LONGITUDINAL DYNAMICS

Frank Tecker CERN, BE-OP

Introduction to Accelerator Physics
Prague, 31/8-12/9/2014

Summary of the 3 lectures:

- Acceleration methods
- Accelerating structures
- Linac: Phase Stability + Energy-Phase oscillations
- Circular accelerators: Cyclotron / Synchrotron
- Dispersion Effects in Synchrotron
- Stability and Longitudinal Phase Space Motion
- Stationary Bucket
- Injection Matching
- RF manipulations in the PS

More related lectures later:

- Linacs
- RF Systems
- Electron Beam Dynamics
- Cyclotrons
- Alessandra Lombardi
- Erk Jensen
- Lenny Rivkin
- Mike Seidel

The CERN Accelerator Complex

Particle types and acceleration

The accelerating system will depend upon the evolution of the particle velocity along the system

- electrons reach a constant velocity at relatively low energy
- heavy particles reach a constant velocity only at very high energy
-> we need different types of resonators, optimized for different velocities

Particle rest mass:

electron | 0.511 MeV |
| :---: |
| proton |
| 938 MeV |
| 239 U |$\underset{\sim}{\sim 220000 \mathrm{MeV}}$

Relativistic gamma factor:

$$
=\frac{E}{E_{0}}=\frac{m}{m_{0}}
$$

Velocity, Energy and Momentum

normalized velocity $\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}}$
=> electrons almost reach the speed of light very quickly (few MeV range)

total energy

$$
E=m_{0} c^{2}
$$

rest energy

$$
\gamma=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

Momentum $\quad p=m v=\frac{E}{c^{2}} \quad c=\frac{E}{c}=\quad m_{0} c$

Acceleration: May the force be with you

To accelerate, we need a force in the direction of motion!

Hence, it is necessary to have an electric field E (preferably) along the direction of the initial momentum (z), which changes the momentum of the particle.

$$
\frac{d p}{d t}=e E_{z}
$$

The $2^{\text {nd }}$ term - larger at high velocities - is used for:

- BENDING: generated by a magnetic field perpendicular to the plane of the particle trajectory. The bending radius ρ obeys to the relation:

$$
\frac{p}{e}=B \rho \quad \text { in practical units: } B \quad[\mathrm{Tm}] \quad \frac{p[\mathrm{GeV} / \mathrm{c}]}{0.3}
$$

- FOCUSING: the bending effect is used to bring the particles trajectory closer to the axis, hence to increase the beam density.

Energy Gain

The acceleration increases the momentum, providing kinetic energy to the charged particles.

In relativistic dynamics, total energy E and momentum p are linked by

$$
E^{2}=E_{0}^{2}+p^{2} c^{2} \quad\left(E=E_{0}+W\right) \quad \text { Winetic energy }
$$

Hence: $\quad d E=v d p$
$\left(2 E d E=2 c^{2} p d p \Leftrightarrow d E=c^{2} m v / E d p=v d p\right)$
The rate of energy gain per unit length of acceleration (along z) is then:

$$
\frac{d E}{d z}=v \frac{d p}{d z}=\frac{d p}{d t}=e E_{z}
$$

and the kinetic energy gained from the field along the z path is:

$$
d W=d E=e E_{z} d z \quad \rightarrow \quad W=e \quad E_{z} d z=e V
$$

where V is just a potential.

Unit of Energy

Today's accelerators and future projects work/aim at the TeV energy range.
LHC: $7 \mathrm{TeV} \rightarrow 14 \mathrm{TeV}$
CLIC: 3 TeV
HE/VHE-LHC: 33/100 TeV
In fact, this energy unit comes from acceleration:
1 eV (electron Volt) is the energy that 1 elementary charge e (like one electron or proton) gains when it is accelerated in a potential (voltage) difference of 1 Volt .

Basic Unit: eV (electron Volt)

$$
\begin{aligned}
& \mathrm{keV}=1000 \mathrm{eV}=10^{3} \mathrm{eV} \\
& \mathrm{MeV}=10^{6} \mathrm{eV} \\
& \mathrm{GeV}=10^{9} \mathrm{eV} \\
& \mathrm{TeV}=10^{12} \mathrm{eV}
\end{aligned}
$$

LHC $=\sim 450$ Million km of batteries!!! $3 x$ distance Earth-Sun

Electrostatic Acceleration

Electrostatic Field:

Force: $\quad \vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=e \vec{E}$
Energy gain: $W=e \Delta V$
used for first stage of acceleration: particle sources, electron guns, x-ray tubes

Limitation: insulation problems maximum high voltage ($\sim 10 \mathrm{MV}$)

Van-de-Graaf generator at MIT

Methods of Acceleration: Time varying fields

The electrostatic field is limited by insulation, the magnetic field does not accelerate.

From Maxwell's Equations: $\vec{E}=\vec{\nabla} \quad \frac{\partial \vec{A}}{\partial t}$

$$
\vec{B}=\vec{H}=\vec{\nabla} \times \vec{A} \quad \text { or } \quad \nabla \times \vec{E}=\frac{\partial \vec{B}}{\partial t}
$$

The electric field is derived from a scalar potential φ and a vector potential A The time variation of the magnetic field H generates an electric field E

The solution: => time varying electric fields

- Induction
- RF frequency fields

Acceleration by Induction: The Betatron

It is based on the principle of a transformer:

- primary side: large electromagnet - secondary side: electron beam.

The ramping magnetic field is used to guide particles on a circular trajectory as well as for acceleration.

