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Nonlinear Dynamics

In this lecture, we shall discuss nonlinear dynamics in the
context of two types of accelerator system:

1. a bunch compressor (a single-pass system);

2. a storage ring (a multi-turn system).

We shall use these examples to introduce a number of topics:

• Mathematical tools for modelling nonlinear dynamics:
– Taylor maps; symplectic maps.

• Basic effects of nonlinear perturbations:
– resonances; tune shift with amplitude.

• Analysis methods:
– normal form analysis; frequency map analysis.

• Practical consequences of nonlinearities:
– phase space distortion; dynamic aperture.
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Nonlinear dynamics: goals of this lecture

Our aim is to provide an introduction to some of the key

concepts of nonlinear dynamics in particle accelerators.

By the end of the lecture, you should be able to:

• explain the significance and potential impact of nonlinear

dynamics in some accelerator systems;

• outline some of the tools used for modelling nonlinear

dynamics in accelerators;

• explain the importance of symplectic maps, and outline

some of the challenges in their calculation and application;

• describe some of the features of nonlinear oscillators, and

outline some of the analysis methods that can be used to

characterise their behaviour.
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Example 1: Bunch compressor

As a first example, we discuss nonlinear longitudinal dynamics

in a bunch compressor.

A bunch compressor reduces the length of a bunch, by

performing a rotation in longitudinal phase space. Bunch

compressors are used, for example, in free electron lasers to

increase the peak current.

We shall follow these steps in our analysis:

1. Outline of structure and operation of a bunch compressor.

2. Specification of parameters based on linear dynamics.

3. Analysis of linear and nonlinear effects.

4. Adjustment of parameters to compensate nonlinear effects.
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Bunch compressor: structure and operation
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Bunch compressor: structure and operation

The rf cavity is designed to “chirp” the bunch, i.e. to provide a

change in energy deviation as a function of longitudinal

position z within the bunch (z > 0 at the head of the bunch).

The energy deviation δ of a particle with energy E is defined as:

δ =
E − E0

E0
, (1)

where E0 is the reference energy for the system.

The transfer map for the rf cavity in the bunch compressor is:

z1 = z0, (2)

δ1 = δ0 −
eV

E0
sin

(
ωz0

c

)
, (3)

where V is the rf voltage, and ω/2π is the rf frequency.
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Bunch compressor: structure and operation

Neglecting synchrotron radiation, the chicane does not change
the energy of the particles. However, the path length L

depends on the energy of the particle.

If we assume that the bending angle in a dipole is small, θ � 1:

L =
2L1

cos θ
+ L2. (4)

The bending angle is a function of the energy of the particle:

θ =
θ0

1 + δ
. (5)
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Bunch compressor: structure and operation

The change in the co-ordinate z is the difference between the

nominal path length, and the length of the path actually taken

by the particle.

Hence, the transfer map for the chicane can be written:

z2 = z1 + 2L1

(
1

cos θ0
−

1

cos(θ(δ1))

)
, (6)

δ2 = δ1, (7)

where θ0 is the nominal bending angle of each dipole in the

chicane, and θ(δ) is given by (5):

θ(δ) =
θ0

1 + δ
.

Clearly, the complete transfer map for the bunch compressor is

nonlinear; but how important are the nonlinear terms?
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Bunch compressor: linear dynamics

To understand the effects of the nonlinear part of the map, we

shall look at a specific example.

First, we will “design” a bunch compressor using only the linear

part of the map.

The linear part of a transfer map can be obtained by expanding

the map as a Taylor series in the dynamical variables, and

keeping only the first-order terms.

After finding appropriate values for the various parameters

using the linear transfer map, we shall see how our design has

to be modified to take account of the nonlinearities.
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Bunch compressor: linear dynamics

To first order in the dynamical variables z and δ, the map for

the rf cavity can be written:

z1 = z0, (8)

δ1 = δ0 +R65z0, (9)

where:

R65 = −
eV

E0

ω

c
. (10)

The map for the chicane can be written:

z2 = z1 +R56δ1, (11)

δ2 = δ1, (12)

where:

R56 = 2L1
θ0 sin θ0

cos2 θ0
. (13)
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Bunch compressor: linear dynamics

As a specific example, consider a bunch compressor for the

International Linear Collider:

Initial rms bunch length
√
〈z2

0〉 6 mm

Initial rms energy spread
√
〈δ2

0〉 0.15%

Final rms bunch length
√
〈z2

2〉 0.3 mm

Two constraints determine the values of R65 and R56:

• The bunch length should be reduced by a factor 20.

