ions
- * 20% in the desired charge state 10+
- => 2.5E12 radioactive ions/s extracted (0.4 puA)

The large capacity


– a major strength of
the ECRIS CB concept!

Stopping ions in ECRIS plasma


1st electrostatic slow-down
 2nd subsequent long-range
 ion-ion Coulomb collisions
 lead to 90° deflection*
 3rd ionized

=> lons trapped

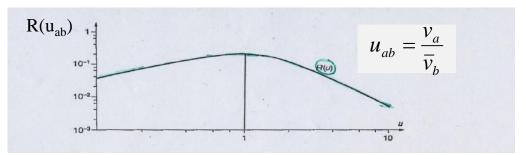
* Cumulative deflection due to small-angle scattering is larger than those due to single large-angle scattering (Spitzer/Chandrasekhar theory)

- * Stopping of ions tricky and critical
- * No wall-collision tolerated

Mean free path for 90° deviation smaller than plasma size?

$$\lambda_{90^{\circ}} pprox \frac{W_a}{4\pi n_e z_a z_b e^2 \ln \Lambda}$$
Coulomb logarithm

 W_a =10 eV z_a =1, z_b =10, $\ln \Lambda$ =10


=> $\lambda_{90^{\circ}}$ ~ 5 cm

Injection velocity into ECR plasma

What is the optimal velocity for stopping inside a plasma?

$$\frac{\Delta v_a}{\Delta t} \sim \frac{n_b}{2\pi\varepsilon_0} \left[\frac{Z_a Z_b e^2}{m_a \overline{v}_b} \right]^2 R(u_{ab}) \ln \Lambda$$

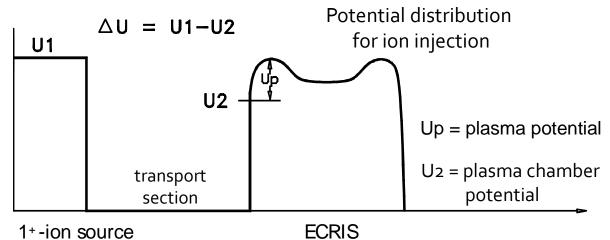
Optimal slowing down when:

Assumption

- 1. low intensity of injected particles
- 2. only interaction via long distance cumulative plasma collisions
- 3. plasma particles Maxwellian velocity distribution
- 4. distance between 90° deviations < plasma size

Example

* ECR oxygen plasma T+=2 eV

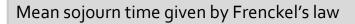

* Rb1+ ISOL ions

 \Rightarrow E_{inj}(Rb¹⁺) ~ 2eV*m_{Rb}/m_O ~ 10 eV

If we'd like to inject ¹¹Li⁺, optimum energy would be <2 eV => difficult

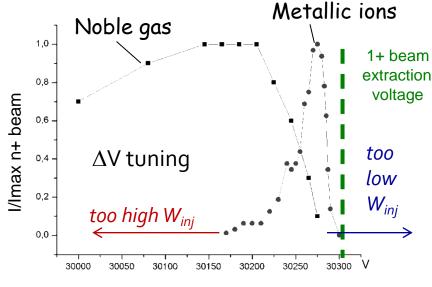
Compatible with previous slide!

Longitudinal acceptance



Noble gases

- wall recycling


Condensable/metallic elements

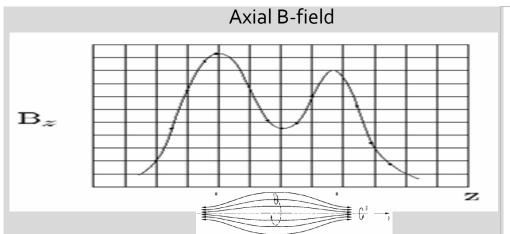
- only one trapping chance

$$au_d = au_0 e^{E_d/k_B T}$$
 au_o ~1E-13 s, E_d – binding energy

Wide range: Ar 1E-11 s, Ni 100 years

Plasma chamber high voltage

Ionization efficiency vs injection voltage


The attainable charge state is mainly depending on the:

electron density n_e confinement time τ_{ion} electron energy distribution EEDF

How to change the charge state?

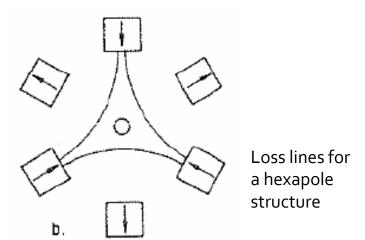
In reality adjust:

- 1. RF power $Q_{opt} = P_{RF}^{1/3}$
- 2. buffer gas pressure or mixture -> ion-ion cooling charge exchange probability
- 3. $B_{\rm ext}$ since $Q_{opt} \propto \ln B_{ext}$

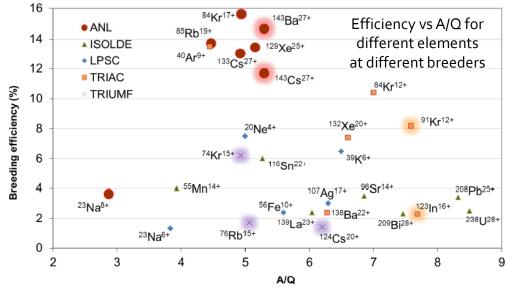
$$\textbf{F}_{z} = -\frac{1}{2}\frac{\textbf{m}\textbf{v}_{r}^{2}}{\textbf{B}}\frac{\partial \textbf{B}_{z}}{\partial \textbf{z}} = -\mu\frac{\partial \textbf{B}_{z}}{\partial \textbf{z}} \quad \begin{array}{c} \text{Conserved} \\ \text{total energy} \\ \text{magnetic moment } \mu \end{array}$$

