

Beam Instrumentation

Eva Barbara Holzer

CERN, Geneva, Switzerland

CAS Introductory level course on Accelerator Physics

1

Introduction

- Beam Instrumentation is a very wide subject; with a large range of technologies and fields involved, including:
- Accelerator physics
 - understand the beam parameters to be measured
 - distinguish beam effects from sensor effects
- Particle physics and detector physics
 - understand the interaction of the beam with the sensor
- RF technology
- Optics
- Mechanics
- Electronics
 - Analogue signal treatment
 - Low noise amplifiers
 - High frequency analogue electronics
 - Digital signal processing
 - Digital electronics for data readout

Software engineering

Front-end and Application Software

 Aim: assist in commissioning, tuning and operating the accelerator and to improve performance → see tomorrow

- In this presentation:
 - Explain working principles of some of the most important instruments
 - Give indication on achievable performance
 - Give selected examples from operating machines and current developments

Measured Quantities

- Beam intensity
- Ideally: 6D phase space of the beam
- Real measurements: mean values and 1D-projection, some 2Dprojections
 - Transverse position (mean x, y) \rightarrow trajectory and orbit
 - Transverse profile
 - Bunch length, bunch shape
 - Mean momentum and momentum spread
 - Emittance and 2D phase space reconstruction (transverse and longitudinal)
 - Beam halo measurements
- Tune, chromaticity, coupling, beta function, dispersion
- Beam Losses
- Polarisation
- Luminosity

Classification of Selected Devices

 Different devices (techniques) to measure the same quantity ↔ Same device to measure different quantities

Effect on beam depends on circumstances (e.g. on beam energy)

- N none
- slight
- + perturbing
- D destructive

Different Labs have different names for the same device!

Introduction, cont'd

- Some instrument classifications:
 - LINAC and transport lines: Single pass, can have separate measurement lines
 Synchrotron: multi pass
 - Total Beam Energy (beam particles x particle energy) low ↔ high

- Harsh environment:
 - Radiation (single event effects, radiation ageing, activation)
 - Many sources of measurement noise and background
 - Place readout close to detector, but \rightarrow radiation
 - RF heating by the beam
 - Accessibility and maintenance
 - Sometimes: cryogenic temperatures
 - Mostly: must operate in vacuum and be UHV compatible

Resources and References

- Peter Forck: Lecture on Beam Instrumentation and Diagnostics at the Joint University Accelerator School (JUAS), see also the extended Bibliography. http://www-bd.gsi.de/conf/juas/juas.html
- CERN Accelerator Schools (CAS):

http://cas.web.cern.ch/cas/CAS%20Welcome/Previous%20Schools.htm and http://cas.web.cern.ch/cas/CAS_Proceedings.html

- Rhodri Jones and Hermann Schmickler: Introduction to Beam Instrumentation and Diagnostics, CERN-2006-002.
- Daniel Brandt (Ed.), 2008 CAS on *Beam Diagnostics for* Accelerators, Dourdan, CERN-2009-005 (2009).
- Heribert Koziol, Beam Diagnostic for Accelerators, Loutraki, Greece (2000), CERN/PS 2001-012 (DR), see also extended Bibliography.
- Jacques Bosser (Ed.), *Beam Instrumentation*, CERN-PE-ED 001-92, Rev. 1994

Beam Position Monitors

Capacitive Pick-Ups for Bunched Beams

- Among the most numerous instruments
- Measurements:
 - Transverse beam position (typically next to focusing elements)
 - Beam trajectory or closed orbit
 - injection oscillations
 - Tune and lattice function in synchrotrons

BPM Pickups

9

Capacitive Pick-Up – The Principle

- Image current in vacuum chamber walls: equal size and opposite sign of the AC beam component
- Monitor the induced charge with a plate inserted in the beam pipe

V

Schematics and Simplified Equivalent Circuit

 $I \downarrow im = A/2\pi a l (-l/\beta c \ dI \downarrow beam / dt) = A/2\pi a l 1/\beta c \ i\omega$ $I \downarrow beam (\omega)$

frequency domain: $I \downarrow beam = I \downarrow 0 \ e^{\uparrow} - i \omega t$

