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creating high voltages  by mechanical  
transport of charges  

* Terminal Potential: U ≈ 12 ...28 MV 
   using high pressure gas to suppress discharge 
( SF6 ) 

Problems: * Particle energy limited by high voltage discharges 
   *  high voltage can only be applied once per particle ...  
  ... or twice ?   



v || B 

€ 

F =
d p
dt

= eE

In relativistic dynamics, energy and momentum satisfy the relation: 

Hence: 

€ 

dE = Fds =∫ vdp

€ 

dW = dE = eEzds ⇒ W = e Ezds∫ = eV

and the kinetic energy gained from the field  along the z path is:  



Electro Static Accelerator:12 MV-Tandem van de Graaff  
Accelerator at MPI Heidelberg 

 The „Tandem principle“: Apply the accelerating voltage twice ... 
                                                   ... by working with negative ions (e.g. H-) and  
                                                     stripping the electrons in the centre of the  

   structure 

€ 

dW = dE = eEzds ⇒ W = e Ezds∫ = eV
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1928, Wideroe:   how can the acceleration voltage be applied several times  
                     to the particle beam 

schematic Layout: 

* the problem of synchronisation ... between the particles and the rf voltage 
* „voltage has to be flipped“ to get the right sign in the second gap 
    shield the particle in drift tubes during the negative half wave of the RF voltage 

- - + +     +     + - 

Energy gained after n acceleration gaps 
n number of gaps between the drift tubes 
q charge of the particle 
U0 Peak voltage of the RF System 
ΨS synchronous phase of the particle 

€ 

En = n *q*U0 * sinψs



Wideroe-Structure: the drift tubes 

Alvarez-Structure: 1946, surround the whole structure by a rf vessel 

Energy: ≈ 20 MeV per Nucleon β ≈ 0.04 … 0.6,  Particles: Protons/Ions  

shielding of the particles during the negative  
half wave of the RF  

Time span of the negative half wave:     τRF /2 

Length of the Drift Tube:   

Kinetic Energy of the Particles 
€ 

li = vi *
τ rf
2

€ 

Ei =
1
2
mv 2

€ 

→ vi = 2Ei m

€ 

li =
1
ν rf

*
i*q*U0*sinψ s

2m

valid for non relativistic particles ... 



GSI: Unilac, typical Energie ≈ 20 MeV per  
         Nukleon, β ≈ 0.04 … 0.6,    
         Protons/Ions,  ν = 110 MHz 

Energy Gain per 
„Gap“: 

Application: until today THE standard proton / ion pre-accelerator 
              CERN Linac 4 is being built at the moment  
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4.) The Cyclotron: (Livingston / Lawrence ~1930) 

Idea: B = const, RF = const 
Synchronisation particle / RF via orbit  

  

€ 

r 
F = q* (v

→

× B
→

) = q*v *B

q*v *B =
m *v 2

R
→ B*R = p /q

ωz =
v
R

=
q
m
*Bz

 Lorentzforce 

circular orbit 
increasing radius for  
increasing momentum 
  Spiral Trajectory 

revolution frequency 
the cyclotron (rf-) frequency  
is independent of the momentum 

rf-frequency = h* revolution frequency,     h = “harmonic number” 



Cyclotron: 

€ 

ωz =
v
R

=
q

γ *m
*Bz

exact equation for revolution frequency: 

1.)  if v << c ⇒ γ ≅ 1 

2.) γ increases with the energy 
      ⇒ no exact synchronism 

Synchrocyclotron 

    B = constant 
    γ ωRF = constant  
    ωRF decreases with time 

keep the synchronisation condition by varying the rf frequency 

€ 

ωs(t) =ωrf (t) =
q

γ(t) *m0

*B

Cyclotron SPIRAL at GANIL  
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RF Cavities, Acceleration and Energy Gain  

RF acceleration:   

z 

c 

€ 

dW = dE = eEzds ⇒ W = e Ezds∫ = eV

€ 

V ≠ const

€ 

ˆ E 
z

dz∫ = ˆ V Ez = ˆ E z cosωRFt = ˆ E z cosΦ( t)

W = e ˆ V cosΦ

In this case the electric field is oscillating. So it is for the potential. 
The energy gain will depend on the RF phase experienced by the 
particle. 