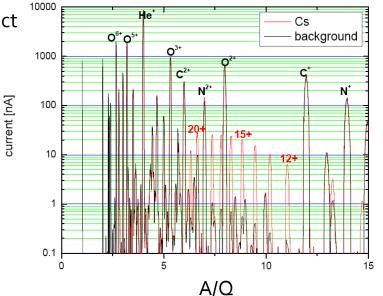
=> Magnetic bottle

 $longer \, \tau_e \, \text{--> longer} \, \tau_{ion}$


Extra

* Extracted energy spread few eV


- * Total I_{extracted} ~100 uA:
 - + radioactive ions
 - buffer gas ions (He, Ne or O)
 - ions from the plasma chamber


 sputtering of chamber material

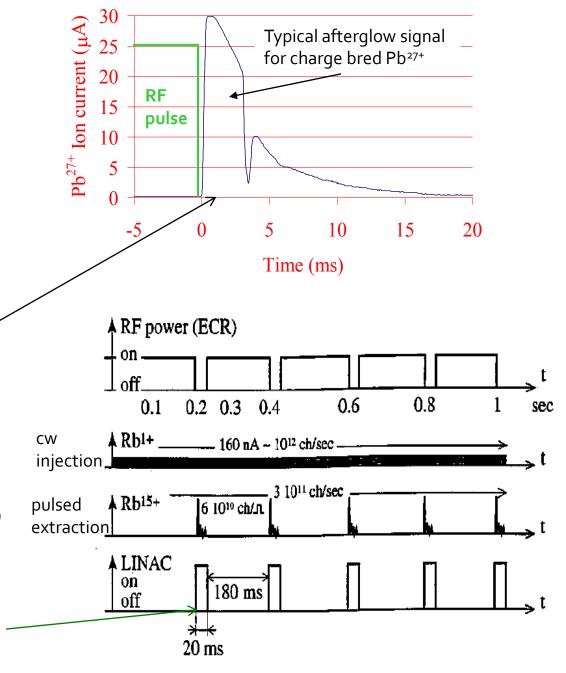
 desorption of implanted ions memory effect

Extracted beam properties

Extracted beam with and without Cs+

ECRIT mode

Normal operation mode:


cw injection cw extraction

Make use of afterglow:

- 1. Switch off RF
- 2. Heating of electrons stops
- 3. Electron confinement stops
- 4. Plasma instability / Coulomb expulsion of trapped ions

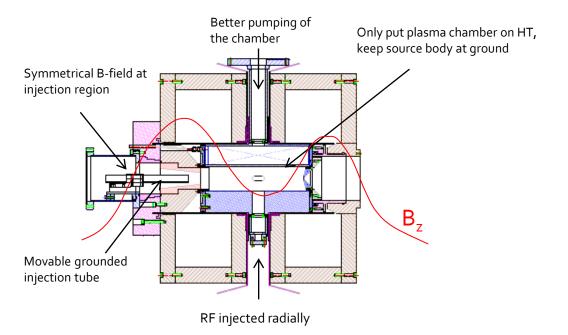
Result:

- a. ion trapping (some 100 ms)
- b. pulsed beam extraction (some ms)

Pulsed linac operation possible

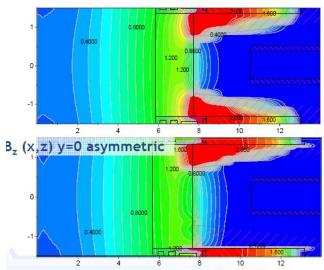
Practical design aspects

* Similar magnetic-field relations for charge breeding ECRIS CB as for high-Q ECRIS:


$$B_{inj}/B_{ecr} \sim 4$$
, $B_{ext}/B_{ecr} \sim 2$, $B_{min}/B_{ecr} \sim 0.8$, $B_{rad}/B_{ecr} > 2$, $B_{ext}/B_{rad} < 0.9$

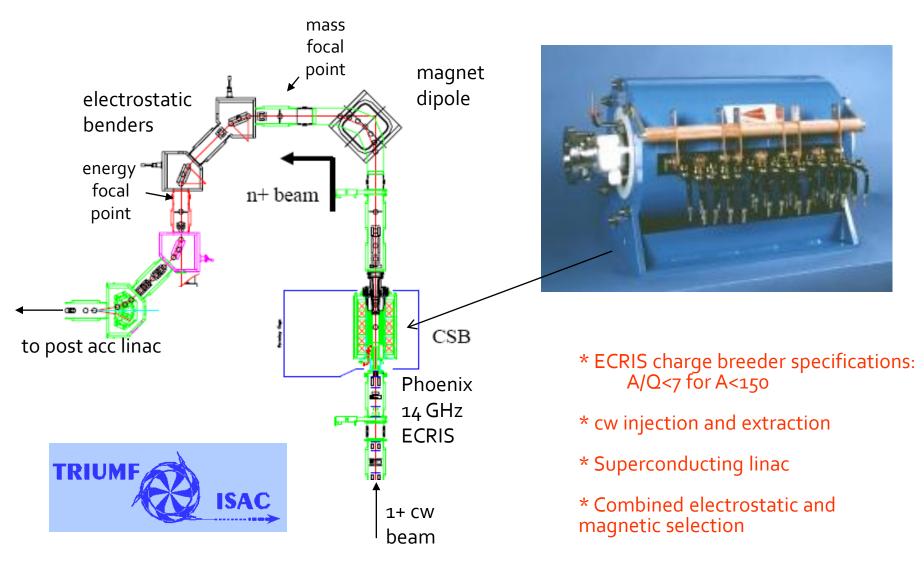
 $B_{ini}(B_{ext})$ is the B-field max at injection side (extraction side)

