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§  Beam Instrumentation is a very wide subject; with a large range of 
technologies and fields involved, including:!

§  Accelerator physics!
§  understand the beam parameters to be measured!
§  distinguish beam effects from sensor effects!

§  Particle physics and detector physics!
§  understand the interaction of the beam with the sensor!

§  RF technology!
§  Optics!
§  Mechanics!
§  Electronics!

§  Analogue signal treatment!
§  Low noise amplifiers!
§  High frequency analogue electronics!

§  Digital signal processing!
§  Digital electronics for data readout!

§  Software engineering!
§  Front-end and Application Software!

!

Introduction"
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§  Aim: assist in commissioning, tuning and operating the accelerator 
and to improve performance à see tomorrow!

§  In this presentation:!
§  Explain working principles of some of the most important 

instruments!
§  Give indication on achievable performance!
§  Give selected examples from operating machines and current 

developments!

Introduction, cont’d"
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§  Beam intensity!
§  Ideally: 6D phase space of the beam!
§  Real measurements: mean values and 1D-projection, some 2D-

projections!
§  Transverse position (mean x, y) à trajectory and orbit!
§  Transverse profile!
§  Bunch length, bunch shape!
§  Mean momentum and momentum spread!
§  Emittance and 2D phase space reconstruction (transverse and 

longitudinal)!
§  Beam halo measurements!

§  Tune, chromaticity, coupling, beta function, dispersion!
§  Beam Losses!
§  Polarisation!
§  Luminosity!

Measured Quantities"
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§  Different devices (techniques) to measure the same quantity ↔ Same 
device to measure different quantities!

!
!
!
!
!
!
!

§  Different Labs have different names for the same device!!

Classification of Selected Devices"

  
PROPERTY MEASURED!
 !
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Effect 
on 
beam!
 !
N - +  D 

Current transformers �       x       
Pick-ups � �   x       
Faraday cup �             x 
Secondary emission monitors � � � �   x x   
Wire scanners   � � �   x     
Scintillator screens   � �     x x   
OTR screen   � � x x!     
Residual-gas profile monitors   � � � x       
Beam loss monitors x       

Effect on beam  
depends on  
circumstances 
(e.g. on beam 
energy)!
!

N !none ! 
- !slight ! 
+ !perturbing!
D !destructive!
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§  Some instrument classifications:!
§  LINAC and transport lines: Single pass, can have separate 

measurement lines ↔ Synchrotron: multi pass!
§  Total Beam Energy (beam particles x particle energy) low ↔ high!
!
!

§  Harsh environment: !
§  Radiation (single event effects, radiation ageing, activation)!
§  Many sources of measurement noise and background!

§  Place readout close to detector, but à radiation!
§  RF heating by the beam!
§  Accessibility and maintenance!
§  Sometimes: cryogenic temperatures!
§  Mostly: must operate in vacuum and be UHV compatible!

Introduction, cont’d"
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§  Peter Forck: Lecture on Beam Instrumentation and Diagnostics at the 
Joint University Accelerator School (JUAS),  
see also the extended Bibliography.  
http://www-bd.gsi.de/conf/juas/juas.html!

§  CERN Accelerator Schools (CAS): 
http://cas.web.cern.ch/cas/CAS%20Welcome/Previous%20Schools.htm and  
http://cas.web.cern.ch/cas/CAS_Proceedings.html !
§  Rhodri Jones and Hermann Schmickler: Introduction to Beam 

Instrumentation and Diagnostics, CERN-2006-002.!
§  Daniel Brandt (Ed.), 2008 CAS on Beam Diagnostics for 

Accelerators, Dourdan, CERN-2009-005 (2009).!
§  Heribert Koziol, Beam Diagnostic for Accelerators, Loutraki, 

Greece (2000), CERN/PS 2001-012 (DR), 
see also extended Bibliography.!

§  Jacques Bosser (Ed.), Beam Instrumentation, CERN-PE-ED 001-92, 
Rev. 1994  
!

Resources and References"
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Beam Position Monitors"
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§  Among the most numerous instruments!
§  Measurements: !

§  Transverse beam position (typically next to focusing elements)!
§  Beam trajectory or closed orbit!
§  injection oscillations!