U_{im} ... voltage measured due to image current

- R ... amplifier input resistor
- $\omega \quad \dots \text{ frequency}$
- $\beta c \dots beam velocity$

 $I_{im}(t)$

equivalent circuit

$$U_{im}(\omega) = R / 1 + i\omega RC \cdot I_{im}(\omega)$$

 $U_{im}(\omega) = A/2\pi a \cdot 1/\beta c \cdot 1/C \cdot i\omega RC/1 + i\omega RC \cdot I_{beam}(\omega)$

$$\equiv \mathsf{Z}_{\mathsf{t}}(\omega,\,\beta)\,\cdot\,\mathsf{I}_{\mathsf{beam}}(\omega)$$

ground

 $Z_t \ \dots$ longitudinal transfer impedance

 \Rightarrow High pass characteristics with a cut-off frequency, $\rm f_{cut}$

Beam Position

- Signal on each plate is proportional to the beam intensity
- The difference signal (ΔU), top bottom, or left right, is proportional to the position of the beam center of mass
- Normalization to the sum signal (ΣU) gives the position:
 - $x = 1/S I x (\omega, x, y) \cdot \Delta U \not\in \Sigma U$ position
- The difference signal (ΔU) is normally at least a factor 10 lower than the sum signal (ΣU)

- Difficult to do electronically without some of the intensity information leaking through
- When looking for small differences this leakage can dominate the measurement
- Resolution for typical apertures:
 - ≈ tens µm turn-by-turn
 - $\approx \mu m$ multi-turn resolution

Example: Button Pick-up

- × Non-linear
 - requires correction algorithm when beam is off-centre

 $X = 2.30 \cdot 10^{-5} X_1^5 + 3.70 \cdot 10^{-5} X_1^3 + 1.035 X_1 +$ $7.53 \cdot 10^{-6} X_1^3 Y_1^2 + 1.53 \cdot 10^{-5} X_1 Y_1^4$

R. Jones, CAS

Shoebox Pick-up

- ΔU gives linear position reading (no geometric correction)
- Condition: Linear cut: projection on the measurement plane must be linear:

ground potential

New LHC Collimators with Integrated BPMs

- Beam-based setup currently with BLM signal → time consuming
- Tighter tolerances will be required for future LHC operation
- BPM integrated in the tapered end of the collimator jaws (10.6mm retraction from jaw surface)
 - Drastically reduce set-up time
 - Allow constant monitoring of beam position to jaw position
- Successfully tested in the SPS (D. Wollmann, HB2012)
 - <25 µm difference to BLM setup
 believed to be dominated by the BLM setup method
 - single pass (transfer line): <90µm rms
 - no disturbance observed from protons hitting the jaws or from shower particles

Beam Current

Faraday Cup

- Measurement of the beam's electrical charges
 - Low energies only
 - Particles are stopped in the device
 - → Destructive
 - Sensitive to low currents: down to 1 pA can be measured
 - Creation of secondary electrons of low energy (below 20 eV)
 - Repelling electrode with some 100 V polarization voltage pushes secondary electrons back onto the electrode
 - Absolute accuracy:
 - ≈ 1% (some monitors reach 0.1%)

Faraday Cup at GSI LINAC, P. Forck, JUAS

Beam Current Transformer (BCT)

- Measurement of the magnetic field of the beam
- Non-interceptive
- Independent on beam energy
- Beam as primary winding of a transformer

Current Transformers

Transformer Inductance

$$L = \frac{\mu_0 \ \mu_r}{2\pi} w N^2 \ln \frac{r_0}{r_i}$$

- Magnetic field of the beam is very low (Example: 1 µA, r = 10cm ⇒ 2 pT; compared to earth magnetic field of ≈50 µT)
- Aim of the Torus:
 - Capture magnetic field lines with cores of high relative permeability
 - Signal strength nearly independent of beam position.
 - CoFe based amorphous alloy Vitrovac: μ_r= 10⁵

Adapt Droop Time with Active Transformer

Bunch trains:

- Equal areas
- Baseline shift proportional to intensity

H. Koziol, CAS

- Use a trans-impedance amplifier (current-to-voltage converter) for observation of beam pulses > 10 µs, e.g. at pulsed LINAC
- Droop time constants of up to 1s
- Longer rise times as well (to reduce high frequency noise of the amplifier

