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(L) Forcesin Accelerators
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Particles in our accelerator will oscillate around the
circumference of the machine under the influence of external

forces

Mainly

Magnetic forces in the
transverse plane

Electric forces in the
longitudinal plane

Rende Steerenberg, CERN
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Particle Motion @
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These external forces result in oscillatory motion of the particles
in our accelerator

x (hor.)

Sorz(long.)

Decompose x and y motion

Transverse Motion
&

Longitudinal Motion

X = hor. Displacement

x" = dx/ds = hor. angle

Rende Steerenberg, CERN
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() What maths & Why ? @
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Oscillations of particle in accelerator by differential equations

y (ver.)r._ ; )
Sorz(long.) d (2x)+(K)x_()
¥ X (hor.) dt
Optics described using matrices (also oscillations)
F i P F X, | 0 X,
== LK .
s SO F D g " (B'O) ;

Electro — Magnetic fields described by vectors

Rende Steerenberg, CERN
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D The Pendulum @

The CERN Accelerator School

e This motion in accelerators is
similar to the motion of a
pendulum

 The length of the pendulum is L
* It has a mass m attached to it

* |t moves back and forth under
the influence of gravity

The motion of the pendulum is described by a
Second Order Differential Equation

CAS - 1 September 2014
Prague - Czech republic
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CO) Simple Harmonic Motion
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&

* Velocity: v=

* Position: x =6

(provided 0 is small)

Acceleration: a =

dx _d(LO)
dt dt
dv d *(x)

dt

dt’

_ d’(LO)

dt’

Restoring force: F. =-MgSin0

MgSind =M

d’(LO)

dt’

—

2
O

dt’

L

Rende Steerenberg, CERN
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D Hill’s equation @
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Second order differential equation describing a the
Simple Harmonic Motion of the pendulum

dz(H) g g
+20=0 :> 6=Acos, =t
di* L L

The motion of the particles in our accelerators can also
be described by a 2" order differential equation

Hill’s equation

2 Where:
d”(x) . -
+ K(S)X =0 * restoring forces are magnetic fields

dt’ . . .
[ e K(s) is related to the magnetic gradients

Basic Mathematics for Accelerators — CAS 2014

CAS - 1 September 2014

Prague - Czech republic H
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Position & Velocity @
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The differential equation that describes the transverse motion of
the particles as they move around our accelerator.

RAY
R ‘)s\‘,,’:’

The solution of this second order differential equation describes a Simple
Harmonic Motion and needs to be solved for different values of K

For any system, performing simple harmonic motion, where the restoring
force is proportional to the displacement, the solution for the displacement

will be of the form:

dx .
X =Xx, cos(ar) — = —x wsin(wt)

CAS - 1 September 2014 dt

Prague - Czech republic =
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Phase Space Plot @
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Plot the velocity as a function of displacement:

y dx
dt

x = x, cos(ar)

\ |u)x0
;
dx .
— = —x wsin(wr)
< XO >

dt

* Itisan ellipse.
* As wt advances by 2 rtit repeats itself.
e This continues for (w t + k 2m), with k=0,%1, £2,..,..etc

CAS - 1 September 2014

Prague - Czech republic 3
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CLO0) Oscillations in Accelerators @
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Under the influence of the magnetic fields the particle oscillate

X = displacement
x" = angle = dx/ds

Basic Mathematics for Accelerators — CAS 2014
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CO0) Transverse Phase Space Plot @
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This changes slightly the Phase Space plot

»

LX;

Position: X

VvV

o odx

Angle: X = —

ds

* ¢ = wtis called the phase angle
X-axis is the horizontal or vertical position (or time in longitudinal case).
- Y-axis is the horizontal or vertical phase angle (or energy in longitudinal case)

CAS - 1 September 2014

Prague - Czech republic 15
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Scalars & Vectors @

Basic Mathematics for Accelerators — CAS 2014

Scalar:

Simplest physical quantity that can be completely specified by
its magnitude, a single number together with the units in which

it is measured

Age

Weight Temperature

Rende Steerenberg, CERN

CAS - 1 September 2014

Prague - Czech republic Y



o0

The CERN Accelerator School

Scalars & Vectors

Basic Mathematics for Accelerators — CAS 2014

Vector:

in space to specify it

A gquantity that requires both a magnitude (> 0) and a direction

Velocity

(magnetic) fields

Force

Rende Steerenberg, CERN

CAS - 1 September 2014
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D Vectors @
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< || Cartesian coordinates Polar coordinates

o

N

2 (x,y) (r,0)