§  Tune and lattice function in synchrotrons!

!

Capacitive Pick-Ups for Bunched Beams"

beam"
trajectory"

Focusing elements"
(e.g. quadrupoles)"

BPM Pickups"

s 

x, y 

M. Wendt!
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Capacitive Pick-Up – The Principle"

Rhodri Jones, CAS 2011!
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•  Image current in vacuum 
chamber walls: equal size and 
opposite sign of the AC beam 
component!

• Monitor the induced charge with a 
plate inserted in the beam pipe!
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Schematics and Simplified Equivalent Circuit"

Uim(ω) = A/2πa  ·  1/βc  · 1/C  · iωRC  /1  +  iωRC  · 
Ibeam(ω)!

≡  Zt(ω, β) · Ibeam(ω)!

Zt  … longitudinal transfer impedance 

𝐼↓𝑖𝑚 = 𝐴/2𝜋𝑎𝑙 (− 𝑙/𝛽𝑐    𝑑𝐼↓𝑏𝑒𝑎𝑚 /𝑑𝑡 )=   𝐴/2𝜋𝑎𝑙 1/𝛽𝑐 𝑖𝜔
𝐼↓𝑏𝑒𝑎𝑚 (𝜔)!

⇒ High pass characteristics with a 
cut-off frequency, fcut!

P. Forck, JUAS!

CR
fcut π2

1
=

Frequency (Hz)!

R
es

po
ns

e 
(V

)!

0
0

Uim(ω) = R  /1  +  iωRC  · Iim(ω) 

frequency domain: 𝐼↓𝑏𝑒𝑎𝑚 = 𝐼↓0 𝑒↑−𝑖𝜔𝑡 !
!
Uim !… voltage measured due to image current!
R !… amplifier input resistor!
ω !… frequency!
βc !… beam velocity!
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§  Signal on each plate is proportional to the beam intensity!
§  The difference signal (ΔU), top - bottom, or left – right, is proportional 

to the position of the beam center of mass!
§  Normalization to the sum signal (ΣU) 

gives the position:"
§   𝒙=   𝟏/𝑺↓𝒙 (𝝎,𝒙,𝒚) ∙ ∆𝑼/𝜮𝑼    !

§  The difference signal (ΔU) is  
normally at least a factor 10 lower  
than the sum signal (ΣU)!

§  Difficult to do electronically without some of the intensity information 
leaking through!

§  When looking for small differences this leakage can dominate the 
measurement!

§  Resolution for typical apertures: !
§  ≈ tens μm turn-by-turn !
§  ≈ μm multi-turn resolution!

Beam Position"
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Example: Button Pick-up"
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ü  Low cost ⇒ most popular!
×   Non-linear!

§  requires correction algorithm!
!when beam is off-centre!

!
!
!
!
!
LHC buttons"
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R. Jones, CAS!
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§  ΔU gives linear position reading (no  
geometric correction)!

§  Condition: Linear cut: projection on the  
measurement plane must be linear:!

!
!
§  Various geometries  

have been built,  
example from GSI  
optimization study 
(P.Kowina et al., 
DIPAC 2005) !

Shoebox Pick-up"
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§  Beam-based setup currently with BLM signal → time consuming!
§  Tighter tolerances will be required for future LHC operation!
§  BPM integrated in the tapered end of the collimator jaws (10.6mm 

retraction from jaw surface)!
§  Drastically reduce set-up time!
§  Allow constant monitoring of beam position to jaw position!

§  Successfully tested in the SPS 
(D. Wollmann, HB2012)!
§  <25 μm difference to BLM setup  

- believed to be dominated by the  
BLM setup method!

§  single pass (transfer line):  
<90μm rms!

§  no disturbance observed from  
protons hitting the jaws or from  
shower particles !

New LHC Collimators with Integrated BPMs"



Eva Barbara Holzer CAS intr. Level course on Accelerator Physics September, 2014 16 Eva Barbara Holzer 16 

Beam Current"
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§  Measurement of the beam’s  
electrical charges"
§  Low energies only!
§  Particles are stopped in the  

device  
à Destructive!