Neglecting the transit 
time in the gap. 

z 



Energy Gain in RF structures:  
      Transit Time Factor 

€ 

Ez=E0 cosω t=
V
g
cosω t

Oscillating field at frequency ω  (amplitude is assumed to be 
constant all along the gap) 

Consider a particle passing through the middle of the gap 
at time t=0 : 

g 

The total energy gain is:  

transit time factor ( 0 < T < 1 ) 

€ 

T =
sinθ /2
θ /2

ideal case:  

€ 

T =
sinθ /2
θ /2

→1 ⇔ θ /2→ 0

el. static accelertors 

minimise acc. gap 

€ 

ω → 0
g → 0

! 



The Synchrotron (Mac Millan, Veksler, 1945) 

The synchrotron: Ring Accelerator of const. R  
where the increase in momentum (i.e. B-field) is  
automatically synchronised with the correct  
synchronous phase of the particle in the rf cavities  

€ 

eV
^
sinΦ

Φ =Φs = cte
ωRF = hωr

ρ = cte R = cte

Bρ = P e ⇒ B

Energy gain per turn 

Synchronous particle 

RF synchronism  

Constant orbit 

Variable magnetic field 

 



ρ 

ds x 
dl 

design orbit 

particle trajectory particle with a displacement x to the design orbit 
 path length dl ...  

circumference of an off-energy closed orbit 

remember: 

* The lengthening of the orbit for off-momentum  
    particles is given by the dispersion function  
   and the bending radius. 

o 

o 

o 



For first estimates assume:  

Assume:   

Definition: 

αp combines via the dispersion function  
the momentum spread with the longitudinal 
motion of the particle. 



Dispersion Effects in a Synchrotron 

E+δE 

E 

If a particle is slightly shifted in momentum 
it will have a different orbit: 

This is the “momentum compaction” 
generated by the bending field. 

If the particle is shifted in momentum it will have also a 
different velocity. As a result of both effects the 
revolution frequency changes: 

p=particle momentum 

R=synchrotron physical radius 

fr=revolution frequency 

cavity 

Circumference 

        2πR 



Dispersion Effects in a Synchrotron  

€ 

fr =
βc
2πR

⇒
dfr
fr

=
dβ
β
−
dR
R

€ 

dR
R

=α
dp
p

€ 

p = mv = βγ
E0

c
⇒

dp
p

=
dβ
β

+
d 1−β 2( )

−
1
2

1−β 2( )
−
1
2

= 1−β 2( )
−1 dβ
β

€ 

dβ
β

=
1
γ 2
dp
p

The change of revolution frequency 
depends on the particle energy γ and  
changes sign during acceleration. 

boundary between the two regimes: no frequency dependence on dp/p, 
η =0   “transition energy”  

Particles get faster in the beginning – and arrive earlier at the cavity: classic regime 

Particles travel at v =c and get more massive – and arrive later at the cavity: relativistic 
regime  



14.) The Acceleration for Δp/p≠0 
  “Phase Focusing” below transition 

ideal particle  $
particle with Δp/p > 0    faster $
particle with Δp/p < 0       slower    

Focussing effect  in the longitudinal direction 
keeping the particles close together  
... forming a  “bunch” 



... so sorry, here we need help from Albert: 
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kinetic energy of a proton 

v/c 

€ 

γ =
Etotal

mc 2
=

1

1− v
2

c 2

€ 

v
c

= 1− mc
2

E 2

... some when the particles  
do not get faster anymore 

.... but heavier ! 



15.) The Acceleration for Δp/p≠0 
  “Phase Focusing” above transition 

ideal particle                  $
particle with Δp/p > 0    heavier  $
particle with Δp/p < 0         lighter 

   

€ 

fs = f rev −
hα s

2π
* qU0 cosφs

Es
≈ some Hz oscillation frequency: 



~ 200 turns 
RF off  

RF on,  
  wrong phase condition 

a proton bunch: focused longitudinal by  
                            the RF field 



Energy ramping is simply obtained by varying the B field: 

€ 

p = eBρ ⇒
dp

dt
= eρ ˙ B ⇒ (Δp)turn = eρ ˙ B Tr =

2π eρ R ˙ B 

v

* The energy gain depends on the rate of change of the dipole field 

* The number of stable synchronous particles is equal to the harmonic number h.    
   They are equally spaced along the circumference. 