• There should be no “chirp” on the bunch at the exit of the

bunch compressor, i.e. 〈z2δ2〉 = 0.

With these constraints, we find (see Appendix A):

R65 = −4.9937 m−1, and R56 = 0.19975 m. (14)
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Bunch compressor: linear dynamics

We can illustrate the effect of the linearised bunch compressor

map on phase space using an artificial “window frame”

distribution:

The rms bunch length is reduced by a factor of 20 as required,

but the rms energy spread is increased by the same factor.

This is because the transfer map is symplectic, so phase space

areas are conserved under the transformation.
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Bunch compressor: nonlinear dynamics

Now let us see what happens when we apply the full nonlinear

map for the bunch compressor.

The full map cannot simply be represented by the two

coefficients R65 and R56: we need to make some assumptions

for the rf voltage and frequency, and the dipole bending angle

and chicane length.

We have to choose all these parameters so that the “linear”

parameters have the appropriate values.

Beam (reference) energy E0 5 GeV
RF frequency frf 1.3 GHz
RF voltage Vrf 916 MV
Dipole bending angle θ0 3◦

Dipole spacing L1 36.3 m
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Bunch compressor: nonlinear dynamics

As before, we illustrate the effect of the bunch compressor map

on phase space using a “window frame” distribution:

Although the bunch length has been reduced, there is

significant distortion of the distribution: the rms bunch length

will be significantly longer than we are aiming for.
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Bunch compressor: nonlinear dynamics

To reduce the distortion, we first need to understand where it

comes from, which means looking at the map more closely.

Consider a particle entering the bunch compressor with initial

phase space co-ordinates z0 and δ0. We can write the

co-ordinates z1 and δ1 of the particle after the rf cavity to

second order in z0 and δ0:

z1 = z0, (15)

δ1 = δ0 +R65z0 + T655z
2
0. (16)

Note the notation for the coefficients in the map: the first

subscript indicates the variable on the left hand side of the

equation, and subsequent subscripts indicate the variables in

the relevant term.

By convention, R is used for the coefficients of linear terms, T

for second-order terms, U for third-order terms, and so on.
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Bunch compressor: nonlinear dynamics

The co-ordinates of the particle after the chicane are then (to

second order):

z2 = z1 +R56δ1 + T566δ
2
1, (17)

δ2 = δ1. (18)

If we combine the maps for the rf and the chicane, we get:

z2 = (1 +R56R65)z0 +R56δ0

+(R56T655 +R2
65T566)z2

0

+2R65T566z0δ0

+T566δ
2
0, (19)

δ2 = δ0 +R65z0 + T655z
2
0. (20)
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Bunch compressor: nonlinear dynamics

The term that gives the strong nonlinear distortion is the term
in z2

0 in (19). If we can design a system such that the
appropriate coefficients satisfy:

R56T655 +R2
65T566 = 0, (21)

then we should be able to reduce the distortion.

The values of R56 and R65 are determined by the required
compression factor.

The value of T566 is determined by the chicane; by expanding
(6) as a Taylor series in δ, we find for θ0 � 1:

T566 ≈ −3L1θ
2
0. (22)

That leaves us with T655. This is the second-order dependence
of the energy deviation on longitudinal position for a particle
passing through the rf cavity. But if we inspect the full rf map
(3), we find it contains only odd-order terms, unless...
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Bunch compressor: nonlinear dynamics

...we operate the rf cavity off-phase. In other words, we have

to modify the rf transfer map to:

z1 = z0, (23)

δ1 = δ0 −
eV

E0
sin

(
ωz0

c
+ φ0

)
. (24)

The first-order coefficient in the transfer map for δ is then:

R65 = −
eV

E0

ω

c
cosφ0. (25)