Limited by saturation in iron ($\sim 300 \mathrm{MeV}$ e-)
Used in industry and medicine, as they are compact accelerators for electrons

side view

Donald Kerst with the first betatron, invented

Radio-Frequency (RF) Acceleration

Electrostatic acceleration limited by isolation possibilities $\Rightarrow>$ use RF fields

Widerøe-type
structure

Animation: $h t t p: / / w w w . s c i e n c e s . u n i v-~$
Cylindrical electrodes (drift tubes) separated by gaps and fed by a RF generator, as shown above, lead to an alternating electric field polarity

$$
\text { Synchronism condition } \longrightarrow \quad L=v T / 2 \quad \begin{aligned}
& v=\text { particle velocity } \\
& T
\end{aligned}
$$

Similar for standing wave cavity as shown (with $v \approx c$)

Resonant RF Cavities

- Considering RF acceleration, it is obvious that when particles get high velocities the drift spaces get longer and one looses on the efficiency. => The solution consists of using a higher operating frequency.
- The power lost by radiation, due to circulating currents on the electrodes, is proportional to the RF frequency.
=> The solution consists of enclosing the system in a cavity which resonant frequency matches the RF generator frequency.

- The electromagnetic power is now constrained in the resonant volume
- Each such cavity can be independently powered from the RF generator
- Note however that joule losses will occur in the cavity walls (unless made of superconducting materials)

The Pill Box Cavity

$\longrightarrow E_{z} \quad \cdots H_{\theta}$
From Maxwell's equations one can derive the wave equations:

$$
\nabla^{2} A \quad 0 \quad \frac{\partial^{2} A}{\partial t^{2}}=0 \quad(A=E \text { or } H)
$$

Solutions for E and H are oscillating modes, at discrete frequencies, of types $T M_{x y z}$ (transverse magnetic) or $T E_{x y z}$ (transverse electric).
Indices linked to the number of field knots in polar co-ordinates φ, r and z.

For k2a the most simple mode, TM_{010}, has the lowest frequency, and has only two field components:

$$
\begin{aligned}
& E_{z}=J_{0}(k r) e^{i t} \\
& H=\frac{i}{Z_{0}} J_{1}(k r) e^{i t} \\
& k=\frac{2}{c}=\frac{2.62 a}{} \quad Z_{0}=377
\end{aligned}
$$

Introductory CAS, Prague, September 2014

The Pill Box Cavity (2)

The design of a cavity can be sophisticated in order to improve its performances:

- A nose cone can be introduced in order to concentrate the electric field around the axis
- Round shaping of the corners allows a better distribution of the magnetic field on the surface and a reduction of the Joule losses.
It also prevents from multipactoring effects (e-emission and acceleration).

A good cavity efficiently transforms the RF power into accelerating voltage.

Simulation codes allow precise calculation of the properties.

Important Parameters of Accelerating Cavities

Shunt Impedance R

$$
P_{d}=\frac{V^{2}}{R}
$$

Quality Factor Q

$$
Q=\frac{W_{s}}{P_{d}}
$$

Filling Time T

$$
P_{d}=\frac{d W_{s}}{d t}=\frac{-}{Q} W_{s} \quad \begin{aligned}
& \text { Exponential decay of the } \\
& \text { stored energy } \mathrm{W}_{s} \text { due to losses }
\end{aligned}
$$

Relationship between stored energy W_{s} in the volume and dissipated power on the walls
Relationship between gap voltage V and wall losses P_{d} $=\underline{Q}$

Transit time factor

The accelerating field varies during the passage of the particle
=> particle does not always see maximum field $=>$ effective acceleration smaller
Transit time factor defined as:

$$
T_{a}=\frac{\text { energy gain of particle with } v=c}{\text { maximum energy gain (particle with } v \rightarrow \infty \text {) }}
$$

In the general case, the transit time factor is:

$$
\text { for } E(s, r, t)=E_{1}(s, r) \times E_{2}(t)
$$

$$
T_{a}=\frac{+E_{1}(s, r) \cos { }_{R F} \frac{s}{v} \div \mathrm{d} s}{+E_{1}(s, r) \mathrm{d} s}
$$

Simple model uniform field:

$$
E_{1}(s, r)=\frac{V_{R F}}{g}=\text { const. }
$$

follows:

$$
T_{a}=\left|\sin \frac{R F}{2 v} / \frac{R F}{2 v}\right|
$$

- $0<T_{a}<1$
- $T_{a} \rightarrow 1$ for $g \rightarrow 0$, smaller $\omega_{R F}$

Important for low velocities (ions)

Some RF Cavity Examples

Multi-Gap

RF acceleration: Alvarez Structure

9 Used for protons, ions (50-200 MeV, f~200 MHz)

Synchronism condition $(g \ll L)$

$$
\Rightarrow \quad L=v_{s} T_{R F}=\beta_{s} \lambda_{R F}
$$

$$
\omega_{R F}=2 \pi \frac{v_{s}}{L}
$$

Disc loaded traveling wave structures

-When particles gets ultra-relativistic $(v \sim c)$ the drift tubes become very long unless the operating frequency is increased. Late 40's the development of radar led to high power transmitters (klystrons) at very high frequencies (3 GHz).
-Next came the idea of suppressing the drift tubes using traveling waves. However to get a continuous acceleration the phase velocity of the wave needs to be adjusted to the particle velocity.

solution: slow wave guide with irises ==> iris loaded structure

The Traveling Wave Case

$$
E_{z}=E_{0} \cos \left({ }_{R F} t \quad k z\right)
$$

$$
k=\frac{R F}{v} \quad \text { wave number }
$$

$$
z=v\left(\begin{array}{ll}
t & t_{0}
\end{array}\right)
$$

$v_{\varphi}=$ phase velocity
$v=$ particle velocity
The particle travels along with the wave, and k represents the wave propagation factor.

$$
E_{z}=E_{0} \cos \quad{ }_{R F} t \quad{ }_{R F} \frac{v}{v} t \quad{ }_{0} \dot{\doteqdot}
$$

If synchronism satisfied:

$$
v=v_{\varphi}
$$

$$
\operatorname{and}_{z}=E_{0} \cos
$$

where Φ_{0} is the RF phase seen by the particle.