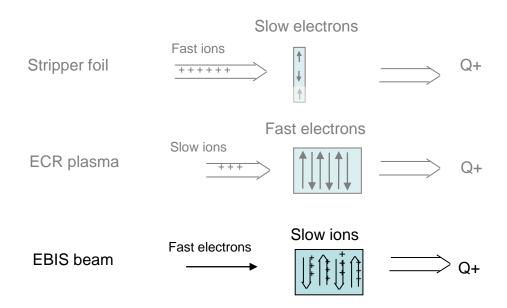
 B_{rad} the radial B-field of the sextupole at the plasma chamber wall


B_{min} the minimum B-field between the magnetic mirrors

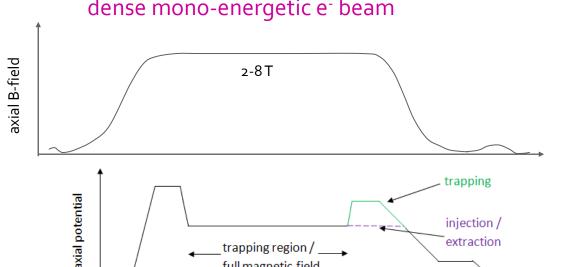
- * Grounded injection tube just inside B_{inj}
- * Radial RF injection preferred to axial

Radial RF wave-guide




Axial RF wave-guide

Asymmetric B-field deflects injected particles


ECRIS CB facility

The Third Alternative

- Produces highly charged ions
- e⁻ beam compressed by solenoid B-field
- Ions are trapped in a magneto-electrostatic trap
- Ionisation by e-bombardment from a fast, dense mono-energetic e- beam

trapping region / full magnetic field


Electron Beam Ion Source /Trap

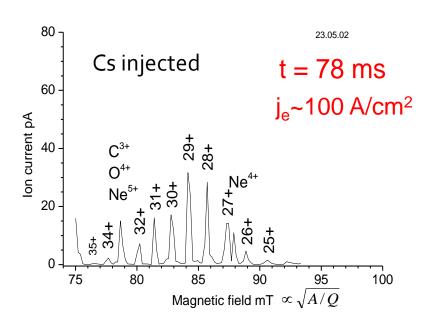
EBIT - in principle an EBIS but:

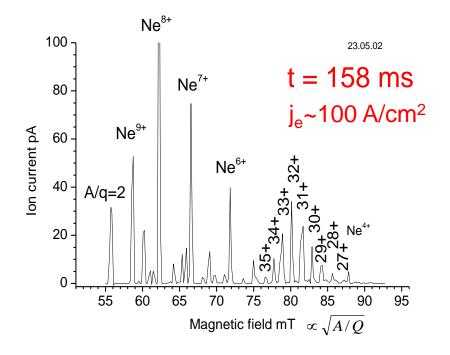
- 1. higher electron current density
- 2. shorter (few cm)
- 3. smaller r_{ebeam}

axial distance

Some consequences for CB!

The average time necessary to reach the charge state q:

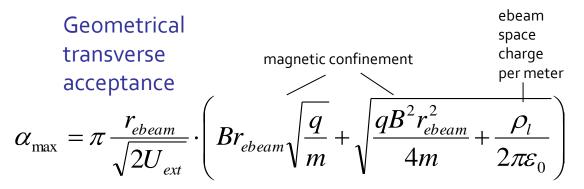

Breeding time


$$\bar{\tau}_{q} = \sum_{i=1}^{q-1} \bar{\tau}_{i \to i+1} = \frac{1}{j_{e}} \sum_{i=1}^{q-1} \frac{e}{\sigma_{i \to i+1}}$$

 σ – single ionization cross-section cm² j_e – electron current density A/cm² valid for mono-energetic electrons

j_e usually machine fix j_e between 50 and 5000 A/cm²

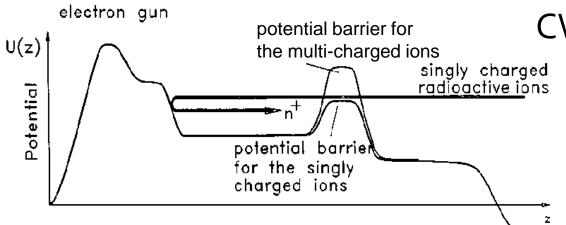
⇒ Chose A/Q by adjusting the breeding time



NB!
$$I_e = j_e * r_{ebeam}^2 * \pi$$
 1st reason for high I_e

Ion injection EBIS

Desired: overlap between injected ion beam and electron beam If injection outside electron beam => effective j_e low => increased T_{breed}