@)

| A

g ............................................................... /JZ‘

E ///

8 r //

2 y r ///

5

g X

=

2| |[ris the length of the vector 0 gives the direction of the vector

b y = \/x2 - y2 tan(6)=y:(9=arctan(y)

X X

Rende Steerenberg, CERN iéasg_ules-ecpzt:crﬂ?qeagigllij 19



m Vector Addition - Subtraction
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(&

Vector components

addition

= |
>

v=al + y]+ak

Rende Steerenberg, CERN

Subtraction

a+(-b)=(-b)+a

CAS - 1 September 2014
Prague - Czech republic
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CO0) Vector Multiplication

The CERN Accelerator School

Basic Mathematics for Accelerators — CAS 2014

(&

Two products are commonly defined:
* Vector product = vector
e Scalar product = just a number

A third is multiplication of a vector by a scalar:

 Same direction as the original one but proportional magnitude

* The scalar can be positive, negative or zero

V=0OS

CAS - 1 September 2014

Rende Steerenberg, CERN Prague - Czech republic
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D Scalar Product @
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< a and b are two vectors in the in a plane separated by angle 6
S .
2 |
T 5/ .
g : The scalar product of two vectors a
c : and b is the magnitude vector a
S 0 : multiplied by the projection of
<E . ‘> — —_—
5 \ T = vector b onto vector a
= Y
g b|cos B
(4°)
£
g — —_
i aob‘=‘aub‘cos(0) with O=O=<=um
R
(4]
- The scalar product is also called dot product
Rende Steerenberg, CERN iéasg_uts—ecpzt:cr;t;(i;iglli: 22
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CLO) Use of Scalar Products in Physics @

Basic Mathematics for Accelerators — CAS 2014

0

|
‘b‘cbs@

Rende Steerenberg, CERN

ol

Test if an angle between vectors is
perpendicular

Determine the angle between two
vectors, when expressed in Cartesian
form

Find the component of a vector in the
direction of another

CAS - 1 September 2014

Prague - Czech republic 23




D Vector Product @
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Q|

and b are two vectors in the in a plane separated by angle 6

A *axb

(V]|

b

The cross product a x b is defined by: B
* Direction: 3 x b is perpendicular (normal) on the plane through3and b
« The length of 3 x b is the surface of the parallelogram formed by 3 and b

axb|=|al|b|"sin(6)

Basic Mathematics for Accelerators — CAS 2014

The vector product is also called cross product

CAS - 1 September 2014
Prague - Czech republic
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m Use of Vector Products in Physics
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The Lorentz force is a magnetic field

F =e(V x B) -«

Direction of
current

The reason why our particles move around our “circular”
accelerators under the influence of the magnetic fields

CAS - 1 September 2014

Rende Steerenberg, CERN Prague - Czech republic
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* Differential Equations
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D Matrices @
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In physics applications we often encounter sets of simultaneous
linear equations. In general we may have M equations with N
unknowns, of which some may be expressed by a single matrix
equation.

Ax=0b

Basic Mathematics for Accelerators — CAS 2014

Ay A, — Ay X b,
Ay Ay Ay | b,
Vo | | |

_ Ay Ay = Ay I || by _

CAS - 1 September 2014

Prague - Czech republic 27
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CO0) Addition & Subtraction @
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Adding matrices means simply adding all corresponding
individual cells of both matrices an putting the result at the same

cell in the sum matrix

S11

S1o

S

S13

$23

d, dy Ay

bll

21

a, +b, ‘ ap +b12‘ a; + b,

a,, +b,,

a,, +b,,

Ay, + by,

bl 2
b22

bl

3

b23

Subtraction is similar to addition e.g.:

Si; = a5, +(-by,)

Basic Mathematics for Accelerators — CAS 2014

The matrices must be of the same dimension (i.e. both M x N)

Rende Steerenberg, CERN

CAS - 1 September 2014
Prague - Czech republic
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CLO0) Matrix multiplication
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(&

Multiplication by a scalar:

A

As,  Asp, )LSB

As,,  As,, AS,,

Rende Steerenberg, CERN

Multiplication of a matrix and a column vector

Vi Ay Ay, = Ay X
_ I Ay Ay 2NI Xy
| Voo | |
Yum _ A Ay — Ay AN

Vo =ApX +Aux, + + Ay Xy

CAS - 1 September 2014
Prague - Czech republic
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CLO0) Matrix multiplication
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(&

Multiplication of two matrices

B P 1 T I 7 = 7 I b11 b12
11 12 11 12 13
D p = . g g ) b21 bzz
21 22 21 22 23
B ) ) B b31 b32
Py =a, b, +a,b,, +a;b; P, =4y by +a,,b,, +a,;b;,