Summary: Relativity + Energy Gain

Newton-Lorentz Force $\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=e\left(\begin{array}{ll}\vec{E}+\vec{v} & \vec{B}\end{array}\right)$
$2^{\text {nd }}$ term always perpendicular to motion $=>$ no acceleration

Relativistics Dynamics

$\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}} \quad=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{12^{2}}}$
$p=m v=\frac{E}{c^{2}} \quad c=\frac{E}{c}=\quad m_{0} c$
$E^{2}=E_{0}^{2}+p^{2} c^{2} \longrightarrow d E=v d p$
$\frac{d E}{d z}=v \frac{d p}{d z}=\frac{d p}{d t}=e E_{z}$
$d E=d W=e E_{z} d z \quad \rightarrow W=e \quad E_{z} d z$

RF Acceleration

$$
\begin{aligned}
& E_{z}=\hat{E}_{z} \sin { }_{R F} t=\hat{E}_{z} \sin (t) \\
& \hat{E}_{z} d z=\hat{V}
\end{aligned}
$$

$$
W=e \hat{V} \sin \phi
$$

(neglecting transit time factor)
The field will change during the passage of the particle through the cavity
=> effective energy gain is lower

Common Phase Conventions

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time $t=0$ chosen such that:

$$
E_{1}(t)=E_{0} \sin \left({ }_{R F} t\right)
$$

$E_{2}(t)=E_{0} \cos \left({ }_{R F} t\right)$
3. I will stick to convention 1 in the following to avoid confusion

Principle of Phase Stability (Linac)

Let's consider a succession of accelerating gaps, operating in the 2π mode, for which the synchronism condition is fulfilled for a phase Φ_{s}.
$e V_{S}=e \hat{V} \sin$ is the energy gain in one gap for the particle to reach the S next gap with the same RF phase: P_{1}, P_{2}, are fixed points.

If an energy increase is transferred into a velocity increase =>

$$
\begin{array}{ll}
M_{1} \& N_{1} \text { will move towards } P_{1} & \Rightarrow \text { stable } \\
M_{2} \& N_{2} \text { will go away from } P_{2} & \Rightarrow \text { unstable }
\end{array}
$$

(Highly relativistic particles have no significant velocity change)

A Consequence of Phase Stability

The divergence of the field is zero according to Maxwell :

$$
\nabla \vec{E}=0 \Rightarrow \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{z}}{\partial z}=0 \Rightarrow \frac{\partial E_{x}}{\partial x}=\frac{\partial E_{z}}{\partial z}
$$

Transverse fields

- focusing at the entrance and
- defocusing at the exit of the cavity.

Electrostatic case: Energy gain inside the cavity leads to focusing RF case:

Field increases during passage => transverse defocusing!

External focusing (solenoid, quadrupole) is then necessary

Energy-phase Oscillations (1)

- Rate of energy gain for the synchronous particle:

$$
\frac{d E_{s}}{d z}=\frac{d p_{s}}{d t}=e E_{0} \sin
$$

- Rate of energy gain for a non-synchronous particle, expressed in reduced variables, $w=W-W_{s}=E-E_{s}$ and $\varphi=\phi-\phi_{s}$:

$$
\frac{d w}{d z}=e E_{0}\left[\sin \left(\phi_{s}+\varphi\right)-\sin \phi_{s}\right] \approx e E_{0} \cos \phi_{s} \cdot \varphi \quad(\operatorname{small} \varphi)
$$

- Rate of change of the phase with respect to the synchronous one:

$$
\frac{d \varphi}{d z}=\omega_{R F}\left(\frac{d t}{d z}-\left(\frac{d t}{d z}\right)_{s}\right)=\omega_{R F}\left(\frac{1}{v}-\frac{1}{v_{s}}\right) \cong-\frac{\omega_{R F}}{v_{s}^{2}}\left(v-v_{s}\right)
$$

Since: $\quad v-v_{s}=c\left(\beta-\beta_{s}\right) \cong \frac{c}{2 \beta_{s}}\left(\beta^{2}-\beta_{s}^{2}\right) \cong \frac{w}{m_{0} v_{s} \gamma_{s}^{3}}$

Energy-phase Oscillations (2)

one gets:

$$
\frac{d \varphi}{d z}=-\frac{\omega_{R F}}{m_{0} v_{s}^{3} \gamma_{s}^{3}} w
$$

Combining the two $1^{\text {st }}$ order equations into a $2^{\text {nd }}$ order equation gives the equation of a harmonic oscillator:

$$
\frac{d^{2} \varphi}{d z^{2}}+\Omega_{s}^{2} \varphi=0 \quad \text { with }
$$

$$
\Omega_{s}^{2}=\frac{e E_{0} \omega_{R F} \cos \phi_{s}}{m_{0} v_{s}^{3} \gamma_{s}^{3}}
$$

Stable harmonic oscillations imply:

$$
{ }_{s}^{2}>0 \text { and real }
$$

hence:

$$
\cos \phi_{s}>0
$$

And since acceleration also means: $\sin \phi_{s}>0$
You finally get the result for the stable phase range:

$$
0<\phi_{s}<\frac{\pi}{2}
$$

Longitudinal phase space

The energy - phase oscillations can be drawn in phase space:

The particle trajectory in the phase space $(\Delta p / p, \phi)$ describes its longitudinal motion.

