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Type of fields 
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Collective Effects 

Collective Effects ? 



Robinson Instability 

11/9/14 G. Franchetti 3 



Robinson Instability 
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It is an instability arising from the coupling of the  
impendence and longitudinal motion 
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The coupling of two effects 
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Energy  
loss due to  
impedance 

via the longitudinal dynamics 

Change of revolution 
frequency 

because of the impedance Z(ω) 
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Energy  lost in one turn  
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Where  is given by the impedance  
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energy lost per particle for non oscillating bunch 
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In one turn energy is lost but compensated by the RF 

cavity  
frequency 
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cavity  
frequency 

revolution 
frequency  
changes 

larger 

smaller 
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Energy lost  increase ω  increase Zr   increase energy loss !!! 
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Stable 
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Stable 
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Unstable 
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Unstable 



Summary of the reasoning 
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More complicated 
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E < ET  
No Energy Loss:  
RF give the same  
energy lost by  
the impedance 
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set the cavity  
frequency here Remember that energy lost is  V*I 



Source of difficulty 
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E < ET  

Energy gain Energy lost Impedance effect  
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Still we neglect something 
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E < ET  position of the bunch at  
turn “k” 

Qs is the synchrotron  
tune 
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Current 
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The bunch current can be described by 3 components with frequency very close 

side band this component 
is out of phase 
(because is a sin) 

side band 
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That means that the energy loss due to the impedance has to be computed on  
the 3 currents… 

Voltage created by the resistive impedance 

Main component 

1st sideband 

2nd sideband 
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But  

Prosthaphaeresis formulae 
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Main component 

2nd sideband 

1st sideband 

Therefore the induced Voltage depends on  

Voltage created by the resistive impedance 



Energy lost in one turn 
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energy lost  
per particle 
per turn 

this term can give rise to  
a constant loss, or a constant  
gain of energy 



In terms of the energy of a particle 
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This is a slope in the energy, and the sign of the slope depends on  

and  



The longitudinal motion now! 
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If  there is a damping 

If there is an instability 

Robinson Instability 
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Longitudinal space charge and  
resistive wall impedance 
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Space charge longitudinal field 
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dz 

Rw  
Er  

Er  

Ez  

Ew  
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For a KV beam 

Electric Field 
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Therefore 
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Magnetic Field 



11/9/14 G. Franchetti 38 

from the equation of continuity 

again we find the factor ! 

Maxwell-Faraday  
Law 



Space charge impedance  
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Local density 
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Perfect vacuum chamber  Ezw = 0     



Resistive Wall impedance 
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dz 

Rw  
Er  

Er  

Ez  

Ew  

Do not take into account B 

Ew  = Ez   
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skin  
depth 

Beam 
on axis 

Wall currents are related  
to the electric field by Ohm’ law 

The thickness of the wall  
currents is called skin depth 
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Impedance of the surface (pipe) Longitudinal impedance (beam) 

skin  
depth 

Jz(0) 

x 

y 

z 

μ,σ 



Transverse impedance 

11/9/14 G. Franchetti 44 



Origin 
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v 

t 

Beam passing through 
a cavity on axis 



Origin 
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t 

Beam passing through 
a cavity off-axis 

v 



But the field transform it-self ! 
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E 
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B 
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E 
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B 



Effect on the dynamics 
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The dynamics is much more affected by B, than E because 

this speed is high 



The beam creates its own dipolar 
magnetic field ! 

