Introduction to Transverse Beam Dynamics

Bernhard Holier, CERN-LHC

Lattice Design ... in 10 seconds ... the Matrices

Transformation of the coordinate vector (x, x^{\prime}) in a lattice

$$
\binom{x(s)}{x^{\prime}(s)}=M_{1 \rightarrow 2}\binom{x_{0}}{x_{0}^{\prime}}
$$

Matrix expressed as function of focusing properies

$$
M_{1 \rightarrow 2}=M_{q f} * M_{l d} * M_{B} * M_{q d} * M \ldots
$$

Transformation of the coordinate vector (x, x^{\prime}) expressed as a function of the twiss parameters

$$
\boldsymbol{M}_{1 \rightarrow 2}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \psi_{12}+\alpha_{1} \sin \psi_{12}\right) & \sqrt{\beta_{1} \beta_{2}} \sin \psi_{12} \\
\frac{\left(\alpha_{1}-\alpha_{2}\right) \cos \psi_{12}-\left(1+\alpha_{1} \alpha_{2}\right) \sin \psi_{12}}{\sqrt{\beta_{1} \beta_{2}}} & \sqrt{\frac{\beta_{1}}{\beta_{2}}}\left(\cos \psi_{12}-\alpha_{2} \sin \psi_{12}\right)
\end{array}\right)
$$

And both descriptions are equivalent !!

Lattice Design ... in 10 seconds ... the β-function

Transformation Matrix for half a FODO
$M_{\text {halfcell }}=M_{Q F / 2} * M_{D} * M_{Q D / 2}=\left(\begin{array}{cc}1-l_{D} / \tilde{f} & l_{D} \\ -l_{D} / \tilde{f}^{2} & 1+l_{D} / \tilde{f}\end{array}\right)$

nota bene: $\tilde{\mathrm{f}}=2 * \mathrm{f} \quad$... it is a half quad !

Compare to the twiss parameter form of M

$$
\boldsymbol{M}_{1 \rightarrow 2}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \psi_{12}+\alpha_{1} \sin \psi_{12}\right) & \sqrt{\beta_{1} \beta_{2}} \sin \psi_{12} \\
\frac{\left(\alpha_{1}-\alpha_{2}\right) \cos \psi_{12}-\left(1+\alpha_{1} \alpha_{2}\right) \sin \psi_{12}}{\sqrt{\beta_{1} \beta_{2}}} & \sqrt{\frac{\beta_{1}}{\beta_{2}}}\left(\cos \psi_{12}-\alpha_{2} \sin \psi_{12}\right)
\end{array}\right)
$$

In the middle of a foc (defoc) quadrupole of the FoDo we allways have $\alpha=0$, and the half cell will lead us from $\boldsymbol{\beta}_{\text {max }}$ to $\boldsymbol{\beta}_{\text {min }}$

$$
M_{\text {half cell }}=\left(\begin{array}{ll}
\sqrt{\sqrt{\stackrel{\beta}{\hat{\beta}}}} \cos \frac{\psi_{\text {cell }}}{2} & \sqrt{\stackrel{\rightharpoonup}{\beta} \hat{\beta}} \sin \frac{\psi_{\text {cell }}}{2} \\
\frac{-1}{\sqrt{\hat{\beta} \stackrel{v}{\beta}}} \sin \frac{\psi_{\text {cell }}}{2} & \sqrt{\frac{\hat{\beta}}{\stackrel{ }{v}}} \cos \frac{\psi_{\text {cell }}}{2}
\end{array}\right)
$$

Scaling law for a FODO cell:

$$
\begin{gathered}
\hat{\beta}=\frac{\left(1+\sin \frac{\psi_{\text {cell }}}{2}\right) L}{\sin \psi_{\text {cell }}}! \\
\breve{\beta}=\frac{\left(1-\sin \frac{\psi_{\text {cell }}}{2}\right) L}{\sin \psi_{\text {cell }}}!
\end{gathered}
$$

The maximum and minimum values of the β-function are solely determined by
 the phase advance and the length of the cell.