Emittance: phase space area including all the particles

NB: if the emittance contour correspond to a possible orbit in phase space, its shape does not change with time (matched beam)

Summary up to here...

- Acceleration by electric fields, static fields limited => time-varying fields
- Synchronous condition needs to be fulfilled for acceleration
- Particles perform oscillation around synchronous phase
- visualize oscillations in phase space
- Electrons are quickly relativistic, speed does not change use traveling wave structures for acceleration
- Protons and ions need changing structure geometry

Circular accelerators

Cyclotron

Synchrotron

Circular accelerators: Cyclotron

Circular accelerators: Cyclotron

Used for protons, ions

$$
\begin{aligned}
& \mathrm{B}=\text { constant } \\
& \omega_{\mathrm{RF}}=\text { constant }
\end{aligned}
$$

Synchronism condition

$$
\Rightarrow \quad \begin{gathered}
\omega_{s}=\omega_{R F} \\
2 \pi \rho=v_{s} T_{R F}
\end{gathered}
$$

Ions trajectory

Cyclotron frequency $\quad \omega=\frac{q B}{m_{0} \gamma}$

1. $\quad \gamma$ increases with the energy \Rightarrow no exact synchronism
2. if $v \ll c \Rightarrow \gamma \cong 1$

Circular accelerators: Cyclotron

Cyclotron / Synchrocyclotron

Synchrocyclotron: Same as cyclotron, except a modulation of $\omega_{\text {RF }}$

$$
\text { B } \quad=\text { constant }
$$

$$
\gamma \omega_{\mathrm{RF}} \quad=\text { constant } \quad \omega_{\mathrm{RF}} \text { decreases with time }
$$

The condition:

$$
\omega_{s}(t)=\omega_{R F}(t)=\frac{q B}{m_{0} \gamma(t)}
$$

Allows to go beyond the non-relativistic energies

Circular accelerators: The Synchrotron

Synchronism condition

1. Constant orbit during acceleration
2. To keep particles on the closed orbit, B should increase with time
3. ω and $\omega_{R F}$ increase with energy

RF frequency can be multiple of revolution frequency

$$
{ }_{R F}=h_{r}
$$

h integer, harmonic number: number of RF cycles per revolution

Circular accelerators: The Synchrotron

EPA (CERN)
Electron Positron Accumulator

Examples of different proton and electron synchrotrons at CERN

+ LHC (of course!)

The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. That implies the following operating conditions:

If $v \approx c, \omega_{r}$ hence $\omega_{\text {RF }}$ remain constant (ultra-relativistic e^{-})

The Synchrotron - LHC Operation Cycle

The magnetic field (dipole current) is increased during the acceleration.

The Synchrotron - Energy ramping

Energy ramping by increasing the B field (frequency has to follow v):

$$
p=e B \Rightarrow \frac{d p}{d t}=e \quad \dot{B} \Rightarrow(p)_{t u r n}=e \quad \dot{B} T_{r}=\frac{2 e \quad \dot{B}}{v}
$$

Since:

$$
\begin{aligned}
& E^{2}=E_{0}^{2}+p^{2} c^{2} \Rightarrow E=v p \\
& (E)_{\text {turn }}=(W)_{s}=2 \text { e } R \dot{B}=e \hat{V} \sin
\end{aligned}
$$

Stable phase φ_{s} changes during energy ramping

$$
\sin \phi_{s}=2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}} \Rightarrow \phi_{s}=\arcsin \left(2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}}\right)
$$

- The number of stable synchronous particles is equal to the harmonic number h. They are equally spaced along the circumference.
- Each synchronous particle satisfies the relation $p=e B p$. They have the nominal energy and follow the nominal trajectory.

The Synchrotron - Frequency change

During the energy ramping, the RF frequency increases to follow the increase of the revolution frequency:

$$
r=\frac{R F}{h}=\left(B, R_{s}\right)
$$

Hence: $\frac{f_{R F}(t)}{h}=\frac{v(t)}{2 R_{s}}=\frac{1}{2} \frac{e c^{2}}{E_{s}(t)} \frac{-}{R_{s}} B(t) \quad\left(u s i n g \quad p(t)=e B(t), \quad E=m c^{2}\right)$
Since $E^{2}=\left(m_{0} c^{2}\right)^{2}+p^{2} c^{2}$ the RF frequency must follow the variation of the B field with the law

$$
\frac{f_{R F}(t)}{h}=\frac{c}{2 R_{s}} \frac{B(t)^{2}}{\left(m_{0} c^{2} / e c\right)^{2}+B(t)^{2}}{ }^{1 / 2}
$$

This asymptotically tends towards $\quad f_{r} \rightarrow \frac{c}{2 R_{s}}$
compared to $m_{0} c^{2} /(e c)$ when B becomes large which corresponds to $v \rightarrow c$

Dispersion Effects in a Synchrotron

If a particle is slightly shifted in momentum it will have a different orbit and the orbit length is different.