§  Sensitive to low currents: 
down to 1 pA can be measured!

§  Creation of secondary electrons  
of low energy (below 20 eV) !

§  Repelling electrode with some  
100 V polarization voltage  
pushes secondary electrons  
back onto the electrode!

§  Absolute accuracy:!
§  ≈ 1% (some monitors  

reach 0.1%)"

Faraday Cup"

Faraday Cup at GSI LINAC, P. Forck, JUAS!

CERN "GSI"
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§  Measurement of the magnetic field of the beam!
§  Non-interceptive!
§  Independent on beam energy!
§  Beam as primary winding of a transformer!

!
!

!

Beam Current Transformer (BCT)"

Magnetic field 
ri 

ro 

w N Turn winding 
U = L · dI/dt Beam 

U. Raich, CAS!
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Current Transformers"

Transformer Inductance 
 
 
 i

r

r
rNwL 020 ln

2π
µµ

=

§  Magnetic field of the beam is 
very low (Example: 1 μA,  
r = 10cm ⇒ 2 pT; compared 
to earth magnetic field of  
≈50 μT)!

§  Aim of the Torus:!

§  Capture magnetic field 
lines with cores of high 
relative permeability!

§  Signal strength nearly 
independent of beam 
position.!

§  CoFe based amorphous 
alloy Vitrovac: μr= 105!

P. Forck, JUAS!
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Adapt Droop Time with Active Transformer"

s 

𝝉↓𝒅 =   𝑳/𝑹↓𝒇 ∕𝑨+ 𝑹↓𝑳  ≈𝑳/
𝑹↓𝑳   

§  Use a trans-impedance amplifier 
(current-to-voltage converter) for 
observation of beam pulses > 10 μs, 
e.g. at pulsed LINAC !

§  Droop time constants of up to 1s!
§  Longer rise times as well (to reduce 

high frequency noise of the amplifier!

P. Forck, JUAS!

H. Koziol, CAS!

Bunch trains:!
!
•  Equal areas!
•  Baseline shift proportional to intensity!
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§  Image current passing outside of the 
transformer torus!

§  High permeability material shields the 
transformer against external magnetic 
fields!

Transformer Housing"

BEAM 

Image 
Current 

Ceramic 
Gap 

80nm Ti Coating 
⇒ 20Ω to improve 
impedance 

1:40 Passive 
Transformer 

Calibration winding 

CERN SPS Fast Beam 
Current Transformer 
(FBCT) 

500 MHz Bandwidth; Low droop (< 0.2%/ms)!

Diagram by 
H. Jakob!
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§  4 batches each containing 72 bunches separated by 25 ns!

CERN FBCT Readings of LHC Type Beams in the SPS"

R. Jones, 
DIPAC’03!
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§  DC current dB/dt = 0 ⇒ no voltage induced!
§  Use two identical toroids!
§  Take advantage of non-linear magnetisation curve!
!
§  Modulation of  

opposite sign  
drives toroids into  
saturation!

§  Sense windings  
measure the modulation  
signal!
§  Signals from the two  

toroids cancel each  
other as long as  
there is no beam!

DCCT: DC Beam Current Transformer"

B

I 

P. Forck, JUAS!
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I=Imod 

B 

Modulation Current - Core 1 
Modulation Current - Core 2 

IM 

t 

Hysteresis loop!
of modulator cores!

DCCT Principle – Case 1: No Beam"

R. Jones, CAS!
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I 

B 

V 

t 

dB/dt - Core 1 (V1) 
dB/dt - Core 2 (V2) 
Output voltage = V1 + V2 

DCCT Principle – Case 1: No Beam"

dt
dBV ∝

R. Jones, CAS!

I=Imod 
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Beam Current IB!

V 

t 

 IB 

dB/dt - Core 1 (V1) 
dB/dt - Core 2 (V2) 
Output voltage = V1 + V2 

B 

DCCT Principle – Case 2: With Beam"

Output signal is 
at twice 
the modulation 
frequency 

I=IB+Imod 
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§  The length of the pulses is a measure for the beam current!
§  Zero-flux scheme: compensate for the beam current and measure the 

magnitude of the compensation current!
!