11/9/14 G. Franchetti 52 

(dipolar errors create integer resonances…. we expect the same…) 



Transverse impedance 
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Definition of longitudinal impedance (classical) 

Impedance 

System 
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source of the effect  

For a displaced beam 

It means that in the equation of motion we have to add this effect 

Effect 

this field acts on a single particle 
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In the time domain 

therefore for a weak effect or distributed we find 
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Now the situation is the following:  

System 

But is like a “strange” voltage 

it depends on 
frequency 



Transverse beam coupling impedance 
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now the question is  
what is ω ? 
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What is it ω ? 
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It is given by the fractional tune, as this is the frequency seen in a cavity 

Example: Q = 2.23 fractional tune q = 0.23 

beam position  
seen by the cavity 

turns 



B-field induced by beam displacement 
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From  

electric field at the position of beam x0 is 

Longitudinal impedance 
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Transverse impedance  

The magnetic field comes  
from Maxwell 

taking 
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skin  
depth 

x 

Beam 
off axis 
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xb  

image  
charge 

Therefore the field on the beam is  

(for small xb/rp) 
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More charges here 

Less charges here 

beam 
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Transverse resistive Wall impedance 



Transverse instability 
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Coasting beam instability 
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Force due to the impedance 
(in the complex notation) 

Equation of motion of one  
particle for a beam on axis 

Equation of motion of a  
beam particle when the beam  
is off-axis 



Collective motion 
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On the other hand the beam center is 

If all particles have the same frequency, i.e.  each particle experience a force  

with 

therefore 

then  
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We  can define a coherent “detuning” because this is a linear equation 
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that is  

But now  is a complex number !! 

Solution 
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Is the growth rate of the transverse resistive  
wall instability 

This instability always take place 
 Landau damping 

Instability suppression 



An important assumption 
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We assumed that all particles have the same frequency so that 

This assumption means that each particle of the beam respond in  
the same way to a change of particle amplitude 

Coherent motion  drive particle motion, which is  
again coherent 



Chromaticity ? 
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What happened if the incoherent force created by the accelerator do not  
allow a coherent build up 

Momentum spread 

dp/p 
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chromaticity 

one particle with off-momentum dp/p 
has tune 

If each particle of the beam has different dp/p then the force that the lattice  
exert on a particle depends on the particle ! 



Incoherent motion damps xb  
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Equation of motion  
without impedances 

Motion of center of mass as an effect of the spread of the frequencies of  
oscillation 

The momentum compaction also provides a spread of the betatron oscillations 
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dq/q = 0 
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Example: 
N. particles = 5 
dq/q = 5E-3 
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N. particles = 5 
dq/q = 1E-2 
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N. particles = 5 
dq/q = 2.5E-2 

damping of  xb 



But incoherent motion reduces xb 
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Example:  
these are 5 sinusoid   
with amplitude linearly  
growth 
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Example:  
now a spread dq/q of  
1E-2 is added to the  
5 curves 
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Example:  
now a spread dq/q of  
1E-2 is added to the  
5 curves 
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the spread of the  
particles damps the  
oscillations of the center of  
mass  the instability cannot develop 



Situation 
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Coherent 
effect 

Incoherent 
effect 

Growth rate Damping rate 

The faster wins 



instability of a single bunch 
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No oscillations   

Example beam position at the cavity  
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behavior of the field in the cavity 
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Tr = time of oscillation of the field in the cavity 



Cavity tuned upper sideband 
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Cavity tuned upper sideband 
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As for the Robinson Instability 



Negative mass instability 
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x 
Above transition 

z 

Example with  
2 particles ! 

Repulsion  
forces from  
Coulomb 

Repulsion  
forces from  
Coulomb 

reference frame 
of synchronous particle 



Negative mass instability 
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x 
Above transition 

z 

Example with  
2 particles ! 

Repulsion  
forces from  
Coulomb 

Repulsion  
forces from  
Coulomb 

reference frame 
of synchronous particle 

gain speed 
revolution time  
longer 

lose speed 
revolution time 
shorter 



Negative mass instability 
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x 
Above transition 

z 

Example with  
2 particles ! 

reference frame 
of synchronous particle 



Negative mass instability 
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x 

Above transition 

z 

repulsive forces attract particles as if their mass were negative 

perturbation 

x 

z 

perturbation 
growth 



Summary 
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Robinson instability 
Longitudinal space charge and resistive wall impedance 
Transverse impedance 
Transverse instability 
Landau damping 
Single bunch instability 
Negative mass instability 