The "momentum compaction factor" is defined as:

$$
=\frac{d L / L}{d p / p}
$$

$$
=\frac{p}{L} \frac{d L}{d p}
$$

If the particle is shifted in momentum it will have also a different velocity.
As a result of both effects the revolution frequency changes:

$$
=\frac{\mathrm{d} f_{r} / f_{r}}{\mathrm{~d} p / p} \quad \eta=\frac{p}{f_{r}} \frac{d f_{r}}{d p}
$$

$\mathrm{p}=$ particle momentum

$\mathrm{R}=$ synchrotron physical radius
$f_{r}=$ revolution frequency

Momentum Compaction Factor

$$
\begin{array}{ll}
=\frac{p}{L} \frac{d L}{d p} & d s_{0}=d \\
d s=(+x) d
\end{array}
$$

The elementary path difference from the two orbits is: definition of dispersion D_{x}

$$
\frac{d l}{d s_{0}}=\frac{d s \quad d s_{0}}{d s_{0}}=\frac{x}{=} \frac{D_{x}}{} \frac{d p}{p}
$$

leading to the total change in the circumference:

$$
\begin{array}{ll}
d L=d l=\frac{x}{C} d s_{0}= & \frac{D_{x}}{} \frac{d p}{p} d s_{0} \\
=\frac{1}{L_{C}} \frac{D_{x}(s)}{(s)} d s_{0} \quad \begin{array}{l}
\text { With } \rho=\infty \text { in } \\
\text { straight sections } \\
\text { we get: }
\end{array} & \alpha=\frac{\left\langle D_{x}\right\rangle_{m}}{R}
\end{array}
$$

$\left\langle>_{m}\right.$ means that the average is considered over the bending magnet only

Dispersion Effects - Revolution Frequency

There are two effects changing the revolution frequency: the orbit length and the velocity of the particle

$$
\begin{aligned}
& f_{r}=\frac{c}{2 R} \\
& \frac{d f_{r}}{f_{r}}=\frac{d}{R} \frac{d R}{\uparrow}=\frac{d}{p} \\
& \text { definition of momentum } \\
& \text { compaction factor } \\
& \left.p=m v=\frac{E_{0}}{c} \quad \frac{d p}{p}=\frac{d}{(1} \begin{array}{l}
2
\end{array}\right)^{1 / 2}=\underbrace{\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{1}}_{2} \frac{d}{1} \mathrm{l}^{2})^{1 / 2} \\
& \frac{d f_{r}}{f_{r}}=\left(\frac{1}{\gamma^{2}}-\alpha\right) \frac{d p}{p} \quad \xrightarrow{\frac{d f_{r}}{f_{r}}=\frac{d p}{p}} \quad \eta=\frac{1}{\gamma^{2}}-\alpha \\
& \eta=0 \text { at the transition energy } \\
& \gamma_{t r}=\frac{1}{\sqrt{\alpha}}
\end{aligned}
$$

Phase Stability in a Synchrotron

From the definition of η it is clear that an increase in momentum gives

- below transition ($\eta>0$) a higher revolution frequency (increase in velocity dominates) while
- above transition ($\eta<0$) a lower revolution frequency ($v \approx c$ and longer path) where the momentum compaction (generally >0) dominates.

Crossing Transition

At transition, the velocity change and the path length change with momentum compensate each other. So the revolution frequency there is independent from the momentum deviation.
Crossing transition during acceleration makes the previous stable synchronous phase unstable. The RF system needs to make a rapid change of the RF phase, a 'phase jump'.

High energy

In the LHC: $\gamma_{t r}$ is at $\sim 55 \mathrm{GeV}$, also far below injection energy
Transition crossing not needed in leptons machines, why?

Dynamics: Synchrotron oscillations

Simple case (no accel.): $B=$ const., below transition $\quad \gamma<\gamma_{t r}$
The phase of the synchronous particle must therefore be $\phi_{0}=0$.
$\phi_{1} \quad$ - The particle B is accelerated

- Below transition, an increase in energy means an increase in revolution frequency
- The particle arrives qarlie $\hat{R F}$ - tends toward ϕ_{0}

- The particle is decelerated
- decrease in energy - decrease in revolution frequency
- The particle arrives later - tends toward ϕ_{0}

Synchrotron oscillations

$800^{\text {th }}$ revolution period

Synchrotron oscillations

Particle B has made one full oscillation around particle A.
The amplitude depends on the initial phase and energy.
Exactly like the pendulum

This oscillation is called:

Synchrotron Oscillation

The Potential Well

Cavity voltage

Potential well

Longitudinal Phase Space Motion

Particle B oscillates around particle A
This is a synchrotron oscillation
Plotting this motion in longitudinal phase space gives:

Synchrotron oscillations - No acceleration

Synchrotron oscillations (with acceleration)

Case with acceleration B increasing $\quad \gamma<\gamma_{t r}$

Synchrotron motion in phase space

$\Delta \mathbf{E}-\phi$ phase space of a stationary bucke \dagger (when there is no acceleration)

Bucket area: area enclosed by the separatrix The area covered by particles is the longitudinal emittance

Dynamics of a particle
Non-linear, conservative oscillator \rightarrow e.g. pendulum

Particle inside the separatrix:

Particle at the unstable fix-point

Particle outside the separatrix:

Synchrotron motion in phase space

The restoring force is non-linear.
\Rightarrow speed of motion depends on position in phase-space
(here shown for a stationary bucket)

(Stationary) Bunch \& Bucket

The bunches of the beam fill usually a part of the bucket area.

Bucket area = longitudinal Acceptance [eVs]
Bunch area $=$ longitudinal beam emittance $=\pi . \Delta E . \Delta t / 4[\mathrm{eVs}]$

RF Acceptance versus Synchronous Phase

The areas of stable motion (closed trajectories) are called "BUCKET".