DCCT in the “Zero Flux” Scheme"

P. Forck, JUAS!
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§  Achievable performance Fast Beam Current Transformers (FBCT):!
§  Absolute accuracy: ! ! !1%!
§  Reproducibility / relative precision: !0.1%!
§  Dynamic range: ! ! !103 (104)!

§  Performance LHC DC Beam Current Transformers (DCCT):!
§  Absolute accuracy: ! ! !0.2%!
§  Noise floor ! ! ! !2 µA!
§  Dynamic range ! ! !106 (µA – 1A)!

Performance"
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Transverse Profile"
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§  Methods which intercept the beam with matter:!
§  Secondary emission (SEM) grids!
§  Screens!
§  Wire scanners!

§  more or less perturbing to the beam!
§  Energies/intensity threshold for safe operation!

§  Material damage (e.g. wire sublimation, breakage)!
§  Radiation to other machine components (e.g. quenching of 

superconducting magnets)!
§  (Quasi) Non-Invasive Methods: !

§  Synchrotron light monitors!
§  Rest Gas Ionisation monitors!
§  Luminescence monitors!
§  Laser wire scanner!
§  Electron beam scanner!
§  Gas screen, gas pencil beams!
§  Beam Gas Vertex Detector – designed for absolute measurement!

Overview - Beam Profile measurement"

SEM grids and wire 
scanners:!
Used as reference 
measurement for 
the other methods!
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§  When the beam passes through a wire,  
secondary electrons are emitted,  
proportional to beam intensity!

§  The current flowing back onto the wires  
is measured using one amplifier/ADC  
chain for each wire!

§  Clearing field removes liberated electrons!
§  Problem: thermal emission!
§  Very high sensitivity, semi-transparent!
§  Good absolute measurement!
§  Spatial resolution limited by  

wire spacing to <≈ 0.25mm!
§  Dynamic range: ≈ 106!

Secondary Emission (SEM) Grids"
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§  Typically for  setting-up with low intensities, thick screens (mm)  
à emittance blow-up!

§  Workshop in 2011 at GSI to look at resolution possible with various 
screen materials: http://www-bd.gsi.de/ssabd/home.htm!

§  Sensitivities of different materials vary by orders of magnitudes!

Scintillation Screens"

Approximate values for inorganic scintillators!

P. Forck, JUAS !
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§  Radiation emitted when a charged particle beam goes through the  
interface of two media with different dielectric constants!

§  Surface phenomenon allows the use of very thin screens (≥ 0.25 μm)!
§  Much less intercepting, but requires higher intensity!

Optical Transition Radiation (OTR) Screens"

OTR Screen!

Mirror!

Intensifier -!
CCD!

Beam!

Lens!

Exit window!

CERN SPS at injection 
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§  Combine several screens in one housing e.g.!
§  Al2O3 scintillation screen for setting-up with low intensity!
§  Thin (≈10μm) Ti OTR screen for high intensity measurements!
§  Carbon OTR screen for very high intensity operation!

§  Cameras:!
§  CCD cameras are radiation sensitive!
§  Analogue VIDICON camera can be used with high radiation!

Beam Profile Monitoring Using Screens"
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§  A thin wire (down to 10 µm) is moved across the beam!
§  Has to move fast to avoid excessive heating of the wire!
§  Rotational scanner up to 10 m/s with  

special pneumatic mechanism  
(linear scanners slower)!

§  Detection!
§  Secondary particle shower detected  

outside the vacuum chamber e.g.  
using a scintillator/photo-multiplier  
assembly!

§  Secondary emission current detected  
as for SEM grids !

§  Correlating wire position with detected  
signal gives the beam profile!
§  Wire vibrations limit position  

resolution!
§  Less invasive than screen or SEM grids!

Wire Scanners"



Eva Barbara Holzer CAS intr. Level course on Accelerator Physics September, 2014 36 

§  Design goals:!
§  Spatial resolution of few µm (using high resolution angular position 

sensor )!
§  Dynamic range: 104 !

§  Usage of sensor with large  
dynamic (diamond)!

§  Automatic electronic  
switching of gain ranges !