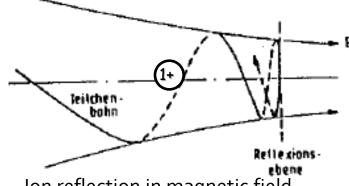


 2^{nd} reason for large I_e

NB1. ion neutralization reduces the acceptance

NB2.+ EBIS/T small ϵ -> - EBIS/T small α

* REXEBIS value ~10 π mm mrad for 90% @ 60 keV



CW ion injection EBIS

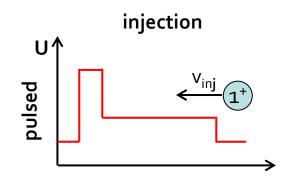
Thus: Inject with low energy for long round-trip time

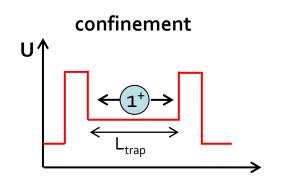
But too low energy =>

magnetic reflection

Ion reflection in magnetic field

Condition for trapping


Transverse acceptance 2. Ionization

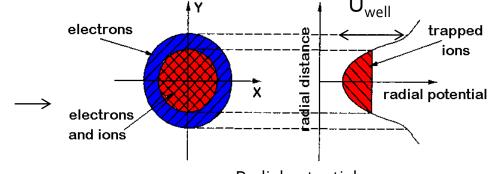

No dissipative forces but U_{barrier} doubles when 1+ -> 2+ => axially confined

$$t_{1->2} \rightarrow e/(\sigma_{1->2} \cdot j_e)$$

Prob(1+ -> 2+)=1-exp(- $t_{inside_ebeam}/t_{1->2}$)
Example ¹⁴N
 $\sigma_{1->2} = 1E-17cm^2$
 $j_e = 200 \text{ A/cm}^2$
Prob=0.5

High acceptance for a CW injected beam is obtained, if a L_{trap} long and r_{ebeam} large and j_e large

(last two in contradiction as $I_e = j_e * r_{ebeam}^2 * \pi$)



Pulsed ion injection EBIS

Longitudinal acceptance:

$$W_{inj} < e \cdot U_{well}$$
 (some 100 eV)

$$\Delta T < 2 \cdot L_{trap} / v_{inj} \sim 50 \text{ US}$$

($L_{trap} = 1 \text{ m, } W_{inj} = 100 \text{ eV, A} = 14$)

Radial potential

- 1. Entangled parameters
- 2. Benefits from reduced emittance
- preparatory RFQ buffer gas cooler or Penning trap

$$U_{well} = \frac{I_e}{4\pi\epsilon_0} \sqrt{\frac{m_e}{2eU_e}}$$

$$I_e - \text{electron beam (A)}$$

$$U_e - \text{electron beam voltage (V)}$$

Electron beam energy

How to choose electron beam energy U_e for charge breeders?

- 1. Related to the available current through the perveance: $I_e = PU^{3/2}$ (practical limit P~5 uPerv) Example $I_e = 1 A = V_e > 3500 \text{ eV}$
- 2. U_e has to be larger than the ionization potential I_p for required charge state Q. Worst case reach elements close to neutron dripline, since excess of neutrons.

Z	A (neutron rich)	Q (A/Q~4)	I _{ionization} (eV)
20	60	15	900
40	110	27	1500
60	161	40	2800
80	210	52	3100

Cross section max at 2.7*I_{ionization}

 \Rightarrow No need for $U_e > 9000 \text{ eV}$

EBIS capacity

Space charge capacity – determined mainly by the electron beam

$$N^{-} = k \frac{L_{trap} r_{ebeam}^{2} \pi}{e} \rho_{e} \qquad \rho_{e} = \frac{j_{e}}{v_{e}} = \frac{I_{e}}{\pi \cdot r_{ebeam}^{2}} \sqrt{\frac{m_{e}}{2eU_{e}}} \quad \Longrightarrow \quad N^{-} = 1.05 \cdot 10^{13} \frac{kL_{trap} I_{e}}{\sqrt{U_{e}}}$$

N⁻ = number of elementary charges

I_e and U_e = electron beam current and energy

k = attainable space charge compensation degree

 L_{trap} = trap length

3rd reason for high current

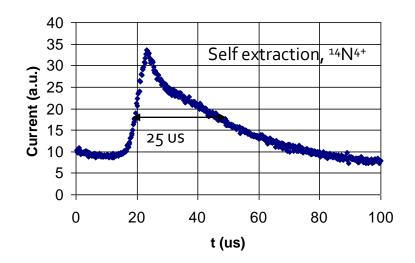
Example ¹³²Sn³⁴⁺ using REXEBIS parameters:

~20% in desired charge state

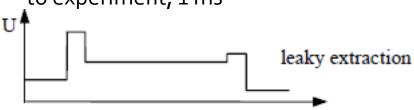
NB! Ion throughput (ions/s) = $(ions/pulse)/T_{breed}$

passive extraction U barrier barrier breeding ------extraction trapping region collector side