Matrix multiplication is associative: A(BC)=(AB)C

Multiplication is not commutative: AB = BA

Multiplication is distributive over addition:

(A+B)C=AC+BC ad C(A+B)=CA+CB

CAS - 1 September 2014

Rende Steerenberg, CERN Prague - Czech republic
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CO0) Null & Identity Matrix @
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Null Matrix (exceptional case)

A0O=0=0A A+0=0+A=A

ldentity Matrix (exceptional case)

Al=IA=A

CAS - 1 September 2014

Rende Steerenberg, CERN Prague - Czech republic
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<
Transpose

Basic Mathematics for Accelerators — CAS 2014

(&

matrix whose columns are the rows of matrix A

The transpose of a matrix A, often written as AT is simply the

A, A, — Ay A,

A= ‘ A, Ay Azzv‘ AT _ A,
R ] |

_ Ay Ay = A _ Ay

A2 1
A22

|
Ay

If Aisan M X N matrix then AT is an N x M matrix

(AB) =A"B'

CAS - 1 September 2014

Rende Steerenberg, CERN Prague - Czech republic
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Trace of a Matrix @

Je'e
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Sometime one wishes to derive a single number from a matrix
which is denoted by Tr A. This trace of A quantity is defined as
the sum of the diagonal elements of the matrix

Tr(A)=A,+A,+--+A,,

Tr(A) = iAﬁ
i=1

The trace is only defined for square matrices

Basic Mathematics for Accelerators — CAS 2014

Tr(A=B)=Tr(A)=Tr(B) Tr(ABC)=Tr(BCA)=Tr(CAB)

CAS - 1 September 2014

Prague - Czech republic 33
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(L) Determinant of a Matrix @
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For a given matrix the determinant Det(A) is a single number that
depends upon the elements of A
If a matrix is N x N then its determinant is denoted by:

All A12 — AIN
A21 A22 — A2N

Lo |
AN | AN 2 — ANN

det(A) =|A| =

The determinant is only defined for square matrices

CAS - 1 September 2014

Prague - Czech republic 34
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Cofactor and Minor @

Je'e
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In order to define the determinant of an N x N matrix we will
need the cofactor and the minor

The minor of M;; of the element A; of an N x N matrix A is the
determinant of the (N-1) x (N-1) matrix obtained by removing all
the elements of the it" row and jt column of A.

The associated cofactor is found by multiplying the minor by the
result of (-1)

N
8N
N

11 12 13

Lets look at an example using:

Basic Mathematics for Accelerators — CAS 2014

>
>

31 32

>

33

CAS - 1 September 2014

Prague - Czech republic 39
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Cofactor of a Matrix @

OO0
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Removing all the elements of the 2" row and the 39 column of
matrix A and forming the determinant of the remainder term

gives the minor

Al 1 Al 2

M23 =
A31 Asz

Multiplying the minor by (-1)**3 = (-1)° = -1 then gives

Al 1 Al 2

Cp=-
Ay Ay

The determinant is the sum of the products of the elements of
any row or column and their cofactor (Laplace expansion).

Basic Mathematics for Accelerators — CAS 2014

CAS - 1 September 2014

Prague - Czech republic 36
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(L) Determinant of a Matrix @
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As an example the first of these expansions, using the elements
of the 2"9 row of the determinant and their corresponding

cofactors we can write the Laplace expansion

‘A‘ =A,-D"M, + A (DM, + A (-D)*V M,

_AZI

Al 2
A32

Al 3
A33

+A,,

All
A31

Al 3
A33

- A23

Al 1
A31

Al 2
A32

The determinant is independent of the row or column chosen

Rende Steerenberg, CERN

CAS - 1 September 2014
Prague - Czech republic
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(L) Determinant of a Matrix @
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We now need to find the order-2 determinants of the 2 x 2
minors in the Laplace expansion

Al 2 Al 3
A32 A33

_ A12 (_ 1)(1+1)

A33‘ + A13(_1)(1+2) ‘A32‘ = A12A33 — A13A32

Now repeat the same for the other 2 minors

Al 1 Al 3
A3 1 A3 3

Rende Steerenberg, CERN

= A11A33 - A13A31

Al 1 Al 2
A3 1 A32

CAS - 1 September 2014

Prague - Czech republic

= A11A32 - A12A31
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(L) Determinant of a Matrix @

The CERN Accelerator School

Combing the previous:

|A| = _Alz (A12A33 o A13A32) + Azz (A11A33 - A13A13) - A23 (A11A32 o A12A31)