§  Minimize fork and wire  
deformations!
§  Study of dynamic behavior  

of fork/wire system!
§  Vibration mode optimized  

acceleration profile!
§  Current Wire Scanners at CERN:!

§  Dynamic range 100; accuracy 5-10%; spatial resolution 50 µm 
(linear type) and 200 µm (rotational)!

New Wire Scanner being developed at CERN"

B. Dehning!
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Beam Loss Measurement 
 
for Protection and Diagnostics"
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§  See Review of Particle Physics, J. Beringer et al. (Particle Data Group), 
Phys. Rev. D 86, 010001 (2012) for reference.!

§  Ionization"
§  Energy loss by Ionization  

described by the  
Bethe-Bloch formula!

§  Concept of Minimum  
Ionizing Particle!

§  dE/dxMIP =  
"(1-5) MeV cm2 g-1"

!
§  Scintillation"

§  Light produced by de-excitation of atom / molecule!
§  Yield is proportional to the energy loss!

§  Y = dL/dx = R dE/dx"

Detection Principles"
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§  Cherenkov light"

Detection Principles cont’d"

Drawing: Bock and 
Vasilescu 1999 !

Refractive index: n 
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§  Short ionisation chamber (charge detection)!
§  Typically gas filled with many metallic  

electrodes and kV bias!
§  Speed limited by ion collection time –  

tens of microseconds!
§  Dynamic range of up to 108!

§  PIN photodiode (count detection)!
§  Detect charged particle!
§  Insensitive to photons from synchrotron  

radiation due to coincidence counting in  
two back-to-back mounted PIN diodes 
(K. Wittenburg, DESY)!

§  Count rate proportional to beam loss!
§  Speed limited by integration time!
§  Dynamic range of up to 109!

!

Common types of monitors"
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§  Scintillator plus photo-multiplier!
§  Types of scintillators!

§  Inorganic crystals: NaI, CsI, ....!
§  Organic (plastic, liquid)!

§  Light directed (via waveguides) to photomultiplier tube!

Common types of monitors cont’d"
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§  Long ionisation chamber (charge detection)!
§  Up to several km of gas filled hollow coaxial cables!
§  Longitudinal position information by arrival time measurement!
§  e.g. SLAC – 8m position resolution (30ns) over 3.5km cable length!
§  Dynamic range of up to 104!

§  Cherenkov fibres!
§  Time resolution 1 ns!
§  Minimal space requirement!
§  Insensitive to gamma background, E and B fields!
§  Radiation hard (depending on type)!
§  Combination fiber / readout can adapt to a wide dose range!
§  Dynamic range 104 seems feasible!

Common types of monitors cont’d"
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§  Main purpose: prevent  
damage and quench"

§  3600 Ionization chambers!
§  Beam abort thresholds:!

§  12 integration intervals:  
40μs to 84s (32 energy levels)!
!à 1.5 Million threshold values!
§  Each monitor aborts beam!

§  One of 12 integration intervals over threshold!
§  Internal test failed!

§  Requirements and Challenges!
§  High Dependability (Reliability, Availability, Safety)!
§  Threshold precision (factor 2)!
§  Reaction time 1-2 turns (100 – 200 μs)!
§  Dynamic range: 108  (at 40µs 105 achieved – 106 planned)!
§  Radiation hard: currently at CERN development of kGy 

radiation hard readout to avoid noise from long cables!

!

LHC BLM System"



Eva Barbara Holzer CAS intr. Level course on Accelerator Physics September, 2014 44 

Beam Abort Threshold Determination"

§  Relate the BLM signal to the:!
§  Number of locally lost beam  

particles!
§  Deposited energy in the machine!
§  Quench and damage levels!

§  Extensive simulations and  
experiments during system design  
and beam tests in the LHC!
§  Proton loss locations (tracking codes: 

MAD-X, SIXTRACK)!
§  Hadronic showers through  

magnets (GEANT, FLUKA)!
§  Magnet quench levels as function of  

beam energy and loss duration!
§  Chamber response to the mixed  

radiation field (GEANT, FLUKA,  
GARFIELD)!

!
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§  Find the beam  
center with each  
collimator jaw by  
stepping the  
jaw towards the  
beam and  
observing the BLM signal!