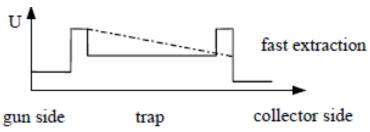
Beam extraction scenarios


For REXEBIS duty factor $T_{extr}/T_{breed} \sim 100 \text{ us /100 ms}$

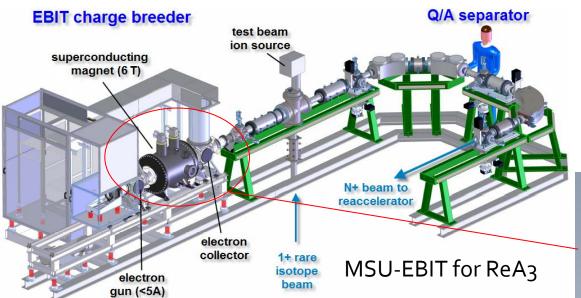
=> Good signal-to-noise-ratio


if heating by e- and ion-ion cooling neglected

$$V_{ion_extr} \sim V_{ion_inj} (W_{inj} \sim 100 \text{ eV})$$


$$\Delta T_{extr} \sim L_{trap} / v_{ion_extr} \sim$$
 25 us for ¹⁴N

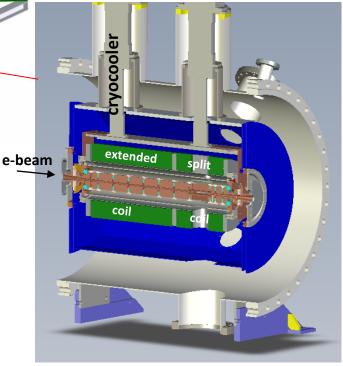
Reduce instantaneous rate to experiment, 1 ms



Speed up extraction for multi-turn injection into synchrotron <10 us

EBIT CB facility

3 MeV/u re-accelerator of thermalized projectile fragmentation and fission beams



Design goals

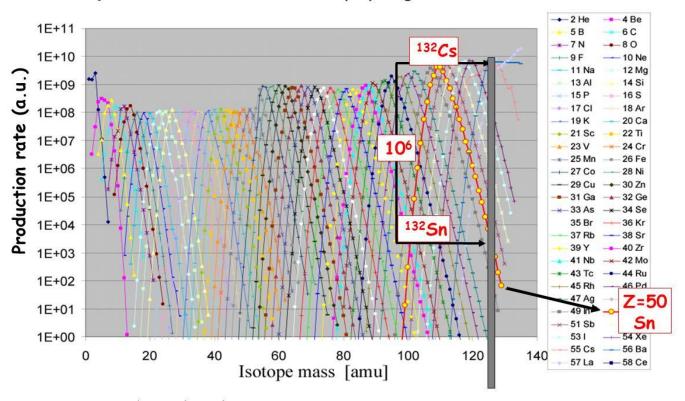
- Continuous injection and accumulation of ions
- Variable extraction duty cycle (ms pulse to quasi-continuous)
- Electron current density >1E4 /cm2
- Beam rates >1E9 ions/s
- Highest efficiency50% in a single charge state)

With 1E4 A/cm2 ->

- charge breed ions with Z<35 into Ne-like or higher within 10 ms
- 2. ionize from 1+ to 2+ within <1 us

Cryogenic trapping region

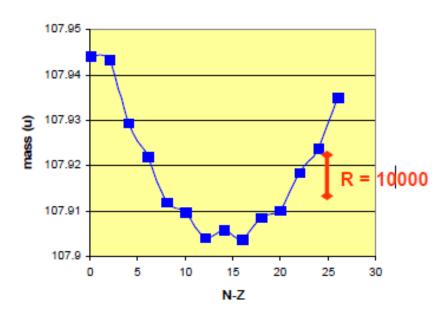
Remember: often deal with <1E4 pps => 1.7 fA


Beam contamination

Can't see the trees for the forest

Beam impurities:

a. isobaric contamination ____ from ISOL-target


1 GeV proton beam on a lanthanum (La) target

J. Lettry, V. Fedoseev (CERN)

Masses of A=108 isotopes

Resolution required to separate:

Neighbouring mass:

R=250

Molecular ions (e.g. CO from N_2):

R=500-1000

Isobars (e.g. 96Sr from 96Rb):

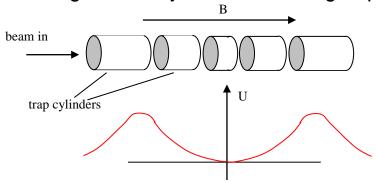
R=5000-50000

Isomers:

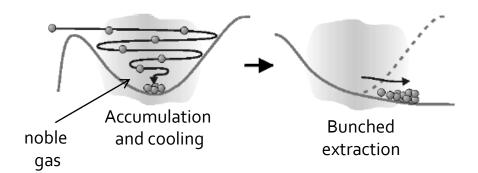
R=1E5 - 1E6

ISOL beam separation

Problem: isobaric separation difficult


* Requires RFQ cooler for pre-cooling of transverse ϵ

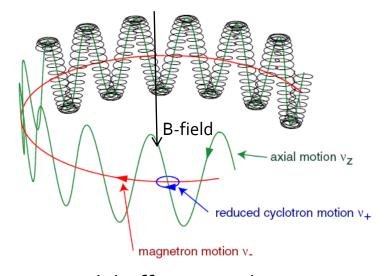
* Tails of high intensity masses may go through selection system


