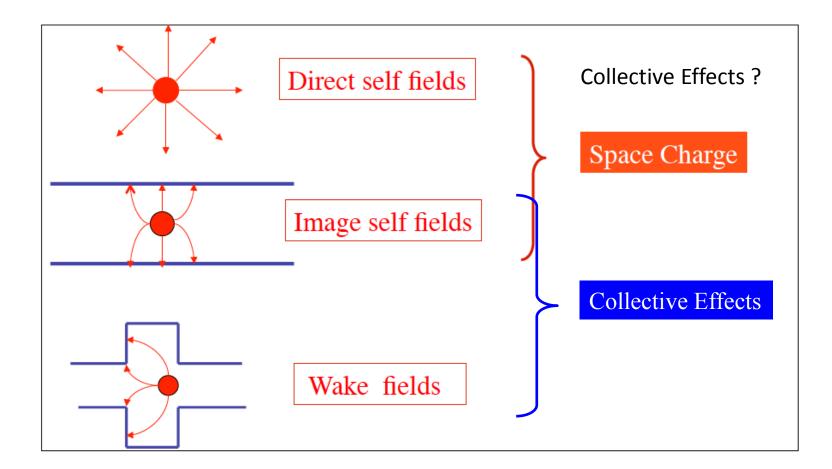
# Collective Effect II

Giuliano Franchetti, GSI CERN Accelerator – School Prague

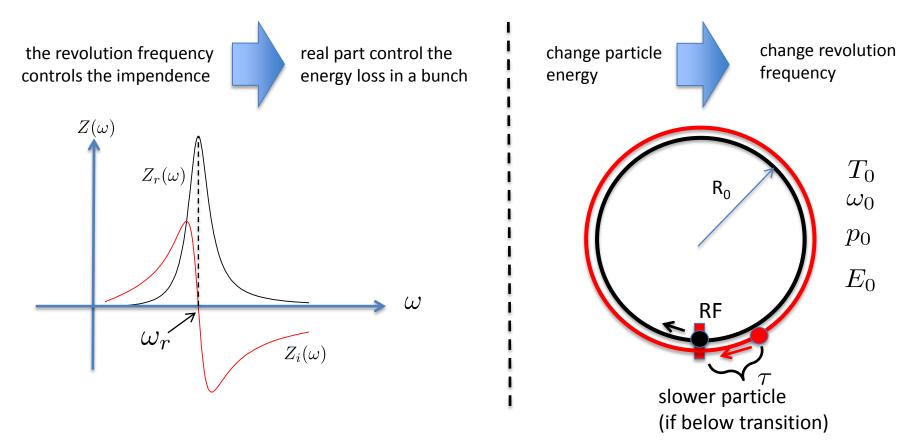
# Type of fields



# **Robinson Instability**

# **Robinson Instability**

It is an instability arising from the coupling of the impendence and longitudinal motion