Instead of taking the 2" row we could have taken the first row,
which would have resulted in:

|A| = A | (ApAs; — ApAyy) — A (ApAs — Ay A) + A (A Ay, — Ay Ay

Repeating this with a concrete example would result in the same
scalar for both cases

Basic Mathematics for Accelerators — CAS 2014

CAS - 1 September 2014

Prague - Czech republic 39

Rende Steerenberg, CERN



.
(L) Determinant: Concrete Example @
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Use row 1: —=

$

A= -44

e

Rende Steerenberg, CERN

+
4] =

4]=

4] =

CAS - 1 September 2014
Prague - Czech republic

oo N

e

I~

(\O

6 2
2 8

= +1(2x6-4x38)

o

= —4(6x6-4x%x2)

|+

= +2(6x8-2x2)

40



D Inverse Matrix @
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If a matrix A describes the transformation of an initial vector into
a final vector then one could define a matrix that performs the
inverse transformation, obtaining the initial vector from the final
vector. This inverse matrix is denoted as A

y=Ax<=x=A"y

Matrix times Inverse Matrix gives the Identity matrix

Basic Mathematics for Accelerators — CAS 2014

1 0 = 0
aaliog| 01 =0
Lo |
0 0 — 1

CAS - 1 September 2014

Prague - Czech republic Al

Rende Steerenberg, CERN




D Inverse Matrix @
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If a matrix A has a determinant which is zero, then matrix A is
called singular, otherwise it is non-singular
If a matrix is non-singular and then matrix A will have an inverse

matrix Al

Finding the inverse matrix Al can be done in several ways. One
method is to construct the matrix C containing the cofactors of

the elements of A.
The inverse matrix can then be found by taking the transpose of
C and divide by the determinant of A

©)y C,
A

CAS - 1 September 2014
Prague - Czech republic
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1
A=| 6
2

o OB \© I PN
N B

Inverse Matrix: Concrete Exampl @

We previously found: ‘A‘ = -44

Note: this is non-zero, hence A is non-singular

Some cofactors:

- +C,,
C=| -G,
+C;,

Rende Steerenberg, CERN

_C12
+C,,
_C32

Cll —

2 4 1 4
C23=

8 6 2 8

+Cy | | 220 24 44

C,|=| -8 2 o0

+C.. 12 8 -2

CAS - 1 September 2014
Prague - Czech republic
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cmlnverse Matrix: Concrete Exampl
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(&

Transposing the cofactor matrix:

00 24 44 0 -8 12
c=| -8 2 0 |lec’=| 224 2 3
2 8 -2 44 0 -22
Hence the inverse matrix of A is:
o 20 -8 12
Ald 04 28
Al 440 4 0 oo

CAS - 1 September 2014

Rende Steerenberg, CERN

Prague - Czech republic
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L) Use of Inverse Matrix @
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Each element in an accelerator can be describe by a transfer

and angle of our particle(s)
* Modelling the accelerator with these transfer matrices

requires matrix multiplication

the beam, knowing final conditions and the transformation
matrices

matrix, describing the change of horizontal and vertical position

* Inverse matrices will allow reconstructing initial conditions of

QD QF QD
QF

SF >D SF

CAS - 1 September 2014

Rende Steerenberg, CERN Prague - Czech republic

y=Ax e x=A"
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CLO0) Another Practical example @
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Changing the current in two sets of quadrupole magnets (F & D) changes
the horizontal and vertical tunes (Q, & Q).

This can be expressed by the following matrix relationship:

AQ, a b\(Al — —
( ) or AQ=MAI

A0 | \c d)\ar,

Change I then |, independently and measure the changes in Q, and Q,
Calculate the matrix M
Calculate the inverse matrix M

Use now M to calculate the current changes (Al and Al,) needed for any
required change in tune (AQ,, and AQ,).

Rende Steerenberg, CERN

CAS - 1 September 2014
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CO0) Eigenvalue & Eigenvector @
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An eigenvalue is a number that is derived from a square matrix
and is usually represented by A

We say that a number is the eigenvalue for square matrix A if
and only if there exists a non-zero vector X such that:

Ax = Ax

where A is a square matrix, x is the non-zero vector and A is a
non-zero value

In that case:
 Aisthe eigenvalue
* Xis the eigenvector

CAS - 1 September 2014

Prague - Czech republic 47
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) Example (Normal modes) @
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Eigenvalues and eigenvectors are particularly useful in simple
harmonic systems to find normal modes an displacements

