Introduction to Transverse Beam Optics

II.) Particle Trajectories, Beams \& Bunch

$$
\varepsilon \& \beta
$$

... don't worry: it's still the "ideal world"

4.) Solution of Trajectory Equations

$$
x^{\prime \prime}+K x=0
$$

Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\begin{gathered}
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0} \\
M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s \\
-\sqrt{|K|} \sin (\sqrt{|K|} s) & \cos (\sqrt{|K|} s)
\end{array}\right)_{0}
\end{gathered}
$$

hor. defocusing quadrupole:

$$
x^{\prime \prime}-\boldsymbol{K} x=0
$$

Remember from school:

$$
f(s)=\cosh (s) \quad, \quad f^{\prime}(s)=\sinh (s)
$$

Ansatz:

$$
x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s)
$$

$$
M_{\text {def } o c}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
K=0
$$

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent , ... the particle motion in $x \& y$ is uncoupled"

Combining the two planes:
Clear enough (hopefully ... ?) : a quadrupole magnet that is focussing o-in one plane acts as defocusing lens in the other plane ... et vice versa.
hor foc. quadrupole lens

$$
M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K| s} \\
-\sqrt{|K|} \sin (\sqrt{|K| s}) & \cos (\sqrt{|K|} s)
\end{array}\right)
$$

matrix of the same magnet in the vert. plane: $\quad M_{d e f o c}=\left(\begin{array}{cc}\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K| l} \\ \sqrt{|K|} \sinh \sqrt{|K| l} & \cosh \sqrt{|K|} l\end{array}\right)$

$$
\left(\begin{array}{l}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)_{f}=\left(\begin{array}{cccc}
\cos (\sqrt{|k|}) & \frac{1}{\sqrt{|k|}} \sin (\sqrt{|k|} \mid s) & 0 & 0 \\
-\sqrt{|k|} \sin (\sqrt{|k|} \mid s) & \cos (\sqrt{|k|} s) & 0 & 0 \\
0 & 0 & \cosh (\sqrt{|k|} s) & \frac{1}{\sqrt{|k|}} \sinh (\sqrt{|k|} \mid s) \\
0 & 0 & \sqrt{|k|} \sinh (\sqrt{|k|} \mid s) & \cosh (\sqrt{|k|} \mid s)
\end{array}\right) *\left(\begin{array}{l}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)_{i}
$$

combine the single element solutions by multiplication of the matrices

$$
M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B e n d} * M_{D} * \ldots .
$$

$$
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator ,,

... or a third one or ... $\mathbf{1 0}^{10}$ turns

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion:

$$
x^{\prime \prime}(s)-k(s) x(s)=0
$$

restoring force \neq const, $k(s)=$ depending on the position s $k(s+L)=k(s)$, periodic function
we expect a kind of quasi harmonic oscillation: amplitude \& phase will depend on the position s in the ring.

6.) The Beta Function

General solution of Hill's equation:

$$
\text { (i) } \quad x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos (\psi(s)+\phi)
$$

$\varepsilon, \Phi=$ integration constants determined by initial conditions
$\boldsymbol{\beta}(\mathrm{s})$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$
\beta(s+L)=\beta(s)
$$

Inserting (i) into the equation of motion ...

$$
\psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
$$

$\Psi(s)=$,phase advance" of the oscillation between point , 0 " and „s" in the lattice. For one complete revolution: number of oscillations per turn „Tune"

$$
Q_{y}=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

The Beta Function

Amplitude of a particle trajectory:

$$
x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\varphi)
$$

Maximum size of a particle amplitude

$$
\hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

β determines the beam size (... the envelope of all particle trajectories at a given position " s " in the storage ring.

It reflects the periodicity of the magnet structure.

7.) Beam Emittance and Phase Space Ellipse

general solution of
Hill equation $\begin{cases}\text { (1) } & \boldsymbol{x}(\boldsymbol{s})=\sqrt{\varepsilon} \sqrt{\beta(\boldsymbol{s})} \cos (\psi(\boldsymbol{s})+\phi) \\ (2) & \boldsymbol{x}^{\prime}(\boldsymbol{s})=-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(\boldsymbol{s})}}\{\alpha(\boldsymbol{s}) \cos (\psi(\boldsymbol{s})+\phi)+\sin (\psi(\boldsymbol{s})+\phi)\}\end{cases}$
from (1) we get

$$
\cos (\psi(\boldsymbol{s})+\phi)=\frac{\boldsymbol{x}(\boldsymbol{s})}{\sqrt{\varepsilon} \sqrt{\beta(\boldsymbol{s})}}
$$