Solution

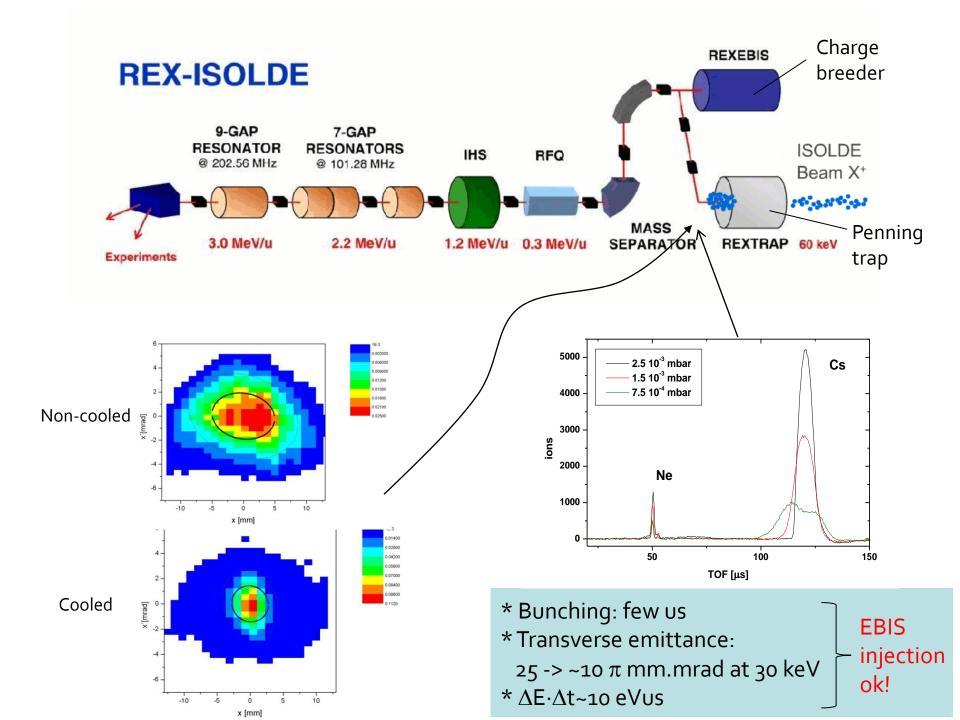
- Isobaric mass resolution inside Penning trap
- 2. Molecular beams

gas filled cylindrical Penning trap

Axially - electrostatic field Radially - magnetic field



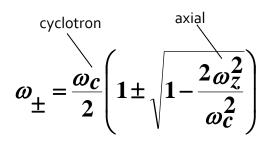
Energy loss due to buffer gas collisions: $F=-\delta mv$


Preparatory beam cooling

Introduce a *Penning trap* in ISOL-line to:
accumulate
phase space cool

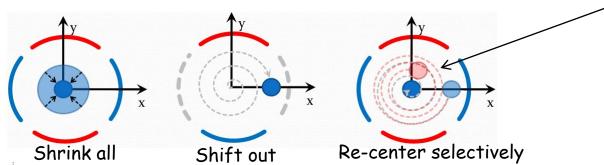
bunch the beam

With buffer gas and RF coupling between v_{+} and v_{-} all three motions cooled => amplitudes reduced



Resolving isobars in Penning trap

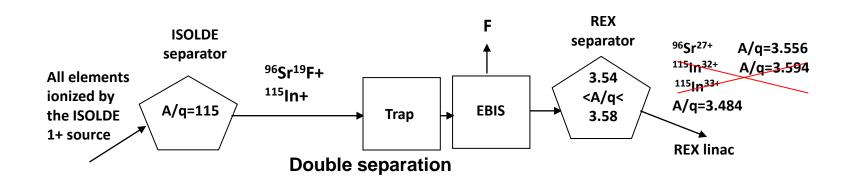
- * Low m/ Δ m~300 in REXTRAP in normal mode
- * Can be setup with m/ Δ m>10000


Procedure

- cool down the ion cloud (normal operation)
- shift out the ion cloud (desired and contaminants) with a mass independent dipolar excitation $v_{RF} = v_1$ to r>5 mm
- selectively re-centre the desired species with $v_{RF} = v_c$
- at extraction only the centered ions survive

$$\omega_{+} + \omega_{-} = \omega_{c} = \frac{e}{m}E$$
magnetron reduced cyclotron

NB! Re-centering is mass dependent

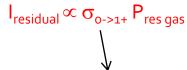


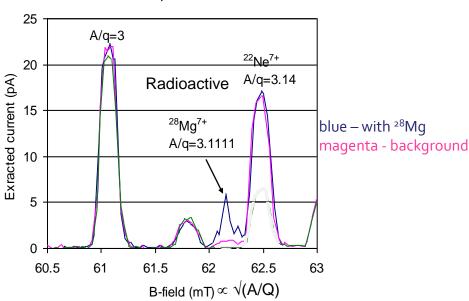
Molecular beams

The idea

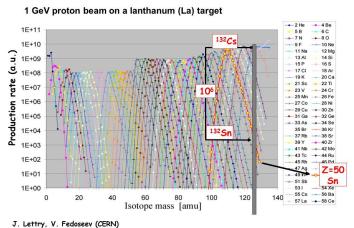
- 1. Use chemical properties to separate isobars e.g. ⁹⁶Rb from ⁹⁶Sr
- 2. Create a molecular sideband (96Sr19F+) with gas leak at ISOL-target
- 3. Molecular ions are extracted and selected in the separator (A=115 selection)
- 4. Keep molecules inside trap, break them in EBIS
- 5. Charge breed as usual and obtain clean ⁹⁶Sr

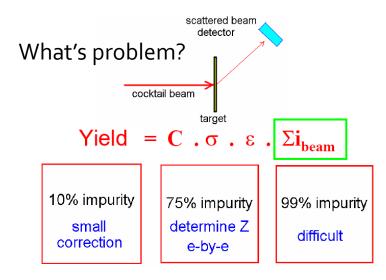
Works also with ECRIS!