Longer cells lead to larger $\boldsymbol{\beta}$... and there is an optimum phase !!

19.) Chromaticity:
 A Quadrupole Error for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
dipole magnet

$$
\alpha=\frac{\int \boldsymbol{B} d \boldsymbol{l}}{\boldsymbol{p} / \boldsymbol{e}}
$$

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

focusing lens

$$
k=\frac{g}{p / e}
$$

to high energy to low energy ideatenergy

Chromaticity: Q^{\prime}

$$
k=\frac{g}{p / e} \quad p=p_{0}+\Delta p
$$

in case of a momentum spread:

$$
\begin{aligned}
\boldsymbol{k}=\frac{\boldsymbol{e} \boldsymbol{g}}{\boldsymbol{p}_{0}+\Delta \boldsymbol{p}} & \approx \frac{\boldsymbol{e}}{\boldsymbol{p}_{0}}\left(1-\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}}\right) \boldsymbol{g}=\boldsymbol{k}_{0}+\Delta \boldsymbol{k} \\
\Delta k & =-\frac{\Delta p}{p_{0}} k_{0}
\end{aligned}
$$

... which acts like a quadrupole error in the machine and leads to a tune spread:

$$
\Delta Q=-\frac{1}{4 \pi} \frac{\Delta p}{p_{0}} k_{0} \beta(s) d s
$$

definition of chromaticity:

$$
\Delta \boldsymbol{Q}=\boldsymbol{Q}^{\prime} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}} ; \quad Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

Where is the Problem?

Tunes and Resonances

avoid resonance conditions: $m Q_{x}+\boldsymbol{n} Q_{y}+l Q_{s}=$ integer
... for example: $1 Q_{x}=1$
... and now again about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q^{\prime} is a number indicating the size of the tune spot in the working diagram,
Q^{\prime} is always created if the beam is focussed
\rightarrow it is determined by the focusing strength k of all quadrupoles

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

$k=$ quadrupole strength
$\beta=$ betafunction indicates the beam size ... and even more the sensitivity of the beam to external fields

Example: LHC

$$
\left.\begin{array}{l}
Q^{\prime}=250 \\
\Delta p / p=+/-0.2 * 10^{-3} \\
\Delta Q=0.256 \ldots 0.36
\end{array}\right\}
$$

\rightarrow Some particles get very close to resonances and are lost in other words: the tune is not a point it is a pancake

Tune signal for a nearly uncompensated cromaticity ($Q^{\prime} \approx 20$)

Ideal situation: cromaticity well corrected, ($Q^{\prime} \approx 1$)

$$
m * Q_{x}+n * Q_{y}+l * Q_{s}=\text { integer }
$$

RA e Tune diagram up to 3rd order
... and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive

Correction of Q^{\prime} :

Need: additional quadrupole strength for each momentum deviation $\Delta p / p$
1.) sort the particles acording to their momentum

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

... using the dispersion function

2.) apply a magnetic field that rises quadratically with x (sextupole field)

$$
\left.\begin{array}{l}
B_{x}=\tilde{g} x z \\
B_{z}=\frac{1}{2} \tilde{g}\left(x^{2}-z^{2}\right)
\end{array}\right\} \quad \frac{\partial B_{x}}{\partial z}=\frac{\partial B_{z}}{\partial x}=\tilde{g} x
$$

linear rising ,gradient":

Correction of Q':

Sextupole Magnets:

k_{1} normalised quadrupole strength k_{2} normalised sextupole strength

$$
\begin{aligned}
& k_{1}(\operatorname{sex} t)=\frac{\tilde{g} x}{p / e}=k_{2} * x \\
& k_{1}(\operatorname{sext})=k_{2} * D * \frac{\Delta p}{p}
\end{aligned}
$$

Combined effect of ,,natural chromaticity" and Sextupole Magnets:

$$
Q^{\prime}=-\frac{1}{4 \pi}\left\{\int k_{1}(s) \beta(s) d s+\int k_{2} * D(s) \beta(s) d s\right\}
$$

You only should not forget to correct Q‘ in both planes ... and take into account the contribution from quadrupoles of both polarities.

corrected chromaticity

considering an arc built out of single cells:

20.) Insertions

Insertions

... the most complicated one: the drift space

Question to the audience: what will happen to the beam parameters a, β, γ if we stop focusing for a while ...?

