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Cyclotrons - Outline 

• the classical cyclotron  
history of the cyclotron, basic concepts and scalings, 
classification of cyclotron-like accelerators 

• separated sector cyclotrons 
focusing in Thomas-cyclotrons, spiral angle, classical extraction: 
pattern/stepwidth, transv./long. space charge 

• cyclotron subsystems  
extraction schemes, RF resonators, magnets, vacuum issues, 
instrumentation 

• applications and examples of existing cyclotrons 
TRIUMF, RIKEN SRC, PSI Ring, PSI medical cyclotron 

• discussion 
Classification of circular accelerators 
Pro’s and Con’s of cyclotrons for different applications 
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The Classical Cyclotron 
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first cyclotron: 

1931, Berkeley 

1kV gap-voltage 

80kV Protons 

powerful concept:  

 simplicity, compactness 

 continuous 
injection/extraction 

multiple usage of 
accelerating voltage 

two capacitive electrodes 
„Dees“, two gaps per turn 

internal ion source 

homogenous B field 

constant revolution time 

(for low energy, 𝛾~1) 

E.Lawrence & S.Livingston,  

27inch Zyklotron John Lawrence (center), 1940’ies 
first medical applications: treating 

patients with neutrons generated 

in the 60inch cyclotron  



cyclotron frequency and K value 

• cyclotron frequency (homogeneous) B-field:   

 

• cyclotron K-value:  

→ K is the kinetic energy reach for protons from bending strength in 
non-relativistic approximation:    

 

→ K can be used to rescale the energy reach of protons to other 
charge-to-mass ratios: 

 

 

→ K in [MeV] is often used for naming cyclotrons 

examples:  K-130 cyclotron / Jyväskylä 

  cyclone C230 / IBA 
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classical cyclotron - isochronicity and scalings 
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radius increment per turn 
decreases with increasing energy 
→ extraction becomes more and 
more difficult at higher energies 

magnetic rigidity: 

orbit radius from isochronicity: 

deduced scaling of B: 

thus, to keep the isochronous condition, B must be 
raised in proportion to (R); this contradicts the 
focusing requirements (discussed later) 

continuous acceleration  revolution time must stay constant, though Ek, R vary 



field index 
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the field index describes the (normalized) 
radial slope of the bending field: 

from isochronous condition: 
B;  R 



equation of motion in a classical cyclotron 
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centrifugal force mv2/r 
  Lorentz force qvB 

focusing: consider small deviations x from beam orbit R  (r = R+x): 



betatron tunes in cyclotrons 
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thus in radial plane: 

using Maxwell to relate Bz and BR: 

in vertical plane: 
k<0 to obtain 
vertical focus. 

note: simple case for k = 0:   r = 1 
(one circular orbit oscillates w.r.t the other) 

thus: in classical cyclotron k < 0 required;  
however this violates isochronous condition k = 2-1 > 0  



classification of cyclotron like accelerators 
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classical cyclotron 
[B() = const] 

Thomas cyclotron 
[Azimuthally Varying Field,  

isochronous, one pol] 

separated sector cyclotr. 
[isochronous, separated 

magnets, resonators] 

synchro-cyclotron 
[varying RF frequency] 

Fixed Focus Alternating 
Gradient Accelerator FFAG 

[varying RF, strong focusing] 

high intensity high energy compact machine 

AVF concept – harmonic pole shaping, 
electron model, Richardson et al (1950),  
courtesy of Lawrence Berkeley National Laboratory 



• next: sector cyclotrons 

– AVF vs. separated sector cyclotron 

– focusing in sector cyclotrons 

– extraction: pattern/stepwidth  

– transv./long. space charge 
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hill / valley variation of magnetic field (Thomas focusing) makes it possible 
to design cyclotrons for higher energies 

Flutter factor:    

 

with flutter and additional spiral angle  
of bending field: 

     

focusing in sector cyclotrons 
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[illustration of focusing at edges] 



Azimuthally Varying Field vs. Separated Sector Cyclotrons 

• modular layout, larger cyclotrons possible, 
sector magnets, box resonators, stronger 
focusing, injection/extraction in straight 
sections 