Insert into (2) and solve for ε

$$
\begin{aligned}
& \alpha(s)=\frac{-1}{2} \beta^{\prime}(s) \\
& \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
\end{aligned}
$$

$$
\varepsilon=\gamma(\boldsymbol{s}) \boldsymbol{x}^{2}(\boldsymbol{s})+2 \alpha(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s}) \boldsymbol{x}^{\prime}(\boldsymbol{s})+\beta(\boldsymbol{s}) \boldsymbol{x}^{\prime 2}(\boldsymbol{s})
$$

* ε is a constant of the motion ... it is independent of ,s" * parametric representation of an ellipse in the $x x^{6}$ space * shape and orientation of ellipse are given by α, β, γ

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely speaking: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!

Particle Tracking in a Storage Ring

Calculate x, x^{\prime} for each linear accelerator element according to matrix formalism
plot x, x^{\prime} as a function of "s"

... and now the ellipse:
note for each turn x, x^{\prime} at a given position,$s_{1} "$ and plot in the phase space diagram

Phase Space Ellipse

particel trajectory: $\quad x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s)+\phi\}$
max. Amplitude: $\quad \hat{x}(s)=\sqrt{\varepsilon \beta} \quad \longrightarrow \quad x^{\prime}$ at that position...

... put $\hat{x}(s)$ into $\quad \varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s) \quad$ and solve for x^{\prime}

$$
\begin{aligned}
\varepsilon & =\gamma \cdot \varepsilon \beta+2 \alpha \sqrt{\varepsilon \beta} \cdot x^{\prime}+\beta x^{\prime 2} \\
\longrightarrow \quad x^{\prime} & =-\alpha \cdot \sqrt{\varepsilon / \beta}
\end{aligned}
$$

* A high β-function means a large beam size and a small beam divergence.
... et vice versa !!!
* In the middle of a quadrupole $\beta=$ maximum,

$$
\alpha=z e r o
$$

$$
x^{\prime}=0
$$

Phase Space Ellipse

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

$$
\alpha(s)=\frac{-1}{2} \beta^{\prime}(s)
$$

$$
\gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
$$

$$
\longrightarrow \varepsilon=\frac{x^{2}}{\beta}+\frac{\alpha^{2} x^{2}}{\beta}+2 \alpha \cdot x x^{\prime}+\beta \cdot x^{\prime 2}
$$

... solve for $x^{\prime} \quad x_{1,2}^{\prime}=\frac{-\alpha \cdot x \pm \sqrt{\varepsilon \beta-x^{2}}}{\beta}$
... and determine \hat{x}^{\prime} via: $\quad \frac{d x^{\prime}}{d x}=0$

$$
\begin{array}{ll}
\longrightarrow & \hat{x}^{\prime}=\sqrt{\varepsilon \gamma} \\
\longrightarrow & \hat{x}= \pm \alpha \sqrt{\varepsilon / \gamma}
\end{array}
$$

shape and orientation of the phase space ellipse
depend on the Twiss parameters $\beta \alpha \gamma$

Emittance of the Particle Ensemble:

Emittance of the Particle Ensemble:

Gauß Particle Distribution:

$$
\rho(x)=\frac{N \cdot e}{\sqrt{2 \pi} \sigma_{x}} \cdot e^{-\frac{1}{2} \frac{x^{2}}{\sigma_{x}^{2}}}
$$

particle at distance 1σ from centre $\leftrightarrow 68.3 \%$ of all beam particles
single particle trajectories, $N \approx 10{ }^{11}$ per bunch

LHC: $\quad \beta=180 \mathrm{~m}$
$\varepsilon=5 * 10^{-10} \mathrm{mrad}$
$\sigma=\sqrt{\varepsilon * \beta}=\sqrt{5 * 10^{-10} m^{*} 180 \mathrm{~m}}=0.3 \mathrm{~mm}$

aperture requirements: $r_{0}=12 * \sigma$
Bernhard Holzer, CERN
CAS Prague 2014

9.) Transfer Matrix M

... yes we had the topic already

general solution of Hill's equation

$$
\begin{aligned}
& x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s)+\phi\} \\
& x^{\prime}(s)=\frac{-\sqrt{\varepsilon}}{\sqrt{\beta(s)}}[\alpha(s) \cos \{\psi(s)+\phi\}+\sin \{\psi(s)+\phi\}]
\end{aligned}
$$