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{S}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right) *\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0}
$$

transfer matrix for a drift:

$$
M=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right) \longrightarrow \begin{aligned}
& \beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2} \\
& \alpha(s)=\alpha_{0}-\gamma_{0} s \\
& \gamma(s)=\gamma_{0}
\end{aligned}
$$

β-Function in a Drift:

let's assume we are at a symmetry point in the center of a drift.

$$
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2}
$$

as $\quad \alpha_{0}=0, \quad \rightarrow \quad \gamma_{0}=\frac{1+\alpha_{0}{ }^{2}}{\beta_{0}}=\frac{1}{\beta_{0}}$
and we get for the β function in the neighborhood of the symmetry point

$$
\beta(s)=\beta_{0}+\frac{s^{2}}{\beta_{0}}
$$

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice. -> here we get the largest beam dimension.

-> keep l as small as possible

21.) Luminosity

Example: Luminosity run at LHC

$$
\begin{array}{ll}
\beta_{x, y}=0.55 \boldsymbol{m} & \boldsymbol{f}_{0}=11.245 \boldsymbol{k H z} z \\
\varepsilon_{x, y}=5 * 10^{-10} \text { rad } \boldsymbol{m} & \boldsymbol{n}_{b}=2808 \\
\sigma_{x, y}=17 \mu \boldsymbol{m} &
\end{array}
$$

$$
\boldsymbol{I}_{p}=584 \boldsymbol{m} \boldsymbol{A}
$$

$$
\boldsymbol{L}=\frac{1}{4 \pi \boldsymbol{e}^{2} \boldsymbol{f}_{0} \boldsymbol{n}_{b}} * \frac{\boldsymbol{I}_{p 1} \boldsymbol{I}_{p 2}}{\sigma_{x} \sigma_{y}}
$$

$$
L=1.0 * 10^{34} \mathrm{l} / \mathrm{cm}^{2} \mathrm{~s}
$$

Mini- β Insertions: some guide lines,

* calculate the periodic solution in the arc
* introduce the drift space needed for the insertion device (detector ...)
* put a quadrupole doublet (triplet ?) as close as possible
* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure

parameters to be optimised \& matched to the periodic solution: | α_{x}, β_{x} | |
| :--- | :--- |
| α_{y}, β_{y} | $D_{x}, D_{x}{ }^{\prime}$ |
| Q_{x}, Q_{y} | |

Mini- β Insertions: Betafunctions

A mini- β insertion is always a kind of special symmetrite drift space.

$$
\begin{aligned}
& \rightarrow \text { greetings from Liouville } \\
& \alpha^{*}=0 \\
& \gamma^{*}=\frac{1+\alpha^{2}}{\beta}=\frac{1}{\beta^{*}} \\
& \sigma^{\prime *}=\sqrt{\frac{\varepsilon}{\beta^{*}}} \\
& \beta^{*}=\frac{\sigma^{*}}{\sigma^{\prime *}}
\end{aligned}
$$

at a symmetry point β is just the ratio of beam dinpension and beam divergence.