 $\tau \downarrow d = L/R \downarrow f /A + R \downarrow L \approx L/$ R \downarrow L

Transformer Housing

- Image current passing outside of the transformer torus
- High permeability material shields the transformer against external magnetic fields

500 MHz Bandwidth; Low droop (< 0.2%/ms)

CERN FBCT Readings of LHC Type Beams in the SPS

4 batches each containing 72 bunches separated by 25 ns

DCCT: DC Beam Current Transformer

- DC current dB/dt = $0 \Rightarrow$ no voltage induced
- Use two identical toroids
- Take advantage of non-linear magnetisation curve

Β

DCCT Principle – Case 1: No Beam

DCCT Principle – Case 1: No Beam

CAS intr. Level course on Accelerator Physics Eva Barbara Holzer

DCCT Principle – Case 2: With Beam

DCCT in the "Zero Flux" Scheme

- The length of the pulses is a measure for the beam current
- Zero-flux scheme: compensate for the beam current and measure the magnitude of the compensation current

Performance

Achievable performance Fast Beam Current Transformers (FBCT):

Absolute accuracy:	1%
 Reproducibility / relative precision 	on: 0.1%
Dynamic range:	10 ³ (10 ⁴)

Performance LHC DC Beam Current Transformers (DCCT):

Absolute accuracy:	0.2%
 Noise floor 	2 µA
Dynamic range	10 ⁶ (µA – 1A)

Transverse Profile

Overview - Beam Profile measurement

- Methods which intercept the beam with matter:
 - Secondary emission (SEM) grids
 - Screens
 - Wire scanners
 - more or less perturbing to the beam
 - Energies/intensity threshold for safe operation
 - Material damage (e.g. wire sublimation, breakage)
 - Radiation to other machine components (e.g. quenching of superconducting magnets)
- Quasi) Non-Invasive Methods:
 - Synchrotron light monitors
 - Rest Gas Ionisation monitors
 - Luminescence monitors
 - Laser wire scanner
 - Electron beam scanner
 - Gas screen, gas pencil beams
 - Beam Gas Vertex Detector designed for absolute measurement

SEM grids and wire scanners: Used as reference measurement for the other methods

Secondary Emission (SEM) Grids

- When the beam passes through a wire, secondary electrons are emitted, proportional to beam intensity
- The current flowing back onto the wires is measured using one amplifier/ADC chain for each wire
- Clearing field removes liberated electrons
- Problem: thermal emission
- Very high sensitivity, semi-transparent
- Good absolute measurement
- Spatial resolution limited by wire spacing to <≈ 0.25mm
- Dynamic range: ≈ 10⁶

CAS intr. Level course on Accelerator Physics Eva Barbara Holzer

Scintillation Screens

- Typically for setting-up with low intensities, thick screens (mm)
 → emittance blow-up
- Workshop in 2011 at GSI to look at resolution possible with various screen materials: <u>http://www-bd.gsi.de/ssabd/home.htm</u>
- Sensitivities of different materials vary by orders of magnitudes

Abbreviation	Material	Activator	max. emission	decay time
Quartz	SiO_2	none	470 nm	< 10 ns
	CsI	Tl	$550 \ \mathrm{nm}$	$1 \ \mu s$
Chromolux	Al_2O_3	Cr	700 nm	$100 \mathrm{\ ms}$
YAG	$Y_3Al_5O_{12}$	\mathbf{Ce}	$550 \ \mathrm{nm}$	$0.2~\mu { m s}$
	Li glass	Ce	400 nm	$0.1~\mu { m s}$
P11	ZnS	Ag	450 nm	$3 \mathrm{ms}$
P43	$\mathrm{Gd}_2\mathrm{O}_2\mathrm{S}$	Tb	545 nm	$1 \mathrm{ms}$
P46	$Y_3Al_5O_{12}$	\mathbf{Ce}	530 nm	$0.3~\mu { m s}$
P47	$Y_2Si_5O_5$	Ce&Tb	400 nm	100 ns