* Each synchronous particle satifies the relation p = eBρ. They have the nominal     
   energy and follow the nominal trajectory.  

Energy Gain per turn:   

€ 

ΔEturn =ΔWturn =2πeρR ˙ B =e ˆ V sin
sφ

... and how do we accelerate now ??? 
   with the dipole magnets ! 



The Synchrotron: Frequency Change 

During the energy ramping, the RF frequency 
increases to follow the increase of the revolution 
frequency : 

hence :    

   The RF frequency must follow the variation of the  B field with the law :                                                               

Since  

and as soon as  

€ 

B >
m
0
c2

ecr

€ 

fRF ( t)

h
≈

c

2πRs
= const

which is true for LHC at high  
energy and for electrons  
from the start  



Longitudinal Dynamics: synchrotron motion 

We have to follow two coupled variables:  

 *  the energy gained by the particle  

 * and the RF phase experienced by the same particle.  

Since there is a well defined synchronous particle which has always 
the same phase φs, and the nominal energy Es, it is sufficient and 
elegant to follow other particles with respect to that particle.  

We will introduce the following relative variables: 

               revolution frequency :            Δfr = fr – frs 

                     particle RF phase     :             Δφ = φ - φs 

               particle momentum   :            Δp = p - ps 

               particle energy         :              ΔE = E – Es 

                       azimuth angle            :            Δθ = θ - θs  



The Equation of Motion:   

Energy-Phase Relations in a Synchrotron 
energy offset      phase change 



First Energy-Phase Equation: 
         energy offset      phase change 

θ R 
For a given particle with respect 

 to the reference one: 

€ 

dωr =
d
dt

Δθ( ) = −
1
h
d
dt

Δφ( ) = −
1
h
dφ
dt

Since: 

€ 

η =
ps
ω rs

dω r

dp
 

 
 

 

 
 
s

→ dp =
p
η
*
dω r

dp
 

 
 

 

 
 
s

one gets: 

€ 

ΔE
ω rs

= −
psRs

hηωrs

d Δφ( )
dt

= −
psRs

hηω rs

˙ φ 

and from relativity we know: 

€ 

ΔE = vsΔp = ω rsRsΔp

The energy deviation from the 
synchronous particle depends on  
the rate of change of the phase.  



Second Energy-Phase Equation 
  energy offset <-> RF voltage 

energy gain per turn: 

€ 

ΔEturn = e ˆ V sinφ

momentum rate of change:  

€ 

ΔE = v Δp

€ 

Δpturn =
e ˆ V 
ωR

sinφ

€ 

v =ωR

€ 

˙ p = Δpturn

T
=
Δpturn

2π
ω =

e ˆ V 
2πR

sinφ

€ 

2πR˙ p = e ˆ V sinφ

difference to the synchr. particle:  

€ 

2π Δ R˙ p ( ) = e ˆ V (sinφ − sinφs)



Second Energy-Phase Equation 
  momentum offset <-> geometry 

€ 

Δ R˙ p ( ) = R˙ p − Rs ˙ p s = Rs + ΔR( ) * ˙ p s + Δ˙ p ( ) − Rs ˙ p s

€ 

= Rs ˙ p s + RsΔ˙ p + ΔR˙ p s + ΔRΔ˙ p − Rs ˙ p s
≈ 0 

€ 

= RsΔ˙ p + ΔR˙ p s = RsΔ˙ p + ˙ p s * dR
dp
 

 
 

 

 
 

s

Δp = RsΔ˙ p + dps

dt
dR
dp

 

 
 

 

 
 

s

Δp

€ 

= RsΔ˙ p + ˙ R sΔp =
d
dt

(RsΔp) =
d
dt

(ΔE
ωs

)

... put into the green equation ... to get  

€ 

2π Δ R˙ p ( ) = e ˆ V (sinφ − sinφs)

€ 

2π d
dt

(ΔE
ωs

) = e ˆ V (sinφ − sinφs)
the rate of energy change is  
determined by the distance in phase 
in the sinusoidal rf voltage function 



 Equations of Longitudinal Motion 

deriving and combining 

This rather formidable looking differential equation simplifies a lot if 
we consider ...  

 Rs, ps, ωs, η as constant (or slowly varying with time).  