The LHC Insertions

mini $\boldsymbol{\beta}$ optics

... and now back to the Chromaticity

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

Clearly there is another problem ...
... if it were easy everybody could do it

Again: the phase space ellipse for each turn write down - at a given position "s" in the ring - the single partilce amplitude x and the angle $x^{\prime} \ldots$ and plot it. $\binom{x}{x^{\prime}}_{s 1}=M_{\text {turn }} *\binom{x}{x^{\prime}}_{s 0}$

A beam of 4 particles

- each having a slightly different emittance:

25.) Particle Tracking Calculations

particle vector:

$$
B=\binom{\text { g'ixz }}{\frac{1}{2} g^{\prime}\left(x^{2}-z^{2}\right)}
$$

Idea: calculate the particle coordiantes x, x^{\prime} through the linear lattice ... using the matrix formalism.
if you encounter a nonlinear element (e.g. sextupole): stop
calculate explicitly the magnetic field at the particles coordinate
calculate kick on the particle

$$
\begin{array}{ll}
\Delta x_{1}^{\prime}=\frac{B_{z} l}{p / e}=\frac{1}{2} \frac{g^{\prime}}{2 / e} l\left(x_{1}^{2}-z_{1}^{2}\right)=\frac{1}{2} m_{\text {sext }} l\left(x_{1}^{2}-z_{1}^{2}\right) \\
\Delta z_{1}^{\prime}=\frac{B_{x} l}{p / e}=\frac{g^{\prime} x_{1} z_{1}}{p / e} l=m_{\text {sext }} l x_{1} z_{1} & \binom{x_{1}}{x_{1}^{\prime}} \rightarrow\binom{x_{1}}{x_{1}^{\prime}+\Delta x^{\prime}} \\
\binom{z_{1}}{z_{1}^{\prime}} \rightarrow\binom{z_{1}}{z_{1}^{\prime}+\Delta z_{1}^{\prime}}
\end{array}
$$

and continue with the linear matrix transformations

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated with conventional methods. \rightarrow no equatiuons; instead: Computer simulation "particle tracking "

\rightarrow Catastrophy!

Resume':

quadrupole error: tune shift
beta beat

$$
\Delta \beta\left(s_{0}\right)=\frac{\beta_{0}}{2 \sin 2 \pi \boldsymbol{Q}} \int_{s 1}^{s 1+l} \beta\left(s_{1}\right) \Delta \boldsymbol{k} \cos \left(2\left(\psi_{s 1}-\psi_{s 0}\right)-2 \pi \boldsymbol{Q}\right) d \boldsymbol{s}
$$

$$
\text { chromaticity } \quad \begin{aligned}
\Delta Q & =Q^{\prime} \frac{\Delta p}{p} \\
Q^{\prime} & =-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
\end{aligned}
$$

momentum compaction

$$
\frac{\delta l_{\varepsilon}}{L}=\alpha_{p} \frac{\Delta p}{p}
$$

$$
\alpha_{p} \approx \frac{2 \pi}{L}\langle\boldsymbol{D}\rangle \approx \frac{\langle\boldsymbol{D}\rangle}{\boldsymbol{R}}
$$

beta function in a symmateric drift

$$
\beta(s)=\beta_{0}+\frac{s^{2}}{\beta_{0}}
$$

Appendix I:

Dispersion: Solution of the inhomogenious equation of motion

$$
\text { Ansatz: } \begin{aligned}
D(s) & =S(s) \int_{s 0}^{s 1} \frac{1}{\rho} C(\tilde{s}) d \tilde{s}-C(s) \int_{s 0}^{s 1} \frac{1}{\rho} S(\tilde{s}) d \tilde{s} \\
D^{\prime}(s) & =S^{\prime} * \int \frac{1}{\rho} C d t+S * C^{\prime}-C^{\prime} * \int \frac{1}{\rho} S d t-C^{\prime} / \frac{1}{\rho} S \\
D^{\prime}(s) & =S^{\prime} * \int \frac{C}{\rho} d t-C^{\prime} * \int \frac{S}{\rho} d t \\
D^{\prime \prime}(s) & =S^{\prime \prime} * \int \frac{C}{\rho} d \widetilde{s}+S^{\prime} \frac{C}{\rho}-C^{\prime \prime} * \int \frac{S}{\rho} d \tilde{s}-C^{\prime} \frac{S}{\rho} \\
& =S^{\prime \prime} * \int \frac{C}{\rho} d \widetilde{s}-C^{\prime \prime} * \int \frac{S}{\rho} d \widetilde{s}+\frac{1}{\rho} \underbrace{\left(C S^{\prime}-S ~\right.}_{=\operatorname{det} M=1}
\end{aligned}
$$