As the synchronous phase gets closer to 90° the buckets gets smaller.

The number of circulating buckets is equal to " h ".

The phase extension of the bucket is maximum for ϕ_{s} $=180^{\circ}$ (or 0°) which correspond to no acceleration. The RF acceptance increases with the $R F$ voltage.

Longitudinal Dynamics in Synchrotrons

It is also often called "synchrotron motion".

The RF acceleration process clearly emphasizes two coupled variables, the energy gained by the particle and the RF phase experienced by the same particle. Since there is a well defined synchronous particle which has always the same phase ϕ_{s}, and the nominal energy E_{s}, it is sufficient to follow other particles with respect to that particle.
So let's introduce the following reduced variables:

revolution frequency :	$\Delta f_{r}=f_{r}-f_{r s}$
particle RF phase :	$\Delta \phi=\phi-\phi_{s}$
particle momentum :	$\Delta p=p-p_{s}$
particle energy	$\Delta E=E-E_{s}$
azimuth angle	$\Delta \theta=\theta-\theta_{s}$

First Energy-Phase Equation

$$
f_{R F}=h f_{r} \Rightarrow \underset{\substack{\text { particle cheed darivese earier }}}{=} \text { with }=\int_{r} d t
$$

particle ahead arrives earlier => smaller RF phase

For a given particle with respect to the reference one:

$$
\Delta \omega_{r}=\frac{d}{d t}(\Delta \theta)=-\frac{1}{h} \frac{d}{d t}(\Delta \phi)=-\frac{1}{h} \frac{d \phi}{d t}
$$

Since: $=\frac{p_{s}}{r s} \frac{d_{r}}{d p} \div$

$$
E^{2}=E_{0}^{2}+p^{2} c^{2}
$$

and

$$
E=v_{s} p={ }_{{ }_{r s}} R_{s} p
$$

one gets:

$$
\frac{\Delta E_{r s}}{\omega_{r s}}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \frac{d(\Delta \phi)}{d t}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \dot{\phi}
$$

Second Energy-Phase Equation

The rate of energy gained by a particle is: $\quad \frac{d E}{d t}=e \hat{V} \sin \phi \frac{\omega_{r}}{2 \pi}$
The rate of relative energy gain with respect to the reference particle is then:

$$
2 \quad\left(\frac{\dot{E}}{r}\right)=e \hat{V}\left(\sin \quad \sin { }_{s}\right)
$$

Expanding the left-hand side to first order:

$$
\left(\dot{E} T_{r}\right) \quad \dot{E} \quad T_{r}+T_{r s} \quad \dot{E}=E \dot{T}_{r}+T_{r s} \quad \dot{E}=\frac{d}{d t}\left(T_{r s} \quad E\right)
$$

leads to the second energy-phase equation:

$$
2 \frac{d}{d t}\left(\frac{E}{r s}\right)=e \hat{V}\left(\sin _{r s} \sin { }_{s}\right)
$$

Equations of Longitudinal Motion

$$
\begin{gathered}
\frac{\Delta E}{\omega_{r s}}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \frac{d(\Delta \phi)}{d t}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \dot{\phi} \quad 2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{r s}}\right)=e \hat{V}\left(\sin \phi-\sin \phi_{s}\right) \\
\text { deriving and combining } \\
\downarrow \\
\frac{d}{d t}\left[\frac{R_{s} p_{s}}{h \eta \omega_{r s}} \frac{d \phi}{d t}\right]+\frac{e \hat{V}}{2 \pi}\left(\sin \phi-\sin \phi_{s}\right)=0
\end{gathered}
$$

This second order equation is non linear. Moreover the parameters within the bracket are in general slowly varying with time.
We will study some cases in the following...

Small Amplitude Oscillations

Let's assume constant parameters R_{s}, p_{s}, ω_{s} and η :
$\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \quad$ with

$$
\Omega_{s}^{2}=\frac{h \eta \omega_{r s} e \hat{V} \cos \phi_{s}}{2 \pi R_{s} p_{s}}
$$

Consider now small phase deviations from the reference particle:

$$
\sin \phi-\sin \phi_{s}=\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s} \cong \cos \phi_{s} \Delta \phi
$$

and the corresponding linearized motion reduces to a harmonic oscillation:

$$
\because+\begin{aligned}
& 2 \\
& s
\end{aligned}=0
$$

where Ω_{s} is the synchrotron angular frequency

Stability condition for ϕ_{s}

Stability is obtained when Ω_{s} is real and so $\Omega_{s}{ }^{2}$ positive:

$$
{ }_{s}^{2}=\frac{e \hat{V}_{R F} h_{s}}{2 R_{s} p_{s}} \cos { }_{s} \Rightarrow \quad{ }_{s}^{2}>0 \quad \Leftrightarrow \quad \cos { }_{s}>0
$$

Stable in the region if

Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the second order differential equation is non-linear:

$$
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \quad\left(\Omega_{s} \text { as previously defined }\right)
$$

Multiplying by $\dot{\phi}$ and integrating gives an invariant of the motion:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I
$$

which for small amplitudes reduces to:

(the variable is $\Delta \phi$, and ϕ_{s} is constant)

Similar equations exist for the second variable : $\Delta \mathrm{E} \propto \mathrm{d} \phi / \mathrm{d} \dagger$

Large Amplitude Oscillations (2)

When ϕ reaches $\pi-\phi_{s}$ the force goes to zero and beyond it becomes non restoring.
Hence $\pi-\phi_{s}$ is an extreme amplitude for a stable motion which in the phase space (-,) is shown as closed trajectories.