The second-order coefficient is:

T655 =
1

2

eV

E0

(
ω

c

)2
sinφ0. (26)

Note that there is also a zeroth-order term, so the bunch ends

up with a non-zero mean energy deviation 〈δ〉 after the rf

cavity; but we can take this into account simply by an

appropriate scaling of the field in the chicane.
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Bunch compressor: nonlinear dynamics

The linear coefficients are determined by the required

compression factor, and the requirement to have zero final

correlation 〈zδ〉. For the ILC bunch compressor:

R65 = −4.9937 m−1, and R56 = 0.19975 m. (27)

The value of T566 is determined by the parameters of the

chicane:

T566 ≈ −3L1θ
2
0 = −0.29963 m. (28)

And the value of T655 is determined by the need to correct the

second-order distortion of the phase space:

R56T655 +R2
65T566 = 0 ∴ T655 = 37.406 m−2. (29)
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Bunch compressor: nonlinear dynamics

Now, given:

R65 = −
eV

E0

ω

c
cosφ0 = −4.9937 m−1, (30)

and:

T655 =
1

2

eV

E0

(
ω

c

)2
sinφ0 = 37.406 m−2, (31)

we find, for E0 = 5 GeV and ω = 1.3 GHz:

V = 1,046 MV, and φ0 = 28.8◦. (32)

Operating with this phase, we are providing over a gigavolt of

rf to decelerate the beam by more than 500 MV.

Because of adiabatic (anti)damping, we will need to reduce the R56 of the
chicane by a factor E1/E0, where E0 and E1 are the mean bunch energy
before and after the rf, respectively.

Also, the phase space area occupied by the distribution will be increased by
a factor E0/E1.
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Bunch compressor: nonlinear dynamics

As before, we illustrate the effect of the bunch compressor on

phase space using a “window frame” distribution. But now we

use the parameters determined above, to try to compress by a

factor 20, while minimising the second-order distortion:

This looks much better: the dominant distortion now appears

to be third-order, and looks small enough that it should not

significantly affect the performance of the machine.
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Bunch compressor: some conclusions

We have already learned some useful lessons from this example:

• Nonlinear effects can limit the performance of an

accelerator system. Sometimes the effects can be ignored;

however, in many cases, a system designed without taking

account of nonlinearities will not achieve the specified

performance.

• If we take the trouble to analyse and understand the

nonlinear behaviour of a system, then, if we are fortunate

enough and clever enough, we may be able to devise a

means of compensating any adverse effects.
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Second example: a simple storage ring

As a second example, let us consider the transverse dynamics in

a simple storage ring. We shall assume that:

• The storage ring is constructed from some number of

identical cells consisting of dipoles, quadrupoles and

sextupoles.

• The phase advance per cell can be tuned from close to

zero, up to about 0.5×2π.

• There is one sextupole per cell, which is located at a point

where the horizontal beta function is 1 m, and the alpha

function is zero.

Usually, storage rings will contain (at least) two sextupoles per

cell, to correct horizontal and vertical chromaticity. To keep

things simple, we will use only one sextupole per cell.
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A reminder: correcting chromaticity with sextupoles

Sextupoles are needed in a storage ring to compensate for the

fact that quadrupoles have lower focusing strength for particles

of higher energy:

The change in focusing strength with particle energy has

undesirable consequences, especially in storage rings: it can

lead to particle motion becoming unstable because of

resonances.
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A reminder: correcting chromaticity with sextupoles

A sextupole can be regarded as a quadrupole with focusing
strength that increases with horizontal offset from the axis.

If sextupoles are located where there is non-zero dispersion,
they can be used to control the chromaticity in a storage ring.
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Storage ring: linear dynamics

The chromaticity, and hence the sextupole strength, will

normally be a function of the phase advance.

However, just to investigate the nonlinear effects of the

sextupoles, we shall keep the sextupole strength k2L fixed, and

change only the phase advance.