• external injection required, i.e. pre-
accelerator 

• box-resonators (high voltage gain) 
• high extraction efficiency possible:   
 e.g. PSI: 99.98% = (1 - 2·10-4) 
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• AVF = single pole with shaping 
• often spiral poles used 
• internal source possible 
• D-type RF electrodes, rel. low energy gain 
• compact, cost effective 
• depicted Varian cyclotron: 80% extraction 

efficiency; not suited for high power 



derivation of turn separation in a cyclotron 
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isochronicity not 
conserved (last turns) 

isochronicity conserved 
(general scaling) 

starting point: bending strength for p 
 compute total log.differential 
 use field index k = R/BdB/dR 

radius change per 
turn 

[Ut = energy gain per turn] 



turn separation - discussion 

for clean extraction a large stepwidth (turn separation) is of utmost 
importance; in the PSI Ring most efforts were directed towards maximizing 
the turn separation 
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general scaling at 
extraction: 

desirable:  
• limited energy (< 1GeV) 
• large radius Rextr 

• high energy gain Ut 

scaling during 
acceleration: 

illustration:  
stepwidth vs. radius in 
cyclotrons of different sizes; 
100MeV inj  800MeV extr 



without orbit oscillations: stepwidth from Ek-gain (PSI: 6mm) 

extraction with off-center orbits 
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phase vector of orbit 
oscillations (r,r’) 

with orbit oscillations: extraction gap; up to 3 x stepwidth possible 
for r=1.5 (phase advance)  

r 

betatron oscillations around the “closed orbit” can be used 
to increase the radial stepwidth by a factor 3 ! 
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radial tune vs. energy (PSI Ring) 
typically r ≈  during acceleration; 
but decrease in outer fringe field 

beam to 
extract 



extraction profile measured at PSI Ring Cyclotron 
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dynamic range: 

factor 2.000 in 

particle density 

red: tracking simulation [OPAL]  

black: measurement 

position of extraction septum 

 d=50µm 

turn numbers 

[Y.Bi et al] 



longitudinal space charge 
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2w 

F 

sector model (W.Joho, 1981): 
  accumulated energy spread transforms into transverse tails 
• consider rotating uniform sectors of charge (overlapping turns) 
• test particle “sees” only fraction of sector due to shielding of 

vacuum chamber with gap height 2w 

two factors are proportional to the number of turns: 
1) the charge density in the sector 
2) the time span the force acts 

in addition: 
3)  the inverse of turn separation at extraction: 

► thus the attainable current at constant losses scales as nmax
-3 

derivation see: High Intensity Aspects of Cyclotrons, ECPM-2012, PSI 

http://indico.psi.ch/getFile.py/access?contribId=56&sessionId=20&resId=0&materialId=slides&confId=1146
http://indico.psi.ch/getFile.py/access?contribId=56&sessionId=20&resId=0&materialId=slides&confId=1146
http://indico.psi.ch/getFile.py/access?contribId=56&sessionId=20&resId=0&materialId=slides&confId=1146


longitudinal space charge; evidence for third power law 

• at PSI the maximum attainable current indeed scales with the third power 
of the turn number 

• maximum energy gain per turn is of utmost importance in this type of high 
intensity cyclotron 

18 

historical development of 
current and turn numbers 
in PSI Ring Cyclotron 

  with constant losses at the 
extraction electrode the maximum 
attainable current indeed scales as: 

𝑰𝐦𝐚𝐱 ∝ 𝒏𝒕
−𝟑 

 



transverse space charge 

with overlapping turns use current sheet model! 
 

vertical force from space charge: 

[constant charge density, Df = Iavg/Ipeak] 

 

focusing force:  

 

thus, eqn. of motion:     

 

 equating space charge and focusing force delivers an intensity 
limit for loss of focusing! 

tune shift from forces: 
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next: cyclotron subsystems 

  
• extraction schemes 

• RF systems/power efficiency 

• cyclotron magnets 

• comments on vacuum 

• specific instrumentation 



injection/extraction schemes 

• deflecting element should affect just one turn, not neighboured turn  
critical, cause of losses 

• often used: electrostatic deflectors with thin electrodes 

• alternative: charge exchange, stripping foil; accelerate H- or H2
+ to extract 

protons (problem: significant probability for unwanted loss of electron; 
Lorentz dissociation: B-field low, scattering: vacuum 10-8mbar) 
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0 

- 
HV foil 

extraction electrode 
placed between turns 

extraction by charge 
exchange in foil 
eg.:  H-  H+ 

 H2
+  2H+ 

binding energies 

H- H2
+ 

0.75eV 15eV 



injection 

element in Ring 

Tungsten stripes 

injection/extraction with electrostatic elements 

principle of extraction 

channel 

parameters 
extraction chan.: 

Ek= 590MeV 
E = 8.8 MV/m 
 = 8.2 mrad 
 = 115 m 
U = 144 kV 

major loss 
mechanism is 
scattering in 50m 
electrode! 
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electrostatic rigidity: 



extraction foil 

• thin foil, for example carbon, removes the electron(s) with high probability 

• new charge state of ion brings it on a new trajectory → separation from 
circulating beam 

• lifetime of foil is critical due to heating, rad.damage; conversion 
efficiencies, e.g. generation of neutrals, must be considered carefully 
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B 

H- 
H+ 

e 
foil 

stripped electrons deposit 
energy in the foil 

How much power is carried by the electrons? 