Approximate values for inorganic scintillators

P. Forck, JUAS

Optical Transition Radiation (OTR) Screens

- Radiation emitted when a charged particle beam goes through the interface of two media with different dielectric constants
- Surface phenomenon allows the use of very thin screens ($\geq 0.25 \ \mu m$)
- Much less intercepting, but requires higher intensity

Beam Profile Monitoring Using Screens

- Combine several screens in one housing e.g.
 - Al₂O₃ scintillation screen for setting-up with low intensity
 - Thin ($\approx 10 \mu m$) Ti OTR screen for high intensity measurements
 - Carbon OTR screen for very high intensity operation

Cameras:

- CCD cameras are radiation sensitive
- Analogue VIDICON camera can be used with high radiation

Wire Scanners

- A thin wire (down to $10 \ \mu$ m) is moved across the beam
 - Has to move fast to avoid excessive heating of the wire
 - Rotational scanner up to 10 m/s with special pneumatic mechanism (linear scanners slower)

Detection

- Secondary particle shower detected outside the vacuum chamber e.g. using a scintillator/photo-multiplier assembly
- Secondary emission current detected as for SEM grids
- Correlating wire position with detected signal gives the beam profile
 - Wire vibrations limit position resolution
- Less invasive than screen or SEM grids

New Wire Scanner being developed at CERN

- Design goals:
 - Spatial resolution of few µm (using high resolution angular position sensor)
 - Dynamic range: 10⁴
 - Usage of sensor with large dynamic (diamond)
 - Automatic electronic switching of gain ranges
 - Minimize fork and wire deformations
 - Study of dynamic behavior of fork/wire system
 - Vibration mode optimized acceleration profile
- Current Wire Scanners at CERN:
 - Dynamic range 100; accuracy 5-10%; spatial resolution 50 $\mu{\rm m}$ (linear type) and 200 $\mu{\rm m}$ (rotational)

Beam Loss Measurement

for Protection and Diagnostics

Detection Principles

- See Review of Particle Physics, J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) for reference.
- Ionization
 - Energy loss by Ionization described by the Bethe-Bloch formula
 - Concept of Minimum Ionizing Particle
 - dE/dx_{MIP} =

(1-5) MeV cm² g⁻¹

Scintillation

- Light produced by de-excitation of atom / molecule
- Yield is proportional to the energy loss
 - Y = dL/dx = R dE/dx

Detection Principles cont'd

Cherenkov light

Trajectory of Particle
 Cherenkov Light
 Shock Waves

Drawing: Bock and Vasilescu 1999

photon yield:
$$\frac{dN}{dx} = 2 \cdot \pi \cdot \alpha \cdot \sin^2 \Theta \cdot \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)$$

 $\cos \Theta = \frac{1}{2}$ with $\beta > 1/n$; $\alpha = 1/137.036$ and $\lambda_1 = wavelength interval$

B-n

Common types of monitors

- Short ionisation chamber (charge detection)
 - Typically gas filled with many metallic electrodes and kV bias
 - Speed limited by ion collection time tens of microseconds
 - Dynamic range of up to 10⁸
- PIN photodiode (count detection)
 - Detect charged particle
 - Insensitive to photons from synchrotron radiation due to coincidence counting in two back-to-back mounted PIN diodes (K. Wittenburg, DESY)
 - Count rate proportional to beam loss
 - Speed limited by integration time
 - Dynamic range of up to 10⁹

Common types of monitors cont'd

- Scintillator plus photo-multiplier
 - Types of scintillators
 - Inorganic crystals: Nal, Csl,
 - Organic (plastic, liquid)
 - Light directed (via waveguides) to photomultiplier tube

Common types of monitors cont'd

- Long ionisation chamber (charge detection)
 - Up to several km of gas filled hollow coaxial cables
 - Longitudinal position information by arrival time measurement
 - e.g. SLAC 8m position resolution (30ns) over 3.5km cable length
 - Dynamic range of up to 10⁴
- Cherenkov fibres
 - Time resolution 1 ns
 - Minimal space requirement
 - Insensitive to gamma background, E and B fields
 - Radiation hard (depending on type)
 - Combination fiber / readout can adapt to a wide dose range
 - Dynamic range 10⁴ seems feasible