Equation of the separatrix:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}\right)
$$

Second value ϕ_{m} where the separatrix crosses the horizontal axis:

$$
\cos \phi_{m}+\phi_{m} \sin \phi_{s}=\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}
$$

Energy Acceptance

From the equation of motion it is seen that $\dot{\phi}$ reaches an extreme when $\ddot{\phi}=0$, hence corresponding to $\phi=\phi_{s}$.
Introducing this value into the equation of the separatrix gives:

$$
\cdot_{\max }^{2}=2{ }_{s}^{2}\left\{2+\left(2_{s}\right) \tan { }_{s}\right\}
$$

That translates into an acceptance in energy:

$$
\begin{aligned}
& \left(\frac{\Delta E}{E_{s}}\right)_{\max }=\mp \beta \sqrt{-\frac{e \hat{V}}{\pi h \eta E_{s}} G\left(\phi_{s}\right)} \\
& G\left({ }_{s}\right)=2 \cos _{s}+\left(2_{s}\right) \sin { }_{s}
\end{aligned}
$$

This "RF acceptance" depends strongly on ϕ_{s} and plays an important role for the capture at injection, and the stored beam lifetime.
It's largest for $\phi_{s}=0$ and $\phi_{s}=\pi$ (no acceleration, depending on η).
Need a higher RF voltage for higher acceptance.

RF Acceptance versus Synchronous Phase

The areas of stable motion (closed trajectories) are called "BUCKET".

As the synchronous phase gets closer to 90° the buckets gets smaller.

The number of circulating buckets is equal to " h ".

The phase extension of the bucket is maximum for ϕ_{s} $=180^{\circ}$ (or 0°) which correspond to no acceleration. The RF acceptance increases with the $R F$ voltage.

Stationnary Bucket - Separatrix

This is the case $\sin \phi_{s}=0$ (no acceleration) which means $\phi_{s}=0$ or π. The equation of the separatrix for $\phi_{s}=\pi$ (above transition) becomes:

$$
\frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=\Omega_{s}^{2}
$$

$$
\frac{\dot{\phi}^{2}}{2}=2 \Omega_{s}^{2} \sin ^{2} \frac{\phi}{2}
$$

Replacing the phase derivative by the (canonical) variable W:

Stationnary Bucket (2)

Setting $\phi=\pi$ in the previous equation gives the height of the bucket:

$$
W_{b k}=\frac{C}{h c} \sqrt{\frac{e \hat{V}_{E_{s}}}{2 h}}
$$

This results in the maximum energy acceptance:

$$
E_{\max }={ }_{r f} W_{b k}=\sqrt[s]{2 \frac{e \hat{V}_{R F} E_{s}}{h}}
$$

The area of the bucket is: $\quad A_{b k}=2 \int_{0}^{2 \pi} W d \phi$
Since: $\quad \int_{0}^{2 \pi} \sin \frac{\phi}{2} d \phi=4$
one gets: $\quad A_{b k}=8 W_{b k}=8 \frac{C}{h c} \sqrt{\frac{e \hat{V} E_{s}}{2 h}} \quad \longrightarrow \quad W_{b k}=\frac{A_{b k}}{8}$

Bunch Matching into a Stationnary Bucket

A particle trajectory inside the separatrix is described by the equation:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I \quad \xrightarrow{\phi_{s}=\pi} \quad \frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=I
$$

The points where the trajectory crosses the axis are symmetric with respect to $\phi_{s}=\pi$

$$
\begin{array}{r}
\frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=\Omega_{s}^{2} \cos \phi_{m} \\
\dot{\phi}= \pm \Omega_{s} \sqrt{2\left(\cos \phi_{m}-\cos \phi\right)} \\
W= \pm W_{b k} \sqrt{\cos ^{2} \frac{m}{2} \quad \cos ^{2} \frac{1}{2}} \\
\cos ()=2 \cos ^{2} \frac{1}{2}
\end{array}
$$

Introductory CAS, Prague, September 2014

Bunch Matching into a Stationnary Bucket (2)

Setting $\phi=\pi$ in the previous formula allows to calculate the bunch height:

$$
\begin{gathered}
W_{b}=W_{b k} \cos \frac{m}{2}=W_{b k} \sin \frac{\wedge}{2} \quad \text { or: } \quad W_{b}=\frac{A_{b k}}{8} \cos \frac{\phi_{m}}{2} \\
\longrightarrow\left(\frac{E}{E_{s}}\right)_{b}=\left(\frac{E}{E_{s}}\right)_{R F} \cos \frac{m}{2}=\left(\frac{E}{E_{s}}\right)_{R F} \sin \frac{1}{2}
\end{gathered}
$$

This formula shows that for a given bunch energy spread the proper matching of a shorter bunch (ϕ_{m} close to π, " small) will require a bigger RF acceptance, hence a higher voltage

For small oscillation amplitudes the equation of the ellipse reduces to:

$$
W=\frac{A_{b k}}{16} \sqrt{\wedge^{2}(\quad)^{2}} \longrightarrow\left(\frac{16 W}{A_{b k}}\right)^{2}+\left(\overline{{ }^{2}}\right)^{2}=1
$$

Ellipse area is called longitudinal emittance

$$
A_{b}=\frac{-}{16} A_{b k}{ }^{\wedge}
$$

Effect of a Mismatch

Injected bunch: short length and large energy spread after $1 / 4$ synchrotron period: longer bunch with a smaller energy spread.