We can assume that the map from one sextupole to the next is

linear, and corresponds to a rotation in phase space through an

angle equal to the phase advance:(
x
px

)
7→
(

cosµx sinµx
− sinµx cosµx

)(
x
px

)
. (33)

Again to keep things simple, we shall consider only horizontal

motion, and assume that the vertical coordinate y = 0.
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Transfer map for a sextupole

The change in the horizontal momentum of a particle moving

through the sextupole is found by integrating the Lorentz force:

∆px = −
∫ L

0

By

Bρ
ds. (34)

The sextupole strength k2 is defined by:

k2 =
1

Bρ

∂2By

∂x2
, (35)

where Bρ is the beam rigidity. For a pure sextupole field

(assuming that the vertical coordinate y = 0),

By

Bρ
=

1

2
k2x

2. (36)

If the sextupole is short, then we can neglect the small change

in the coordinate x as the particle moves through the

sextupole, in which case:

∆px ≈ −
1

2
k2Lx

2. (37)
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Transfer map for a sextupole

The map for a particle moving through a short sextupole can

be represented by a “kick” in the horizontal momentum:

x 7→ x, (38)

px 7→ px −
1

2
k2Lx

2. (39)

Let us choose a fixed value k2L = −600 m−2, and look at the

effects of the maps for different phase advances.

For each case, we construct a phase space portrait by plotting

the values of the dynamical variables after repeated application

of the map (equation (33), followed by (38) and (39)) for a

range of initial conditions.

First, let us look at the phase space portraits for a range of

phase advances from 0.2× 2π to 0.5× 2π.
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Phase space portraits: storage ring with a single sextupole

µx = 0.202× 2π
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Phase space portraits: storage ring with a single sextupole

µx = 0.252× 2π
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Phase space portraits: storage ring with a single sextupole

µx = 0.330× 2π
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Phase space portraits: storage ring with a single sextupole

µx = 0.402× 2π
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Phase space portraits: storage ring with a single sextupole

µx = 0.490× 2π
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Phase space portraits: storage ring with a single sextupole

There are some interesting features in these phase space portraits to which
it is worth drawing attention:

• For small amplitudes (small x and px), particles trace out closed loops
around the origin: this is what we expect for a purely linear map.

• As the amplitude is increased, there appear “islands” in phase space:
the phase advance (for the linear map) is often close to m/p where m is
an integer and p is the number of islands.

• Sometimes, a larger number of islands appears at larger amplitude.

• Usually, there is a closed curve that divides a region of stable motion
from a region of unstable motion. Outside that curve, the amplitude of
particles increases without limit as the map is repeatedly applied.

• The area of the stable region depends strongly on the phase advance:
for a phase advance close to 2π/3, it appears that the stable region
almost vanishes altogether.

• It appears that as the phase advance is increased towards π, the stable
area becomes large, and distortions from the linear ellipse become less
evident.
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Effect of the phase advance on the nonlinear dynamics

An important observation is that the effect of the sextupole in

the periodic cell depends strongly on the phase advance across

the cell.

We can start to understand the significance of the phase

advance by considering two special cases:

1. phase advance equal to an integer times 2π;

2. phase advance equal to a half integer times 2π.
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Effect of the phase advance on the nonlinear dynamics

Let us consider first what happens when the phase advance is

an integer. In that case, the linear part of the map is just the

identity:

x 7→ x, (40)

px 7→ px. (41)

So the combined effect of the linear map and the sextupole

kick is:

x 7→ x, (42)

px 7→ px −
1

2
k2Lx

2. (43)

Clearly, for x 6= 0, the horizontal momentum will increase

without limit. There are no stable regions of phase space,

apart from the line x = 0.
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Effect of the phase advance on the nonlinear dynamics

Now consider what happens if the phase advance of a cell is a

half integer times 2π, so the linear part of the map is just a

rotation through π.

If a particle starts at the entrance of a sextupole with x = x0

and px = px0, then at the exit of that sextupole:

x1 = x0, (44)

px1 = px0 −
1

2
k2Lx

2
0. (45)

Then, after passing to the entrance of the next sextupole, the

co-ordinates will be:

x2 = −x1 = −x0, (46)

px2 = −px1 = −px0 +
1

2
k2Lx

2
0. (47)
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Effect of the phase advance on the nonlinear dynamics

Finally, on passing through the second sextupole:

x3 = x2 = −x0, (48)

px3 = px2 −
1

2
k2Lx

2
2 = −px0. (49)

In other words, the momentum kicks from the two sextupoles

cancel each other exactly.