Set-up and validation of collimation performance"

Beam 

Collimator 
BLM 

Threshold 

BLM Signal 

Jaw Positions 

Time 

‘loss map’: losses along the 
ring normalized to the losses 
at the primary collimator: 
performance verification!
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§  Fast and sensitive!
§  Small and radiation hard!
§  Used in LHC to distinguish bunch by 

bunch losses!
§  Dynamic range of monitor: 109 !
§  Temporal resolution: few ns!
§  Test system installed in cryo magnet 

at LHC!

Diamond Detectors"
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Thank you for your Attention"
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(Quasi) Non-Invasive Beam Size Measurement"



Eva Barbara Holzer CAS intr. Level course on Accelerator Physics September, 2014 49 

§  Beam imaging with vertex reconstruction of beam gas interactions!
§  Reconstruct the tracks coming from inelastic beam-gas interactions!
§  Determine the position of the interaction (vertex)!
§  Accumulate vertices to measure beam position, angle, width and relative 

bunch populations!
§  Main requirements!

§  Sufficient beam-gas rate → controlled pressure bump!
§  Good vertex resolution → precise detectors and optimized geometry!

Beam Gas Vertex monitor"

Courtesy of Plamen 
Hopchev!
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§  Goal: develop a transverse profile monitor for (HL) LHC!
§  Overcome the limitations and complement the existing devices!

§  Demonstrate the potential of this technique by installing a prototype 
BGV system on one beam at the LHC!
§  Commissioning planned for 2015!

BGV Demonstrator"

Detector!
§ Scintillating 

fibres read out 
with SiPMs!

§ Same 
technology as 
for the LHCb 
upgrade!

Courtesy of Plamen Hopchev!
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§  Only for electrons & very high energy protons/ions (LHC)!
§  For linear machine: difficult to separate the light from the beam!
§  Difficult to get absolute calibration:  

Image correction factors typically bigger than the beam size!
§  Dynamic range 200 (105 by changing the attenuation)!
§  Accuracy 30%!
§  Spatial resolution 50μm!

Synchrotron Light Monitor"

LHC: transverse blow-up of 
individual bunches!
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§  Residual Gas Ionisation!
§  dynamic range: up to 103!

§  ≈ 10 times more sensitive than 
Luminescence!

§  Image broadening due to space charge!
§  More complicated to build!

§  High voltage!
§  Guiding magnetic field!
§  Compensation  

magnets for the beam!

IPM (Ionization Profile Monitors)"

M.Schwickert, P.Forck, F.Becker, GSI!

T. Giacomini et al., GSI!
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§  Beam Induced Fluorescence (BIF)!
§  Insensitive to electric and magnetic 

fields (e.g. beam space charge)!
§  Sensitive to radiation → leading to 

background!
§  Low signal yield → gas injection (e.g. 
N↓2 , H↓2 )!

§  Dynamic range: ≈ 103!

Luminescence Profile Monitor"

N2 injection

To signal
processingCCD

I [MCP]

Beam

400 l/s 400 l/s

Lens, Image-Intensifier 
and CCD FireWire-Camera 

N2-fluorescent 
gas"

equally 
distributed"

M.Schwickert, P.Forck, F.Becker, GSI!
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§  Profile Collected every 20ms!

§  Local Pressure at ≈5×10-7 Torr!

2D 
Side view 

3D 
Image 

Beam Size!

Ti
m

e!

Injection 

Beam size shrinks as!
beam is accelerated!

Fast extraction!

Slow extraction!

Luminescence Profile Monitor – Example CERN SPS"
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§  Good candidate for H- (and 
electrons)!

§  Electron is stripped from the H-, 
deflected and measured  
(e.g. Faraday cup)!

§  Can measure down to µm level!
§  dynamic range: up to 103!

!

Laser wire scanner"

Courtesy of A. Alexandrov!

1 MW beam power!
Y. Liu, SNS, PAC’11!
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§  Electron beam scanner (SNS, PAC’11, HB2012, W. Blokland)!
§  Electrons are deflected by proton beam and measured on a 

fluorescent screen !

Electron Beam Scanner"