$$
W=\left|\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right| \neq 0
$$

and as it is independent of the variable ,,s"

$$
\frac{d W}{d s}=\frac{d}{d s}\left(C S^{\prime}-S C^{\prime}\right)=C S^{\prime \prime}-S C^{\prime \prime}=-K(C S-S C)=0
$$

we get for the initital
conditions that we had chosen ...

$$
\left.\begin{array}{ll}
C_{0}=1, & C_{0}^{\prime}=0 \\
S_{0}=0, & S_{0}^{\prime}=1
\end{array}\right\} \quad W=\left|\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right|=1
$$

$$
D^{\prime \prime}=S^{\prime \prime} * \int \frac{C}{\rho} d \widetilde{s}-C^{\prime \prime} * \int \frac{S}{\rho} d \widetilde{s}+\frac{1}{\rho}
$$

remember: $\boldsymbol{S} \boldsymbol{\&}$ C are solutions of the homog. equation of motion:

$$
\begin{aligned}
& S^{\prime \prime}+K^{*} S=0 \\
& C^{\prime \prime}+K^{*} C=0
\end{aligned}
$$

$$
\begin{aligned}
& D^{\prime \prime}=-K^{*} S^{*} \int \frac{C}{\rho} d \widetilde{s}+K^{*} C * \int \frac{S}{\rho} d \widetilde{s}+\frac{1}{\rho} \\
& D^{\prime \prime}=-K^{*}\{\underbrace{\left.S \int \frac{C}{\rho} d \widetilde{s}+C \int \frac{S}{\rho} d \widetilde{s}\right\}}_{=D(s)}+\frac{1}{\rho}
\end{aligned}
$$

$$
D^{\prime \prime}=-K^{*} D+\frac{1}{\rho} \quad \text {..or } \quad D^{\prime \prime}+K^{*} D=\frac{1}{\rho}
$$

Appendix II:

Quadrupole Error and Beta Function

a change of quadrupole strength in a synchrotron leads to tune sift:

$$
\Delta Q \approx \int_{s 0}^{s 0+l} \frac{\Delta k(s) \beta(s)}{4 \pi} d s \approx \frac{\Delta k(s) * l_{q u a d} * \bar{\beta}}{4 \pi}
$$

tune spectrum ..

tune shift as a function of a gradient change

But we should expect an error in the β-function as well shouldn't we ???

Quadrupole Errors and Beta Function

a quadrupole error will not only influence the oscillation frequency ... "tune"
... but also the amplitude ... "beta function"
split the ring into 2 parts, described by two matrices A and B

$$
\left.\begin{array}{rl}
M_{\text {turn }}=B * A & A
\end{array} \begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

matrix of a quad error between A and B

$$
\begin{gathered}
M_{\text {dist }}=\left(\begin{array}{ll}
m_{11}^{*} & m_{12}^{*} \\
m_{21}^{*} & m_{22}^{*}
\end{array}\right)=B\left(\begin{array}{cc}
1 & 0 \\
-\Delta k d s & 1
\end{array}\right) A \\
M_{d i s t}=B\left(\begin{array}{cc}
a_{11} & a_{12} \\
-\Delta k d s a_{11}+a_{12} & -\Delta k d s a_{12}+a_{22}
\end{array}\right) \\
M_{\text {dist }}=\left(\begin{array}{ll}
\sim & b_{11} a_{12}+b_{12}\left(-\Delta k d s a_{12}+a_{22}\right) \\
\sim & \sim
\end{array}\right)
\end{gathered}
$$

the beta function is usually obtained via the matrix element „m12", which is in Twiss form for the undistorted case

$$
m_{12}=\beta_{0} \sin 2 \pi Q
$$

and including the error:

$$
m_{12}^{*}=\underbrace{b_{11} a_{12}+b_{12} a_{22}}_{m_{12}=\beta_{0} \sin 2 \pi Q}-b_{12} a_{12} \Delta k d s
$$