LHC BLM System

- Main purpose: prevent damage and quench
- 3600 Ionization chambers
- Beam abort thresholds:
 - 12 integration intervals:
 40µs to 84s (32 energy levels)

- \rightarrow 1.5 Million threshold values
 - Each monitor aborts beam
 - One of 12 integration intervals over threshold
 - Internal test failed
- Requirements and Challenges
 - High Dependability (Reliability, Availability, Safety)
 - Threshold precision (factor 2)
 - Reaction time 1-2 turns (100 200 μs)
 - Dynamic range: 10⁸ (at 40µs 10⁵ achieved 10⁶ planned)
 - Radiation hard: currently at CERN development of kGy radiation hard readout to avoid noise from long cables

Beam Abort Threshold Determination

- Relate the BLM signal to the:
 - Number of locally lost beam particles
 - Deposited energy in the machine
 - Quench and damage levels
- Extensive simulations and experiments during system design and beam tests in the LHC
 - Proton loss locations (tracking codes: MAD-X, SIXTRACK)
 - Hadronic showers through magnets (GEANT, FLUKA)
 - Magnet quench levels as function of beam energy and loss duration
 - Chamber response to the mixed radiation field (GEANT, FLUKA, GARFIELD)

kinetic energy [MeV]

Set-up and validation of collimation performance

CAS intr. Level course on Accelerator Physics

Diamond Detectors

- Fast and sensitive
- Small and radiation hard
- Used in LHC to distinguish bunch by bunch losses
- Dynamic range of monitor: 10⁹
- Temporal resolution: few ns
- Test system installed in cryo magnet at LHC

Thank you for your Attention

(Quasi) Non-Invasive Beam Size Measurement

Beam Gas Vertex monitor

- Beam imaging with vertex reconstruction of beam gas interactions
 - Reconstruct the tracks coming from inelastic beam-gas interactions
 - Determine the position of the interaction (vertex)
 - Accumulate vertices to measure beam position, angle, width and relative bunch populations
- Main requirements
 - Sufficient beam-gas rate → controlled pressure bump
 - Good vertex resolution → precise detectors and optimized geometry

BGV Demonstrator

- Goal: develop a transverse profile monitor for (HL) LHC
 - Overcome the limitations and complement the existing devices
- Demonstrate the potential of this technique by installing a prototype BGV system on one beam at the LHC
 - Commissioning planned for 2015

Detector

- Scintillating fibres read out with SiPMs
- Same technology as for the LHCb upgrade

Courtesy of Plamen Hopchev

Synchrotron Light Monitor

- Only for electrons & very high energy protons/ions (LHC)
- For linear machine: difficult to separate the light from the beam
- Difficult to get absolute calibration: Image correction factors typically bigger than the beam size
- Dynamic range 200 (10⁵ by changing the attenuation)
- Accuracy 30%
- Spatial resolution 50µm

IPM (Ionization Profile Monitors)

- Residual Gas Ionisation
- dynamic range: up to 10³
- ≈ 10 times more sensitive than Luminescence
- Image broadening due to space charge
- More complicated to build
 - High voltage
 - Guiding magnetic field
 - Compensation magnets for the beam
 - T. Giacomini et al., GSI

Comparison of BIF and IPM Profiles in Different Gases

CAS intr. Level course on Accelerator Physics Eva Barbara Holzer

E

CF-250 flange

Luminescence Profile Monitor

- Beam Induced Fluorescence (BIF)
- Insensitive to electric and magnetic fields (e.g. beam space charge)
- Sensitive to radiation → leading to background
- Low signal yield → gas injection (e.g. N↓2, H↓2)
- Dynamic range: ≈ 10³

M.Schwickert, P.Forck, F.Becker, GSI

Luminescence Profile Monitor – Example CERN SPS

Laser wire scanner

- Good candidate for H⁻ (and electrons)
- Electron is stripped from the H⁻, deflected and measured (e.g. Faraday cup)
- Can measure down to µm level
- dynamic range: up to 10³

Courtesy of A. Alexandrov

CAS intr. Level course on Accelerator Physics Eva Barba

Electron Beam Scanner

- Electron beam scanner (SNS, PAC'11, HB2012, W. Blokland)
 - Electrons are deflected by proton beam and measured on a fluorescent screen