For larger amplitudes, the angular phase space motion is slower
($1 / 8$ period shown below) \Rightarrow can lead to filamentation and emittance growth

restoring force is non-linear

stationary bucket

accelerating bucket

Effect of a Mismatch (2)

Evolution of an injected beam for the first 100 turns.
For a matched transfer, the emittance does not grow (left).

matched beam

mismatched beam - bunch length

Effect of a Mismatch (3)

Evolution of an injected beam for the first 100 turns.
For a mismatched transfer, the emittance increases (right).

matched beam

mismatched beam - phase error

Bunch Rotation

Phase space motion can be used to make short bunches.
Start with a long bunch and extract or recapture when it's short.

initial beam

Capture of a Debunched Beam with Fast Turn-On

Capture of a Debunched Beam with Adiabatic Turn-On

Generating a 25ns LHC Bunch Train in the PS

- Longitudinal bunch splitting (basic principle)
- Reduce voltage on principal RF harmonic and simultaneously rise voltage on multiple harmonics (adiabatically with correct phase, etc.)

Use double splitting at 25 GeV to generate 50ns bunch trains instead Introductory CAS, Prague, September 2014

Production of the LHC 25 ns beam

1. Inject four bunches $\sim 180 \mathrm{~ns}, 1.3 \mathrm{eVs}$

Wait 1.2 s for second injection
2. Inject two bunches

~ 0.7 eVs
4. Accelerate from $1.4 \mathrm{GeV}\left(\mathrm{E}_{\text {kin }}\right)$ to 26 GeV

Production of the LHC 25 ns beam

5. During acceleration: longitudinal emittance blow-up: 0.7 - 1.3 eVs

6. Fine synchronization, bunch rotation \rightarrow Extraction!

The LHC25 (ns) cycle in the PS

\rightarrow Each bunch from the Booster divided by $12 \rightarrow 6 \times 3 \times 2 \times 2=72$

Triple splitting in the PS

Two times double splitting in the PS

Two times double splitting and bunch rotation:

- Bunch is divided twice using RF systems at $h=21 / 42(10 / 20 \mathrm{MHz})$ and $h=42 / 84(20 / 40 \mathrm{MHz})$
- Bunch rotation: first part h84 only + h168 (80 MHz) for final part

Potential Energy Function

The longitudinal motion is produced by a force that can be derived from a scalar potential:

$$
\frac{d^{2} \phi}{d t^{2}}=F(\phi) \quad F(\phi)=-\frac{\partial U}{\partial \phi}
$$

$$
U=-\int_{0}^{\phi} F(\phi) d \phi=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)-F_{0}
$$

The sum of the potential energy and kinetic energy is constant and by analogy represents the total energy of a non-dissipative system.

Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the $1^{\text {st }}$ order equations:

$$
W=\frac{E}{r f}=2 \quad R_{s} p \longrightarrow \begin{aligned}
& \frac{d t}{d t}=\frac{p_{s} R_{s}}{} W \\
& \frac{d W}{d t}=\frac{1}{2 h} e \hat{V}\left(\sin \quad \sin \quad{ }_{s}\right)
\end{aligned}
$$

The two variables ϕ, W are canonical since these equations of motion can be derived from a Hamiltonian $H(\phi, W, t)$:

$$
\begin{array}{cc}
\frac{d \phi}{d t}=\frac{\partial H}{\partial W} & \frac{d W}{d t}=-\frac{\partial H}{\partial \phi} \\
H(, W, t)=\frac{1}{2 h} e \hat{V} \cos \quad \cos { }_{s}+\left({ }_{s}\right) \sin { }_{s} \frac{1}{2} \frac{h}{p_{s} R_{s}} W^{2}
\end{array}
$$

Summary

- Cyclotrons/Synchrocylotrons for low energy
- Synchrotrons for high energies constant orbit, rising field and frequency
- Particles with higher energy have a longer orbit (normally) but a higher velocity
- at low energies (below transition) velocity increase dominates
- at high energies (above transition) velocity almost constant
- Particles perform oscillations around synchronous phase
- synchronous phase depending on acceleration
- below or above transition
- bucket is the region in phase space for stable oscillations
- matching the shape of the bunch to the bucket is important

Bibliography

M. Conte, W.W. Mac Kay An Introduction to the Physics of particle Accelerators
(World Scientific, 1991)
P. J. Bryant and K. Johnsen The Principles of Circular Accelerators and Storage Rings
(Cambridge University Press, 1993)
D. A. Edwards, M. J. Syphers An Introduction to the Physics of High Energy Accelerators (J. Wiley \& sons, Inc, 1993)
H. Wiedemann

Particle Accelerator Physics
(Springer-Verlag, Berlin, 1993)
M. Reiser Theory and Design of Charged Particles Beams
(J. Wiley \& sons, 1994)
A. Chao, M. Tigner
K. Wille
E.J.N. Wilson

Handbook of Accelerator Physics and Engineering (World Scientific 1998)
The Physics of Particle Accelerators: An Introduction
(Oxford University Press, 2000)
An introduction to Particle Accelerators
(Oxford University Press, 2001)

And CERN Accelerator Schools (CAS) Proceedings

Acknowledgements

I would like to thank everyone for the material that I have used.

In particular (hope I don't forget anyone):

- Joël Le Duff (from whom I inherited the course)
- Rende Steerenberg
- Gerald Dugan
- Heiko Damerau
- Werner Pirkl
- Genevieve Tulloue
- Mike Syphers
- Daniel Schulte
- Roberto Corsini
- Roland Garoby
- Luca Bottura