The resulting map is a purely linear phase space rotation by π.

In this situation, we expect the motion to be stable (and

periodic), no matter what the amplitude.
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Effect of the phase advance on the nonlinear dynamics

The effect of the phase advance on the sextupole “kicks” is

similar to the effect on perturbations arising from dipole and

quadrupole errors in a storage ring.

In the case of dipole errors, the kicks add up if the phase

advance is an integer, and cancel if the phase advance is a half

integer.
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Effect of the phase advance on the nonlinear dynamics

In the case of quadrupole errors, the kicks add up if the phase

advance is a half integer.

Higher-order multipoles drive higher-order resonances... but the

effects are less easily illustrated on a phase space diagram.
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Resonances

If we include vertical as well as horizontal motion, then we find
that resonances occur when the tunes satisfy:

mxνx +myνy = `, (50)

where mx, my and ` are integers.

The order of the resonance is |mx|+ |my|.
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Resonances in storage rings

Resonances are associated with unstable motion for particles in

storage rings.

However, the number of resonance lines in tune space is

infinite: any point in tune space will be close to a resonance of

some order.

This observation raises two questions:

1. How do we know what the real effect of any given

resonance line will be?

2. How can we design a storage ring to minimise the adverse

effects of resonances?

These are not easy questions to answer. We shall discuss some

of the issues in the remaining parts of this lecture.
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Representing nonlinear maps: Taylor series

To begin with, for any analysis of nonlinear dynamics we need a

convenient way to represent nonlinear transfer maps.

In our analysis of a bunch compressor, we represented the

transfer maps for the rf cavity and the chicane as Taylor series.

For example, the longitudinal transfer map for the chicane is:

z1 = z0 + 2L1

(
1

cos θ0
−

1

cos θ

)
, (51)

δ1 = δ0, (52)

where:

θ =
θ0

1 + δ0
. (53)
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Representing nonlinear maps: Taylor series

The map for a chicane can be expanded as a Taylor series:

z1 = z0 +R56δ0 + T566δ
2
0 + U5666δ

3
0 + . . . (54)

δ1 = δ0, (55)

where the coefficients R56, T566, U5666 etc. are all functions of

the chicane parameters L1 and θ0.

Taylor series provide a convenient way of systematically

representing transfer maps for beamline components, or

sections of beamline.

The main drawback of Taylor series is that in general, transfer

maps can only be represented exactly by series with an infinite

number of terms.

In practice, we have to truncate a Taylor map at some order,

and we then lose certain desirable properties of the map: in

particular, a truncated map will not usually be symplectic.
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Symplecticity

Mathematically, a transfer map is symplectic if it satisfies the
condition:

JTSJ = S, (56)

where Jmn = ∂xm,f/∂xn,i is the Jacobian of the map, and S is
the antisymmetric matrix with block diagonals:

S2 =

(
0 1
−1 0

)
. (57)

Physically, a symplectic transfer

map conserves phase space

volumes when the map is applied.

This is Liouville’s theorem, and is a

property of charged particles

moving in electromagnetic fields, in

the absence of radiation.
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Symplecticity

The effect of losing symplecticity becomes apparent if we

compare phase space portraits constructed using symplectic

(below, left) and non-symplectic (below, right) transfer maps.
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Symplectic representations of transfer maps

There are a number of ways of representing transfer maps to

ensure symplecticity. These include:

• Taylor maps can be specially constructed to retain

symplecticity with a certain (finite) number of terms.

Taylor maps are explicit: once the coefficients have been

calculated, the map can be applied simply by substitution of

values for the dynamical variables.

• Mixed-variable generating functions provide an implicit

representation: each application of the map requires further

solution of equations (see Appendix B).

• Lie transformations provide a finite representation for

infinite Taylor series, and are useful for analytical studies

(see Appendix C).
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Symplectic Taylor maps with finite number of terms

Symplectic Taylor maps with a finite number of terms can be
constructed for multipole magnets of any order using the
“kick” approximation.