(1) $m_{12}^{*}=\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s$

As M^{*} is still a matrix for one complete turn we still can express the element m_{12} in twiss form:

$$
\text { (2) } m_{12}^{*}=\left(\beta_{0}+d \beta\right) * \sin 2 \pi(Q+d Q)
$$

Equalising (1) and (2) and assuming a small error

$$
\begin{aligned}
& \beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=\left(\beta_{0}+d \beta\right) * \sin 2 \pi(Q+d Q) \\
& \beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=\left(\beta_{0}+d \beta\right) * \sin 2 \pi Q \underbrace{\cos 2 \pi d Q}_{\approx 1}+\cos 2 \pi Q \underbrace{\sin 2 \pi d Q}_{\approx 2 \pi d Q}
\end{aligned}
$$

$\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=\beta_{0} \sin 2 \pi Q+\beta_{0} 2 \pi d Q \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q+d \beta_{0} 2 \pi d Q \cos 2 \pi Q$
ignoring second order terms

$$
-a_{12} b_{12} \Delta k d s=\beta_{0} 2 \pi d Q \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q
$$

remember: tune shift $d Q$ due to quadrupole error: $\quad d Q=\frac{\Delta k \beta_{1} d s}{4 \pi}$
(index ,1" refers to location of the error)

$$
-a_{12} b_{12} \Delta k d s=\frac{\beta_{0} \Delta k \beta_{1} d s}{2} \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q
$$

solve for $d \beta$

$$
d \beta_{0}=\frac{-1}{2 \sin 2 \pi Q}\left\{2 a_{12} b_{12}+\beta_{0} \beta_{1} \cos 2 \pi Q\right\} \Delta k d s
$$

express the matrix elements a_{12}, b_{12} in Twiss form

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

$$
d \beta_{0}=\frac{-1}{2 \sin 2 \pi Q}\left\{2 a_{12} b_{12}+\beta_{0} \beta_{1} \cos 2 \pi Q\right\} \Delta k d s
$$

$$
\begin{aligned}
& \boldsymbol{a}_{12}=\sqrt{\beta_{0} \beta_{1}} \sin \Delta \psi_{0 \rightarrow 1} \\
& \boldsymbol{b}_{12}=\sqrt{\beta_{1} \beta_{0}} \sin \left(2 \pi \boldsymbol{Q}-\Delta \psi_{0 \rightarrow 1}\right)
\end{aligned}
$$

$$
d \beta_{0}=\frac{-\beta_{0} \beta_{1}}{2 \sin 2 \pi Q}\left\{2 \sin \Delta \psi_{12} \sin \left(2 \pi Q-\Delta \psi_{12}\right)+\cos 2 \pi Q\right\} \Delta k d s
$$

... after some TLC transformations ... $=\cos \left(2 \Delta \psi_{01}-2 \pi Q\right)$

$$
\Delta \beta\left(s_{0}\right)=\frac{-\beta_{0}}{2 \sin 2 \pi Q} \int_{s 1}^{s l+l} \beta\left(s_{1}\right) \Delta k \cos \left(2\left(\psi_{s 1}-\psi_{s 0}\right)-2 \pi Q\right) d s
$$

Nota bene: the beta beat is proportional to the strength of the elpror Δk

I! and to the β function at the place of the error ,
!!! and to the β function at the observation point, (... renember orbit distortion!!!)
!!!! there is a resonance denominator