Bending radius of electrons? 

 typically mm 

 1/2000 of beam power 



example: multiple H- stripping extraction at TRIUMF 
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[R.Baartman] 



example: H2
+ stripping extraction in planned 

Daedalus cyclotron [neutrino source] 
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[L.Calabretta, 
A.Calanna et al] 

purpose: pulsed high 
power beam for neutrino 
production 
• 800MeV 
• 5MW 



components: cyclotron resonators 

cyclotron resonators are basically box resonators 
resonant frequency:   

E

b

l
a

beam

beam passes in center plane; 
 
accelerating voltage varies 
as sin(r) 
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cross sections of PSI resonators 

original Al-Resonator 

Oper. freq. = 51 MHz 

 Max. gap voltage =  760 kV 

 Power dissipation = 320 kW 

 Q0 = 32'000 (meas. value) 

new Cu-Resonator 

Oper. freq. = 51 MHz 

 Max. gap voltage > 1MV 

 Power dissipation = 500 kW 

 Q0  48'000 

hydraulic tuning 

loop coupler @ 50MHz 

old new 
4m 

2m 

0m 

beam(s) 
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copper resonator in operation at PSI’s Ring cyclotron  

• f = 50.6MHz; Q0 = 4,8104; Umax=1.2MV (presently 0.85MV) 
• transfer of up to 400kW power to the beam per cavity 
• Wall Plug to Beam Efficiency (RF Systems): 32%  

hydraulic tuning 

devices (5x) 

resonator 

inside 
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components: sector magnets 

• cyclotron magnets typically cover a wide radial range  magnets are 
heavy and bulky, thus costly 
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PSI sector magnet 
 
iron weight: 250 tons 
coil weight: 28 tons 
orbit radius:  2.1…4.5 m 
spiral angle: 35 deg 



components: sector magnets 

• focusing and isochronicity need to be precisely controlled  
sophisticated pole shaping including spiral bounds, many trim coil circuits 

• modern cyclotrons use superconducting magnets; but for high intensity 
compactness is generally disadvantageous 
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field map of PSI 
Ring magnet weight vs. 

energy reach for 
different cyclotrons 
Joho, CAS Aarhus, 1986 

superconducting 



cyclotron vacuum system 

31 

O-ring grooves 

evacuated intermittent volume 

• vacuum chamber with large radial width  difficult to achieve precisely 
matching sealing surfaces noticeable leak rates must be accepted 

• use cryo pumps with high pumping speed and capacity 

• ≈10-6mbar for p, ≈10-8mbar for ions (instability! e.g. AGOR at KVI) 

• design criterion is easy access and fast mountability (activation) 

example: inflatable seals installed between resonators; length: 3.5m 

length: 3.5m 



cyclotron instrumentation  
example: PSI 72MeV injector cyclotron 
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transverse probes 
«wire scanners» 

phase probes 
«RF pickups» 

injection channel 

extraction channel 



instrumentation: radial probe for turn counting / orbit analysis 
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wire scanner with three 
tilted wires delivers radial 
beam profile and some 
vertical information 

radial: positions of 
individual turns 

vertical/radial orbit 
positions and stored 
reference orbit (crosses) 

«pseudo tomography» 
with tilted wires 
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next: cyclotron examples 
• TRIUMF, RIKEN SRC, PSI-HIPA, PSI-Comet 



comparison of cyclotrons 

TRIUMF RIKEN SRC 
(supercond.) 

PSI Ring PSI medical 
(supercond.) 

particles H-  p ions p p 

K [MeV] 520 2600 592 250 

magnets (poles) (6) 6 8 (4) 

peak field strength 
[T] 

0.6 3.8 2.1 3.8 

Rinj/Rextr [m] 0.25/3.8…7.9 3.6/5.4 2.4/4.5 -/0.8 

Pmax [kW] 110 1 (86Kr) 1300 0.25 

extraction efficiency 
(tot. transmission) 

0.9995 
(0.70) 

 
(0.63) 

0.9998 0.80 

extraction method stripping foil electrostatic 
deflector 

electrostatic 
deflector 

electrostatic 
deflector 

comment variable energy ions, flexible high intensity compact 
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cyclotron examples: TRIUMF / Vancouver 
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• p, 520MeV, up to 110kW 
beam power 

• diameter: 18m (largest 
n.c. cyclotron worldwide) 

• extraction by stripping H- 
 variable energy; 
multiple extraction points 
possible 

photo: iron poles with spiral shape 
(max=70deg) 