Small Amplitude Oscillations 

with 

Let’s assume constant parameters Rs, ps, ωs and η: 

Consider now small phase deviations from the reference particle: 

and the corresponding linearized motion reduces to a harmonic oscillation: 

stable for                     and  Ωs real 

€ 

sinφ−sinφ s=sin φ s+Δφ( ) − sinφ s≅ cosφ sΔφ



Small Amplitude Oscillations: phase stability 

 γ < γtr     η > 0      0 < φs < π/2                

 γ > γtr     η < 0      π/2 < φs < π              

We get a harmonic oscillation of the particle phase with the  oscillation frequency 

€ 

sΩ =
hηωrse ˆ V cosφ s

2πRs ps

Stability condition:  Ωs real 

remember 

And we will find this situation  
“h”-times in the machine 

LHC:  
 35640 Possible Bunch Positions (“buckets”) 
 2808 Bunches 

oscillation frequency depends on  
    *  the square root 
    * of an electrical potential 
     -> weak force  <-> small frequncy   



S34 S45 

B2 

B1 
194 mm 420 mm 

ADT Q5 Q6 Q7 
ACS ACS 

ACS ACS 

4xFour-cavity cryo module 400 MHz, 16 MV/beam 
Nb on Cu cavities @4.5 K (=LEP2) 
Beam pipe diam.=300mm 

D3 D4 

The RF system: IR4 



(small) ... Synchrotron Oscillations in Energy and Phase 

Ansatz: 

€ 

Δφ = Δφmax *cos(Ωst)

€ 

d(Δφ)
dt

= −Δφmax * sin(Ωst) *Ωs

take the first derivative and put it into the first energy-phase relation 

€ 

ΔE = −
psRs

hη
d Δφ( )
dt

€ 

ΔE =
−pRsΔφmax

hη
sin(Ωst)to get the energy oscillations 

€ 

ΔEmax

€ 

ΔE = ΔEmax * sin(Ωst)

which defines an ellipse in phase space ΔΦ, ΔE:  

€ 

ΔΦ
ΔΦmax

 

 
 

 

 
 

2

+
ΔE
ΔEmax

 

 
 

 

 
 

2

=1



Large Amplitude Oscillations 

Equation of the separatrix: 

There are two positions (in fact three) where a particle does not get any phase focusing 
force,          ::  at Φ = Φs (i.e. the ideal position)  

                 and at Φ = π-Φs  

€ 

˙ φ /Ωs,Δφ

Equation of motion: 

€ 

˙ ̇ Φ = 0

When φ reaches π-φs the force goes to zero and beyond it becomes non restoring. Hence π-φs 
is an extreme amplitude for a stable motion which in the phase space (             ) is shown as 
closed trajectories.  

The phase curve, that belongs to Φ = Φs separates the stable from the unstable regime 

-> “Separatrix” 



~ 200 turns 

RF off  

RF on, phase adjusted,  
        beam captured     

RF on,  
  wrong phase  

We have to match these conditions:  
phase (i.e. timing between rf and injected bunch)  
has to correspond to ϕs 
long. acceptance of injected beam has to be smaller  
than bucket area of the synchrotron. 

max stable energy: set ϕ = ϕs and calculate ΔE   

€ 

ΔEmax( )sep =
psvseV0
2πhηs

* 4cosφs − (2π − 4φs)sinφs

LHC injection: 
acceptance: 1.4eVs 
long emittance: 1.0 eVs 



Than’x 





Improved Capture With Pre-buncher 

A long bunch coming 
from the gun enters an 
RF cavity; the 
reference particle is 
the one which has no 
velocity change. The 
others get accelerated 
or decelerated. After a 
distance L bunch gets 
shorter while energies 
are spread: bunching 
effect.   This short 
bunch can now be 
captured in the 
following rf structures. 

APPENDIX: 



Improved Capture With Pre-buncher  

The bunching effect is a space modulation that results from a velocity 
modulation and is similar to the phase stability phenomenon. Let’s look at 
particles in the vicinity of the reference one and use a classical approach. 

Energy gain as a function of cavity crossing time: 

Perfect linear bunching will occur after a time delay τ, corresponding to 
a distance L, when the path difference is compensated between a 
particle and the reference one: 

(assuming the reference particle 
enters the cavity at time t=0) 

Since L = vτ one gets: 