Remember: often deal with <1E4 pps => 1.7 fA


Beam contamination

Can't see the trees for the forest


Beam impurities:


- a. isobaric contamination from ISOL-target
- b. residual gases in CB

EBIS extracted spectrum

Extra

Separator after breeder

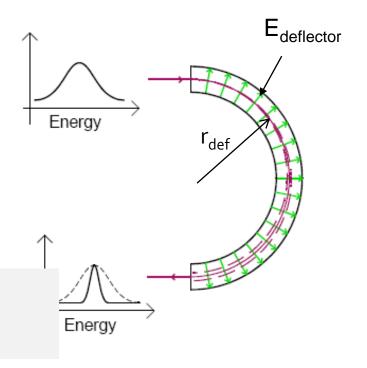
Separator magnet selects A/Q

$$B\rho = Av/Q$$

ambiguous A/Q if
$$\Delta v$$
 large $\frac{\Delta x}{x} \approx \frac{\Delta A}{A} + \frac{\Delta v}{v}$

Combine 1 & 2 =>
$$E_{def}r_{def} = (B\rho)^2 (A/Q)$$

fix fix


- * Only a single A/Q transmitted
- * Can suppress ions with wrong energy

Even so, some A/Q contaminants difficult to resolve

 $\frac{\Delta(A/Q)}{(A/Q)}$ typically a few hundred for a breeder separator

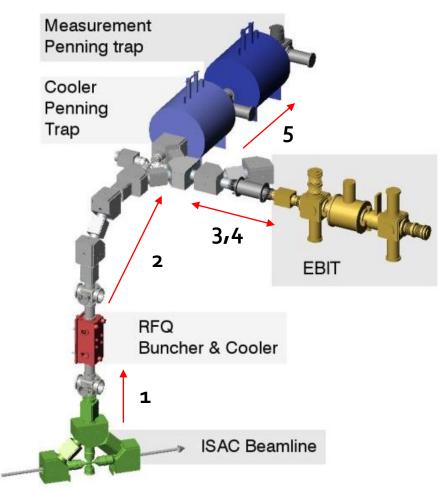
2. **Electrostatic deflector** performs a potential selection

$$E_{def}r_{def}=2U_{ext}$$

* Not only for post-acceleration!