remember the trigonometrical gymnastics: $\sin (a+b)=\ldots$ etc

$$
\begin{aligned}
x(s) & =\sqrt{\varepsilon} \sqrt{\beta_{s}}\left(\cos \psi_{s} \cos \phi-\sin \psi_{s} \sin \phi\right) \\
x^{\prime}(s) & =\frac{-\sqrt{\varepsilon}}{\sqrt{\beta_{s}}}\left[\alpha_{s} \cos \psi_{s} \cos \phi-\alpha_{s} \sin \psi_{s} \sin \phi+\sin \psi_{s} \cos \phi+\cos \psi_{s} \sin \phi\right]
\end{aligned}
$$

starting at point $s(0)=s_{0}$, where we put $\Psi(0)=0$

$$
\left.\begin{array}{l}
\cos \phi=\frac{x_{0}}{\sqrt{\varepsilon \beta_{0}}}, \\
\sin \phi=-\frac{1}{\sqrt{\varepsilon}}\left(x_{0}^{\prime} \sqrt{\beta_{0}}+\frac{\alpha_{0} x_{0}}{\sqrt{\beta_{0}}}\right)
\end{array}\right\} \quad \text { inserting above ... }
$$

$$
\begin{aligned}
& x(s)=\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left\{\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right\} x_{0}+\left\{\sqrt{\beta_{s} \beta_{0}} \sin \psi_{s}\right\} x_{0}^{\prime} \\
& x^{\prime}(s)=\frac{1}{\sqrt{\beta_{s} \beta_{0}}}\left\{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}\right\} x_{0}+\sqrt{\frac{\beta_{0}}{\beta_{s}}}\left\{\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right\} x_{0}^{\prime}
\end{aligned}
$$

which can be expressed ... for convenience ... in matrix form

$$
\binom{x}{x^{\prime}}_{s}=M\binom{x}{x^{\prime}}_{0}
$$

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

[^0]
10.) Periodic Lattices
\[

M=\left($$
\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}
$$\right)
\]

„This rather formidable looking
matrix simplifies considerably if matrix simplifies considerably if we consider one complete revolution .."
$\boldsymbol{M}(\boldsymbol{s})=\left(\begin{array}{cc}\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\ -\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}\end{array}\right) \quad \psi_{\text {turn }}=\int_{s}^{s+L} \frac{d s}{\beta(s)} \quad \begin{aligned} & \psi_{\text {turn }}=\text { phase advance } \\ & \text { per period }\end{aligned}$

Tune: Phase advance per turn in units of 2π

$$
Q=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

Stability Criterion:

Question: what will happen, if we do not make too many mistakes and your particle performs one complete turn?

Matrix for 1 turn:

$$
\begin{aligned}
& \quad M=\left(\begin{array}{cc}
\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\
-\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}
\end{array}\right)=\cos \psi \cdot \underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}_{\boldsymbol{1}}+\sin \psi \underbrace{\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)}_{\boldsymbol{J}} \\
& \text { Matrix for } \boldsymbol{N} \text { turns: }
\end{aligned}
$$

$$
M^{N}=(1 \cdot \cos \psi+J \cdot \sin \psi)^{N}=1 \cdot \cos N \psi+J \cdot \sin N \psi
$$

The motion for N turns remains bounded, if the elements of M^{N} remain bounded

$$
\psi=\text { real } \quad \leftrightarrow \quad|\cos \psi| \leq 1 \quad \leftrightarrow \quad \operatorname{Tr}(M) \leq 2
$$

stability criterion proof for the disbelieving collegues !!
Matrix for 1 turn: $\quad M=\left(\begin{array}{cc}\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\ -\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}\end{array}\right)=\cos \psi \cdot \underbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)}_{\boldsymbol{I}}+\sin \psi(\underbrace{\left(\begin{array}{cc}\alpha & \beta \\ -\gamma & -\alpha\end{array}\right)}_{\boldsymbol{I}}$

$$
\begin{aligned}
\boldsymbol{M}^{2} & =\left(\boldsymbol{I} \cos \psi_{1}+\boldsymbol{J} \sin \psi_{1}\right)\left(\boldsymbol{I} \cos \psi_{2}+\boldsymbol{J} \sin \psi_{2}\right) \\
& =\boldsymbol{I}^{2} \cos \psi_{1} \cos \psi_{2}+\boldsymbol{I} \boldsymbol{J} \cos \psi_{1} \sin \psi_{2}+\boldsymbol{J} \boldsymbol{I} \sin \psi_{1} \cos \psi_{2}+\boldsymbol{J}^{2} \sin \psi_{1} \sin \psi_{2}
\end{aligned}
$$

now ...