As an example, consider a sextupole, for which the
(approximate) equations of motion are:

dx

ds
= px,

dpx

ds
= −

1

2
k2x

2. (58)

These equations do not have an exact solution in terms of
elementary functions.

However, by splitting the integration into three steps it is
possible to write down an approximate solution that is explicit
and symplectic:

0 ≤ s < L/2 : x1 = x0 + px0, px1 = px0, (59)

s = L/2 : x2 = x1, px2 = px1 −
1

2
k2Lx

2
1, (60)

L/2 < s ≤ L : x3 = x2 + px2, px3 = px2. (61)
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Symplectic integrators

The solution (59)–(60) is an example of a symplectic

integrator. For obvious reasons, this particular integrator is

known as a “drift–kick–drift” approximation.

By splitting the integration into smaller steps, it is possible to

obtain better approximations.

Using special techniques (e.g. from classical mechanics) it can

be shown that by splitting a multipole in particular ways, it is

possible to minimise the error for a given number of integration

steps.
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Analytical methods for nonlinear dynamics

Taylor maps are useful for particle tracking, but do not give

much insight into the dynamics of a given nonlinear system.

To develop a deeper understanding (e.g. to determine the

impact of individual resonances) more powerful techniques are

needed.

There are two approaches that are quite widely used in

accelerator physics:

• perturbation theory;

• normal form analysis.

In both these techniques, the goal is to construct a quantity

that is invariant under application of the single-turn transfer

map. Unfortunately, in both cases the mathematics is

complicated and fairly cumbersome.
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Example: normal form analysis of a sextupole in a storage ring

In the case of a single sextupole in a storage ring, we find from

normal form analysis the following expression for the betatron

action Jx as a function of the betatron phase (angle variable):

Jx ≈ I0−
k2L

8
(2βxI0)3/2(cos(3µx/2 + 2φx) + cos(µx/2))

sin(3µx/2)
+O(I2

0),

where I0 is a constant (an invariant of the motion), φx is the

angle variable, and µx is the phase advance per cell.

Note that the second term in the expression for Jx becomes

very large when µx is close to a third integer.

The cartesian variables can be expressed in terms of the

action–angle variables:

x =
√

2βxJx cosφx, (62)

px = −
√

2Jx
βx

(sinφx + αx cosφx). (63)
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Example: normal form analysis of a sextupole in a storage ring

phase advance µx = 0.28× 2π
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Example: normal form analysis of a sextupole in a storage ring

phase advance µx = 0.30× 2π
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Example: normal form analysis of a sextupole in a storage ring

phase advance µx = 0.315× 2π
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Tune shift with amplitude

Close inspection of the plots on the previous slides reveals

another effect, in addition to the obvious distortion of the

phase space ellipses: the phase advance per turn (i.e. the tune)

varies with increasing betatron amplitude.

Normal form analysis (and perturbation theory) can be used to

obtain estimates for the tune shift with amplitude. In the case

of a sextupole, the tune shift is higher-order in the action.

An octupole, however, does have a first-order (in the action)

tune shift with amplitude, given by:

νx = νx0 +
k3Lβ

2
x

16π
Jx +O(J2

x). (64)
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Tune shift with amplitude

The tune shift with amplitude becomes obvious if we track a

small number of turns (30) in a lattice with a single octupole.

µx = 0.330× 2π µx = 0.336× 2π
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Resonant “islands”

“Islands” appear in phase space portraits at amplitudes where
the phase advance is 2π× a rational number (that determines
the number of islands), and there is a “driving term” (that
determines the widths of the islands). Recall the phase space
portraits for a sextupole in a storage ring:

µx = 0.252× 2π µx = 0.402× 2π
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The Kolmogorov–Arnold–Moser theorem

Perturbation theory and normal form analysis depend on the

existence of constants of motion in the presence of nonlinear

perturbations.

The fact that constants of motion can exist in the presence of

nonlinear perturbations is a consequence of the

Kolmogorov–Arnold–Moser (KAM) theorem.

The KAM theorem expresses the general conditions for the

existence of constants of motion in nonlinear Hamiltonian

systems.
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The Chirikov criterion

Resonances do not invariably result in immediate loss of

stability.