NN — G 2
5k

- A < B

Lo+(X,-X4) T, T, = Skx,
A Q 7, 4k,

e X |—>x1

_xl)

|—>x2 x,>x,>0

Equations of motion for A

Equations of motion for A

d’x
e

=4k(x, —x,)— Skx,
=-9kx, + 4kx,

Rende Steerenberg, CERN

2
Zm% =-T, =-4k(x, - x
2
m ddfz = —Okx, +4kx,
t

CAS - 1 September 2014
Prague - Czech republic
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CO0) Eigenvalue & Eigenvector

The CERN Accelerator School

(&

Basic Mathematics for Accelerators — CAS 2014

A normal mode of a mechanical system is a motion of the system
in which all the masses execute simple harmonic motion with the
same angular frequency called normal mode angular frequency

d’x d’x
Let 21 _ wal and 22 =_w2x2
dt dt
The equations of motion In matrix form

become then

X 2
—mao

Xy

-9k 4k
“Okx, +4kx, = —mw’x, [2k —Zk]

2kx, = 2kx, = —mw’x,

Ax = Ax

CAS - 1 September 2014

Prague - Czech republic 49
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CO0) Eigenvalue & Eigenvector @
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Eigenvalue problem to be solved using: |A-Al|=0 A=-mw’
2
|A—AI|= -9k 4k ma)z 1 0O _ -9k + mow 4k —0
2k -2k 0 1 2k ~2k + mw’

(mw*)’ ~11kma* +10k = 0 ) 10
(mw* ~10k)(ma* - k) =0 m

, k
or W =—
m

The normal mode angular frequencies are:

/10k k
W, =, |— w, =, |—
m m

CAS - 1 September 2014

Rende Steerenberg, CERN Prague - Czech republic
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CO0) Eigenvalue & Eigenvector @

The CERN Accelerator School
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Now eigenvectors can be calculated to find displacement

o [ (A_any 0= [-29: 42kk w[l o 8k 4k}
" A =—-mw’
8k 4k || x X,
= = —
2k -k || x,
ik k 4k] X,
LA, 2k 8k || x,

Since the final displacements will depend on the initial conditions
we can only calculate the displacement ratio between A and B

CAS - 1 September 2014

Prague - Czech republic o1
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CO0) Eigenvalue & Eigenvector @
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The example treated a simple harmonic oscillator that was
coupled through springs. Using eigenvalues and eigenvectors we
could conclude something about:

e Oscillation frequencies

* Displacements

The particles in our accelerators make simple harmonic oscillation
under the influence of magnetic fields in the horizontal and

vertical plane.

Through magnets, but also collective effect, the particle
oscillations in the horizontal plane and vertical plane can become
coupled. Eigenvalues and Eigenvector can be used to characterise

this coupling

CAS - 1 September 2014

Prague - Czech republic >7
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e The use of Eigenvalues & @

o0

Eigenvectors

Under the influence of the quadrupoles the particles make
oscillations that can be decomposed in horizontal and vertical

oscillations:

. Xory

N VAN
\/ \/

0 = Circumference =———> 2x

The number of oscillations a particle makes for one turn around

the accelerator is called the betatron tune:
* QorQ, forthe horizontal betatron tune
* Q,orQ, for the vertical betatron tune

Eigenvalue and eigenvectors will provide directly information on
the tunes, optics and the beam stability

CAS - 1 September 2014
Prague - Czech republic
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@
m (de-)Coupling through magnets
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Solenoid fields from the LHC Experiments cause
coupling of the oscillations in the horizontal and
vertical plane. This coupling needs to be
compensated

B = unl

Skew quadrupoles are often used to compensate
for coupling introduced by magnetic errors

Eigenvalues and eigenvectors help us providing
theoretical insight in this coupling phenomena
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The CERN Accelerator School

Everything must be made as simple as
possible. But not simpler....

Albert Einstein

Basic Mathematics for Accelerators — CAS 2014
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-- Spare Slides --
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(L) solving a Differential Equation
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dt L

(&

of a pendulum at small amplitudes.

d’ (19) + (g)g ~0 Differential equation describing the motion

Find a solution......

0 = Acos(wt) —

Differentiate our guess (twice)

a0) _
di

= —-Awsin(wt) and

d"(0)
dt

=—Aw’ cos(ar)

Put this and our “

guess’ back in the original Differential equation.

Rende Steerenberg, CERN

> — cos(wr) + () cos(awt) =0 :

g

L
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Now we have to find the solution for the following equation:

—w’ cos(wt) + (i) cos(at) =0

Solving this equation gives: w= |=

The final solution of our differential equation, describing the motion of a
pendulum is as we expected :

6 = Acos & t
L
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