RIKEN SRC in the vault 
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Ring Cyclotron 590 MeV 
2.2mA / 1.3MW 
diameter: 15m 

SINQ 
spallation source 

examples: PSI High Intensity Proton Accelerator  

proton therapie center 
[250MeV sc. cyclotron] 
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dimensions: 

120 x 220m2 

meson production 
targets 



superconducting coils  
=> 2.4 - 3.8 T  

Proton source 

4 RF-cavities  
≈100 kV on 4 Dees 

Closed He system  
4 x 1.5 W @4K 

300 kW 

90 tons 

3.4 m 

1
.4

 m
 

250 MeV proton cyclotron (ACCEL/Varian) 

ACCEL 
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vertical setup (!) 

compact cyclotrons for Isotope production 
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finally: discussion 
• comparison of circular accelerators 

• suitability of cyclotrons  

• some literature 
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classification of circular accelerators 
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bending 
radius 

bending 
field vs. 
time 

bending 
field vs. 
radius 

RF 
frequency 
vs. time 

operation 
mode 
(pulsed/CW) 

betatron induction 

microtron varying h 

classical 
cyclotron 

simple, but 
limited Ek 

isochronous 
cyclotron 

suited for 
high power! 

synchro- 
cyclotron 

higher Ek, 
but low P 

FFAG strong 
focusing! 

a.g. 
synchrotron 

high Ek, 
strong focus 



pro and contra 
cyclotron 

limitations of cyclotrons typical utilization of cyclotrons 

• energy limitation ≈1GeV due 
to relativistic effects 

• relatively weak focusing is 
critical for space charge 
effects (10mA ?) 

• tuning is difficult; field shape; 
many turns; limited 
diagnostics 

• wide vacuum vessel (radius 
variation) 

• medical applications 250MeV; 
intensity range well covered 

• isotope production  several 
10MeV 

• acceleration of heavy ions (e.g. 
RIKEN) 

• very high intensity proton 
beams (PSI:1.4MW, TRIUMF: 
100kW, ADS Concepts ) 

43 



cyclotron conferences – a valuable 
source of knowledge 

old cyclotron conferences are digitized for JACOW (effort of M.Craddock!) 
cyclotrons 2016: organized by PSI in Zürich 

cyclotron conferences 
every three years first 

1959 
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some literature w.r.t. cyclotrons 
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comprehensive 
overview on 
cyclotrons 

L.M.Onishchenko, Cyclotrons: A Survey, Physics of Particles and Nuclei 39, 950 
(2008) 
http://www.springerlink.com/content/k61mg262vng17411/fulltext.pdf 

scaling of PSI 
concept to 10MW 

Th.Stammbach et al, The feasibility of high power cyclotrons, Nuclear 
Instruments and Methods in Physics Research B 113 (1996) 1-7  

space charge effects 
and scalings 

W.Joho, High Intensity Problems in Cyclotrons, Proc. 5th intl. 
Conf. on Cyclotrons and their Applications, Caen, 337-347 (1981) 
http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf 

long. space charge; 
comparison to 
analytical result 

E.Pozdeyev, A fast code for simulation of the longitudinal space charge effect 
in isochronous cyclotrons, cyclotrons (2001) 
http://accelconf.web.cern.ch/AccelConf/c01/cyc2001/paper/P4-11.pdf 

H2
+ concept for high 

power 
L.Calabretta et al, A multi megawatt cyclotron complex to search for cp 
violation in the neutrino sector, cyclotrons (2010);  
upcoming NIM paper! 
http://accelconf.web.cern.ch/AccelConf/Cyclotrons2010/papers/tua1cio01.pdf 

OPAL simulations; 
documentation 

J.Yang, A. Adelmann, et al. Phys. Rev. STAB Vol. 13 Issue 6 (2010) 
http://amas.web.psi.ch 

cyclotrons 2013 
conference 
Vancouver 

http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/ 
conference summary:  
http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/talks/fr2pb03_talk.pdf 

http://www.springerlink.com/content/k61mg262vng17411/fulltext.pdf
http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf
http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf
http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf
http://accelconf.web.cern.ch/AccelConf/c01/cyc2001/paper/P4-11.pdf
http://accelconf.web.cern.ch/AccelConf/c01/cyc2001/paper/P4-11.pdf
http://accelconf.web.cern.ch/AccelConf/c01/cyc2001/paper/P4-11.pdf
http://accelconf.web.cern.ch/AccelConf/Cyclotrons2010/papers/tua1cio01.pdf
http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/
http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/talks/fr2pb03_talk.pdf


thank your for your 
attention ! 
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