$$
I^{2}=I
$$

$$
\left.\begin{array}{l}
\boldsymbol{I} \boldsymbol{J}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) *\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) \\
\boldsymbol{J} \boldsymbol{I}=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) *\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)
\end{array}\right\} \quad \boldsymbol{I} \boldsymbol{J}=\boldsymbol{J} \boldsymbol{I}
$$

$$
\boldsymbol{J}^{2}=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) *\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{2}-\gamma \beta & \alpha \beta-\beta \alpha \\
-\gamma \alpha+\alpha \gamma & \alpha^{2}-\gamma \beta
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-\boldsymbol{I}
$$

$$
\begin{aligned}
& \boldsymbol{M}^{2}=\boldsymbol{I} \cos \left(\psi_{1}+\psi_{2}\right)+\boldsymbol{J} \sin \left(\psi_{1}+\psi_{2}\right) \\
& \boldsymbol{M}^{2}=\boldsymbol{I} \cos (2 \psi)+\boldsymbol{J} \sin (2 \psi)
\end{aligned}
$$

11.) Transformation of α, β, γ

consider two positions in the storage ring: s_{0}, s

$$
\begin{aligned}
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s}=M^{*}\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 0} & \\
& M=\left(\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{S} \\
\boldsymbol{C}^{\prime} & \boldsymbol{S}^{\prime}
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { since } \varepsilon=\operatorname{const}(\text { Liouville }): & \varepsilon=\beta_{s} x^{\prime 2}+2 \alpha_{s} x x^{\prime}+\gamma_{s} x^{2} \\
& \varepsilon=\beta_{0} x_{0}^{\prime 2}+2 \alpha_{0} x_{0} x_{0}^{\prime}+\gamma_{0} x_{0}^{2}
\end{array}
$$

... remember $W=C S^{\prime}-S C^{\prime}=1$

$$
\begin{aligned}
& \left.\begin{array}{l}
\binom{x}{x^{\prime}}_{0}=M^{-1} *\binom{x}{x^{\prime}}_{s} \\
M^{-1}=\left(\begin{array}{cc}
S^{\prime} & -S \\
-C^{\prime} & C
\end{array}\right)
\end{array}\right\} \rightarrow \begin{array}{l}
x_{0}=S^{\prime} x-S x^{\prime} \\
x_{0}^{\prime}=-C^{\prime} x+C x^{\prime} \quad \ldots \text { inserting into } \varepsilon
\end{array} \\
& \varepsilon=\beta_{0}\left(\boldsymbol{C} \boldsymbol{x}^{\prime}-\boldsymbol{C}^{\prime} \boldsymbol{x}\right)^{2}+2 \alpha_{0}\left(\boldsymbol{S}^{\prime} \boldsymbol{x}-\boldsymbol{S} \boldsymbol{x}^{\prime}\right)\left(\boldsymbol{C} \boldsymbol{x}^{\prime}-\boldsymbol{C}^{\prime} \boldsymbol{x}\right)+\gamma_{0}\left(\boldsymbol{S}^{\prime} \boldsymbol{x}-\boldsymbol{S} \boldsymbol{x}^{\prime}\right)^{2}
\end{aligned}
$$

sort via x, x 'and compare the coefficients to get

$$
\begin{aligned}
& \beta(s)=C^{2} \beta_{0}-2 S C \alpha_{0}+S^{2} \gamma_{0} \\
& \alpha(s)=-C C^{\prime} \beta_{0}+\left(S C^{\prime}+S^{\prime} C\right) \alpha_{0}-S S^{\prime} \gamma_{0} \\
& \gamma(s)=C^{\prime 2} \beta_{0}-2 S^{\prime} C^{\prime} \alpha_{0}+S^{\prime 2} \gamma_{0}
\end{aligned}
$$

in matrix notation:

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+C S^{\prime} & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right) \cdot\left(\begin{array}{l}
\beta_{0} \\
\alpha_{0} \\
\gamma_{0}
\end{array}\right)
$$

1.) this expression is important
2.) given the twiss parameters α, β, γ at any point in the lattice we can transform them and calculate their values at any other point in the ring.
3.) the transfer matrix is given by the focusing properties of the lattice elements, the elements of M are just those that we used to calculate single particle trajectories.
4.) go back to point 1.)

12.) Lattice Design:

, ... how to build a storage ring"

$$
\boldsymbol{B} \rho=\boldsymbol{p} / \boldsymbol{q}
$$

Circular Orbit: dipole magnets to define the geometry

$$
\alpha=\frac{d s}{\rho} \approx \frac{d l}{\rho}=\frac{B d l}{B \rho}
$$

The angle run out in one revolution must be 2π, so
...for a full circle $\quad \alpha=\frac{\int \boldsymbol{B} \boldsymbol{d} \boldsymbol{l}}{\boldsymbol{B} \rho}=2 \pi \quad \rightarrow \quad \int \boldsymbol{B} d l=2 \pi \frac{\boldsymbol{p}}{\boldsymbol{q}}$
... defines the integrated dipole field around the machine.