In particular, if the tune shift with amplitude is sufficiently large,

then it is possible for there to be a stable region at amplitudes

significantly larger than that at which resonance occurs.

However, the overlapping of two resonances is associated with

a transition from regular to chaotic motion: the parameter

range over which the particle motion becomes chaotic is

described by the Chirikov criterion.
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Arnold diffusion

We have shown phase space portraits for motion in one degree

of freedom. In those cases, instability occurred when the

oscillation amplitude exceeded a certain value.

In multiple degrees of freedom, a new phenomenon occurs:

Arnold diffusion. There can be regions of phase space where

invariant tori exist at large amplitudes compared to regions of

chaotic motion.

For storage rings, this means that trajectories with (initially)

small amplitudes can be unstable, even if trajectories with

much larger amplitudes are stable.
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Frequency map analysis and dynamic aperture

Frequency map analysis (FMA) applies “numerical analysis of the Fourier
frequencies” to determine the tunes to high precision from tracking data.

The strengths of different resonances can be seen by plotting points in tune
space, with diffusion rates shown by different colours.

The boundary of the stable region in co-ordinate space is known as the
“dynamic aperture”.

FMA of CesrTA (J. Shanks, Cornell University).

http://www.lepp.cornell.edu/∼shanksj/research/20100629/2048 1024.html

CAS, Prague, 2014 60 Nonlinear Dynamics



Dynamic aperture and beam lifetime

A large dynamic aperture is needed for good injection efficiency, and good
lifetime. The dynamic aperture shrinks with energy deviation, limiting the
energy acceptance. In low-emittance electron storage rings, beam lifetime is
often limited by the dynamic energy acceptance.

CAS, Prague, 2014 61 Nonlinear Dynamics



Observation of resonance “islands” in the ALS

D. Robin, C. Steier, J. Safranek, W. Decking, “Enhanced performance of

the ALS through periodicity restoration of the lattice,” proc. EPAC 2000.
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Summary

Nonlinear dynamics appear in a wide variety of accelerator systems,
including single-pass systems (such as bunch compressors) and multi-turn
systems (such as storage rings).

It is possible to model nonlinear dynamics in a given component or section
of beamline by representing the transfer map as a Taylor series.

Conservation of phase space volumes is an important feature of the beam
dynamics in many systems. To conserve phase space volumes, transfer
maps must be symplectic.

In general, truncated Taylor maps are not symplectic. There are alternative
representations that guarantee symplecticity, but are less convenient (e.g.
because they are implicit).

To construct a symplectic transfer map, the equations of motion in a given
accelerator component must be solved using a symplectic integrator (e.g.
the “drift–kick–drift” approximation for a multipole magnet).

Analytical methods such as perturbation theory and normal form analysis
can be used to estimate the impact of nonlinear perturbations in terms of
resonance strengths and tune shifts with amplitude.

Frequency map analysis provides a useful numerical tool for characterising
tune shifts and resonance strengths from tracking data. This can give some
insight into limitations on the dynamic aperture.
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Nonlinear Dynamics

Appendices
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Appendix A: Longitudinal dynamics in a bunch compressor

In a linear approximation, the maps for the rf cavity and the

chicane in a bunch compressor may be represented as matrices:

Mrf =

(
1 0
−a 1

)
, Mch =

(
1 b
0 1

)
, (65)

where:

a =
eV

E0

ω

c
, and b = 2L1

θ0 sin θ0

cos2 θ0
. (66)

The matrix representing the total map for the bunch

compressor, Mbc, is then:

Mbc = MchMrf =

(
1− ab b
−a 1

)
=

(
R55 R56
R65 R66

)
. (67)

The effect of the map is written:

~z 7→Mbc~z, where ~z =

(
z
δ

)
. (68)
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Appendix A: Longitudinal dynamics in a bunch compressor

Now we proceed to derive expressions for the required values of

the parameters a and b, in terms of the desired initial and final

bunch length and energy spread.