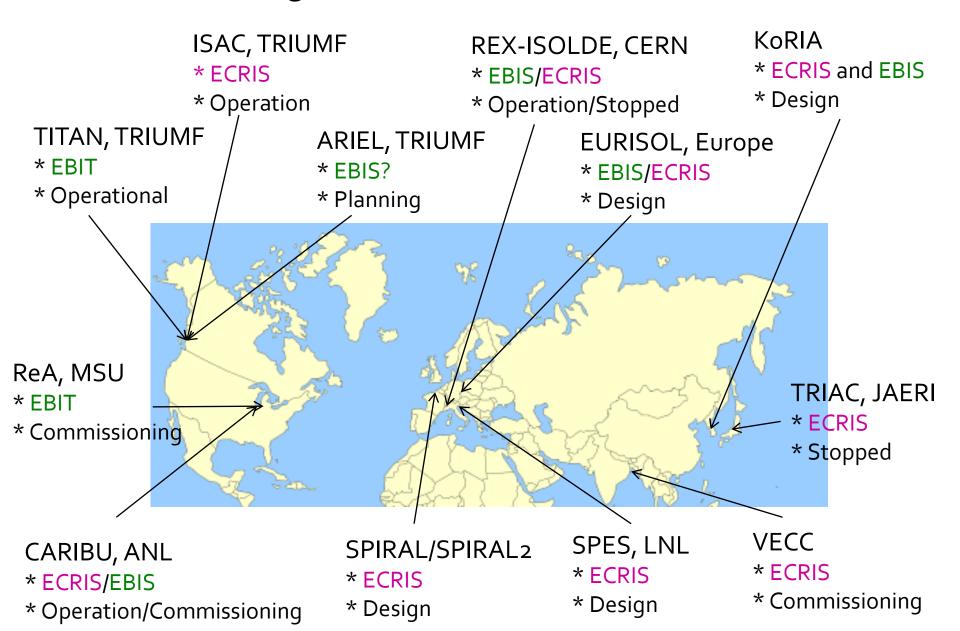
High precision mass measurements

$$\frac{\Delta m}{m} \sim \frac{m}{qT_{rf}B\sqrt{N}}$$

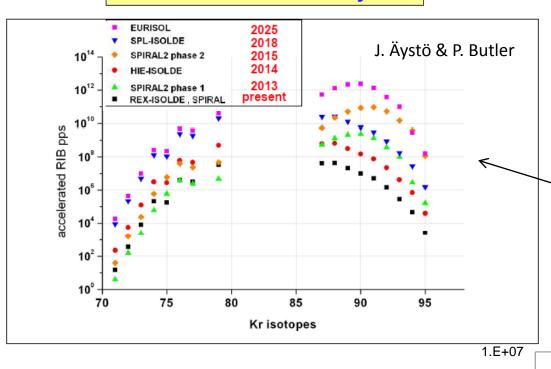

m – ion mass

q – ion charge

T_{rf} – rf excitation time


B - magnetic field

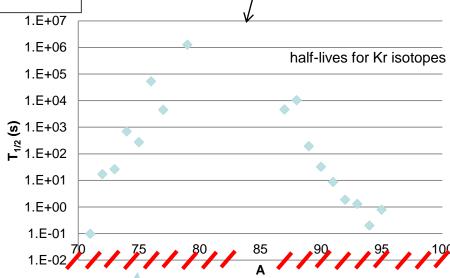
N – number of measurements



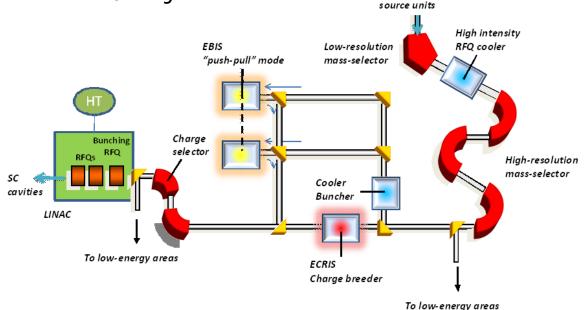
Ideally only one ion per measurement cycle

Charge breeders for RIBs worldwide

Radioactive ISOL beam yields



What to expect?


Next generation facilities

- * Increased intensities
- * Shorter half-life along drip lines

diffusion/effusion limit for ISOL facilities

Further information 'Final Report of the EURISOL design study' Nov 2009

1+ beam from

the target - ion

What to expect?

Detail of the EURISOL Layout

Modified from P. Butler's presentation, NuPECC meeting June 2007

Two main paths

- Very exotic low-intensity (<1E7 ions/s) beams for 'standard' experiments
- 2. High intensity beams (>1E9 ions/s) to
 generate even more neutron rich beams
 beam purity not of utmost importance

Extra

The *real* challenges:

- Inject ions into storage rings
- \Rightarrow fully stripped charge for Z>60
- 2. Breeding of beta beams (e.g. ⁶He and ¹⁸Ne)
- => 1 s trapping of high intensity

		.2	Stripper	EBIS	ECRIS
Extra		Simplicity	3, passive element	1, complicated (SC, UHV, e-gun)	2, medium (RF, beam tuning)
	_	Beam properties in	3, no special requirements	1, bunched, small acceptance	2, CW, medium acceptance
		Beam properties out	1, emittance blow-up	3, us or ms bunch, small emittance	2, CW or ms bunch
		Low intensities	3, no contamination	2, some <0.1 pA	1, high rest-gas level
		Rapidity	3, instant, us isotopes	2, 10 to few 100 ms	1, some 10 ms to a few 100 ms
		CSD	3, narrow, varying charge state	3, narrow, high charge state	2, broad CSD, moderate charge
		CSD tuning	1, not tunable	3, change T _{breed}	2, many parameters
		Machine contamination	2, foil exchange	1, multiple parts	2, change plasma liner
		Storage time	1, non existing	3, up to several s	2, ~100 ms
		Beam capacity	3, very high, 100 uA	1, limited to nA	2, several uA
		Energy spread	1, ΔW/W~1‰	2, a few 10 eV*q	3, some eV*q
		Efficiency	2, 5-15%	2, 5-20%	2, 5-20%
		Mass range	1, heavy masses difficult	3, full mass range	1, light masses difficult
		Life-time	2, foil breakage, 50 mC/cm ²	1, electron cathode	3, klystron lifetime
		Price	1 high, (incl. pre-acc)	2, ~1 Meuro	3, ~0.5 Meuro

Bibliography

General books

- Handbook of Ion Source, B. Wolf, Boca Raton, FL: CRC Press, 1995
- Ion Sources, Zhang Hua Shun, Berlin: Springer, 1999.
- The Physics and Technology of Ion Source, I. G. Brown, New York, NY: Wiley, 1989
- Introduction to Plasma Physics and Controlled Fusion, Vol 1: Plasma Physics, F. F. Chen, Plenum Press 1974
- Electron Cyclotron Resonance ion Source and ECR Plasmas, R Geller, IOP 1996

General charge breeding papers

- Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source, R. Vondrasek, Rev. Sci. Instrum. 83, 02A913 (2012)
- Charge breeding of radioactive ions with EBIS and EBIT, F. Wenander, J. Instrum. 5, C10004 (2010)
- Evaluation of charge-breeding options for EURISOL, P. Delahaye O. Kester, C. Barton, T. Lamy, M. Marie-Jeanne and F. Wenander, Eur. Phys. J. A 46, 421 (2010).
- Charge breeding application of EBIS/T devices, O. Kester, AIP Conf. Proc. Vol. 1099 (2009) 7-12.
- European research activities on charge state breeding related to radioactive ion beam facilities, T. Lamy, J. Angot, and T. Thuillier, Rev. Sci. Instrum. 79, oA2909 (2008)
- Charge State Breeders: on-line results , F. Wenander, Nucl. Instrum. Methods Phys. Res. B 266, 4346 (2008).
- Status of charge breeding with electron cyclotron resonance ion sources, T. Lamy et al. Rev Sci Instrum. 77 (2006) 03B101
- Charge Breeding Techniques, F. Wenander Nucl Phys A746 (2004) 40c (extended version as CERN note, CERN-AB-2004-035)

Miscellaneous relevant conference proceedings

- International Workshop on ECR ion sources
- International Symposium on EBIS/T
- Radioactive Nuclear Beams (discontinued)
- International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications (EMIS2012)

Executive summary

Stripper

Fast but expensive (pre-acc. LINAC)

ECRIS

Large capacity but dirty

Clean but low capacity