Nota bene: ১ $\frac{\Delta B}{D_{\text {Bernhard Holzer, CERN }}} \approx 10^{-4}$ is usually required !!

7000 GeV Proton storage ring dipole magnets $\mathrm{N}=1232$

$$
\int B d l \approx N l B=2 \pi p / e
$$

$$
\begin{aligned}
& l=15 \mathrm{~m} \\
& \mathrm{q}=+1 \mathrm{e}
\end{aligned}
$$

$$
\boldsymbol{B} \approx \frac{2 \pi 700010^{9} \boldsymbol{e} \boldsymbol{V}}{123215 \boldsymbol{m} 310^{8} \frac{\boldsymbol{m}}{\operatorname{CAS} \text { Prague } 2014}}=8
$$

The FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in between.
(Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

Starting point for the calculation: in the middle of a focusing quadrupole
Phase advance per cell $\mu=45^{\circ}$,
\rightarrow calculate the twiss parameters for a periodic solution

LHC: Lattice Design
 the ARC 90° FoDo in both planes

Periodic solution of a FoDo Cells

Output of the optics program:

$N r$	Type	Length	Strength	β_{x}	α_{x}	ψ_{x}	β_{y}	α_{y}	ψ_{y}
		m	$1 / m 2$	m		$1 / 2 \pi$	m		$1 / 2 \pi$
0	$I P$	0,000	0,000	11,611	0,000	0,000	5,295	0,000	0,000
1	$Q F H$	0,250	$-0,541$	11,228	1,514	0,004	5,488	$-0,781$	0,007
2	$Q D$	3,251	0,541	5,488	$-0,781$	0,070	11,228	1,514	0,066
3	$Q F H$	6,002	$-0,541$	11,611	0,000	0,125	5,295	0,000	0,125
4	$I P$	6,002	0,000	11,611	0,000	0,125	5,295	0,000	0,125

$Q_{X}=0,125 \quad Q_{Y}=0,125 \longrightarrow 0.125^{*} 2 \pi-45^{\circ}$

Can we understand, what the optics code is doing?
matrices $\quad \boldsymbol{M}_{\text {foc }}=\left(\begin{array}{cc}\cos \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right) \\ -\sqrt{|\boldsymbol{K}|} \sin \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right) & \cos \left(\sqrt{|\boldsymbol{K}|} l_{q}\right)\end{array}\right)$

$$
M_{d r i f t}=\left(\begin{array}{cc}
1 & l_{d} \\
0 & 1
\end{array}\right)
$$

strength and length of the FoDo elements

$$
\begin{aligned}
& K=+/-0.54102 \mathrm{~m}^{-2} \\
& l q=0.5 \mathrm{~m} \\
& l d=2.5 \mathrm{~m}
\end{aligned}
$$

The matrix for the complete cell is obtained by multiplication of the element matrices

$$
M_{F o D o}=M_{q f h} * M_{l d} * M_{q d} * M_{l d} * M_{q f}
$$

Putting the numbers in and multiplying out ...

$$
M_{F o D o}=\left(\begin{array}{cc}
0.707 & 8.206 \\
-0.061 & 0.707
\end{array}\right)
$$

The transfer matrix for one period gives us all the information that we need !

Phase advance per cell

$$
\beta=\frac{\boldsymbol{M}_{1,2}}{\sin \psi}=11.611 \boldsymbol{m}
$$

$$
\alpha=\frac{\boldsymbol{M}_{1,1}-\cos \psi}{\sin \psi}=0
$$

Resume':

transfer matrix in Twiss form

$$
\binom{x}{x^{\prime}}_{s}=M\binom{x}{x^{\prime}}_{0}
$$

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

$$
\boldsymbol{M}(\boldsymbol{s})=\left(\begin{array}{cc}
\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\
-\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}
\end{array}\right)
$$

beam emittance during acceleration
$\varepsilon \propto \frac{1}{\beta \gamma}$
dispersion

$$
D(s)=\frac{x_{i}(s)}{\Delta p / p}
$$

[^0]: * we can calculate the single particle trajectories between two locations in the ring, if we know the $\alpha \beta \gamma$ at these positions.
 * and nothing but the $\alpha \beta \gamma$ at these positions.