We construct the beam distribution sigma matrix by taking the

outer product of the phase space vector for each particle, then

averaging over all particles in the bunch:

Σ = 〈~z ~zT〉 =

(
〈z2〉 〈zδ〉
〈zδ〉 〈δ2〉

)
. (69)

The transformation of Σ under a linear map represented by a

matrix M is given by:

Σ 7→M ·Σ ·MT. (70)
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Appendix A: Longitudinal dynamics in a bunch compressor

Usually, a bunch compressor is designed so that the correlation

〈zδ〉 = 0 at the start and end of the compressor. In that case,

using (67) for the linear map M , and (70) for the

transformation of the sigma matrix, we find that the

parameters a and b must satisfy:

(1− ab)
a

b
=
〈δ2〉i
〈z2〉i

(71)

where the subscript i indicates that the average is taken over

the initial values of the dynamical variables.

Given the constraint (71), the compression factor r is given by:

r2 ≡
〈z2〉f
〈z2〉i

= 1− ab, (72)

where the subscript f indicates that the average is taken over

the final values of the dynamical variables.
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Appendix A: Longitudinal dynamics in a bunch compressor

We note in passing that the linear part of the map is

symplectic. A linear map is symplectic if the matrix M

representing the map is symplectic, i.e. satisfies:

MT · S ·M = S, (73)

where, in one degree of freedom (i.e. two dynamical variables),

S is the matrix:

S =

(
0 1
−1 0

)
. (74)

In more degrees of freedom, S is constructed by repeating the

2× 2 matrix above on the block diagonal, as often as necessary.

In one degree of freedom, it is a necessary and sufficient

condition for a matrix to be symplectic, that it has unit

determinant: but this condition does not generalise to more

degrees of freedom.
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Appendix A: Longitudinal dynamics in a bunch compressor

As a specific example, consider a bunch compressor for the

International Linear Collider:

Initial rms bunch length
√
〈z2〉i 6 mm

Initial rms energy spread
√
〈δ2〉i 0.15%

Final rms bunch length
√
〈z2〉f 0.3 mm

Solving equations (71) and (72) with the above values for rms

bunch lengths and energy spread, we find:

a = 4.9937 m−1, and b = 0.19975 m. (75)
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Appendix B: Mixed-variable generating functions

A mixed-variable generating function represents a transfer map

(or, more generally, a canonical transformation) in the form of a

function of initial and final values of the phase space variables.

There are different kinds of generating function. A

mixed-variable generating function of the third kind is expressed

as a function of the initial momenta ~p and final co-ordinates ~X:

F3 = F3( ~X, ~p). (76)

The final momenta ~P and initial co-ordinates ~x are obtained by:

~x = −
∂F3

∂~p
, and ~P = −

∂F3

∂ ~X
. (77)
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Appendix B: Mixed-variable generating functions

As an example, consider the mixed-variable generating function

in one degree of freedom:

F3 = −Xpx +
1

2
Lp2

x. (78)

Applying (77) leads to the equations:

x = X − Lpx, and Px = px. (79)

In this case, the equations are easily solved to give explicit

expressions for X and Px in terms of x and px.

In more general cases, the equations (77) need to be solved

numerically each time the transfer map needs to be applied.
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Appendix C: Lie transformations

Lie transformations make use of the fact that the equations of
motion for a particle in an electromagnetic field can be written
in the form:

d~x

ds
= − :H : ~x, (80)

where ~x = (x, px, y, py, z, δ) is the phase space vector, and :H : is
a Lie (differential) operator:

:H :=
3∑
i=1

∂H

∂xi

∂

∂pi
−
∂H

∂pi

∂

∂xi
. (81)

The precise form of the function H = H(~x) (the Hamiltonian)
depends on the field.

Formally, a solution to (80) can be written:

~x|s=L = e−L:H: ~x|s=0 , (82)

where the exponential of the Lie operator is defined by its
series expansion.
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Appendix C: Lie transformations

The operator e−L:H: is known as a Lie transformation.

Applying a Lie transformation to a phase space variable

generally leads to an infinite power series.

However, the power of Lie transformations lies in the fact that:

• there are known mathematical rules for combining and

manipulating Lie transformations, and

• for any generator g = g(~x) the Lie transformation e:g:

represents a symplectic map.
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