# The coupling of two effects

via the longitudinal dynamics

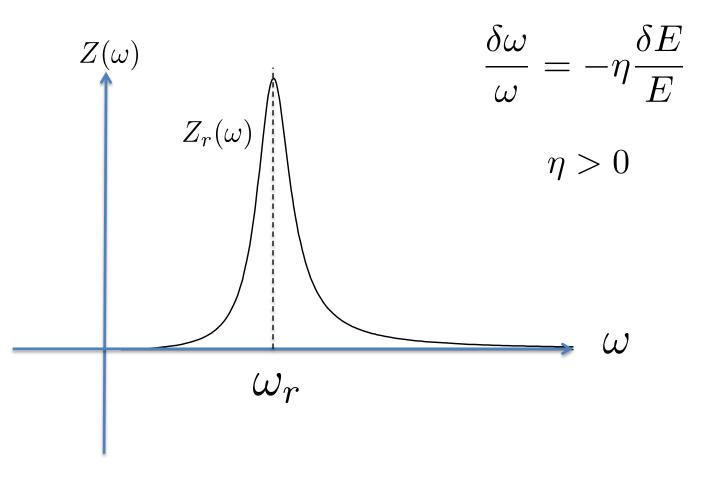


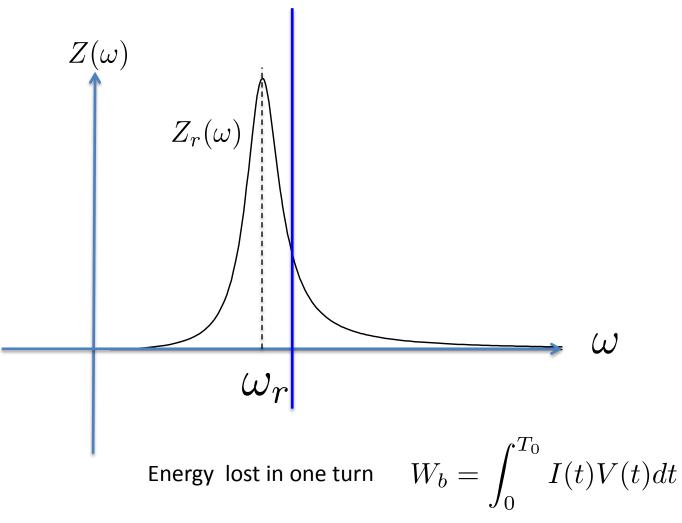
Energy loss due to impedance

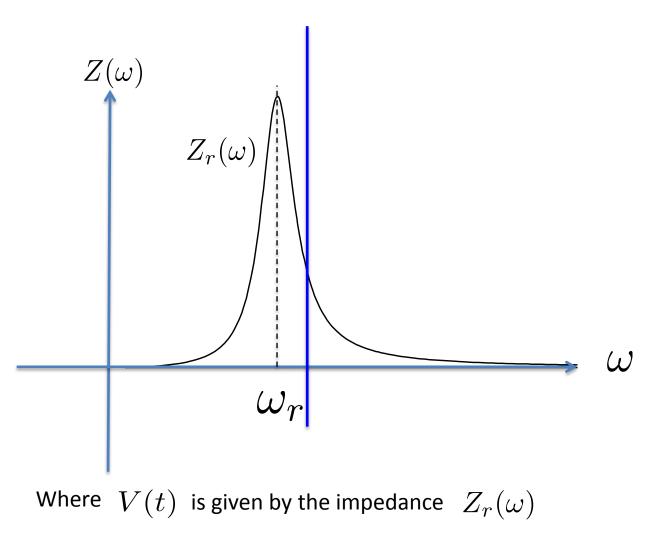
Change of revolution frequency



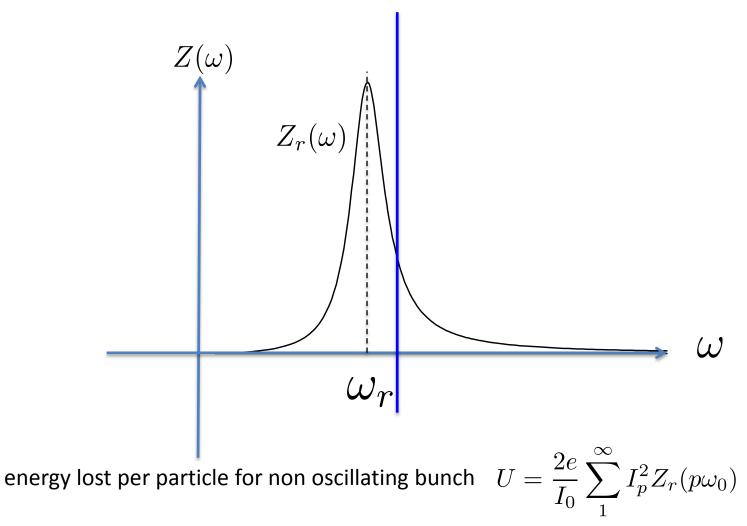
because of the impedance  $Z(\omega)$ 

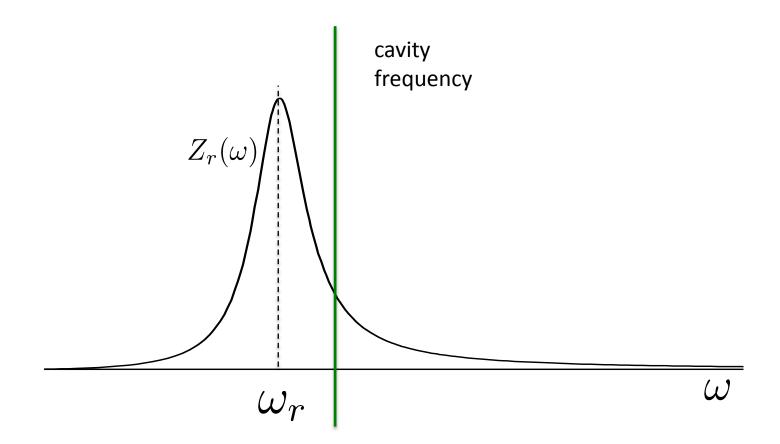




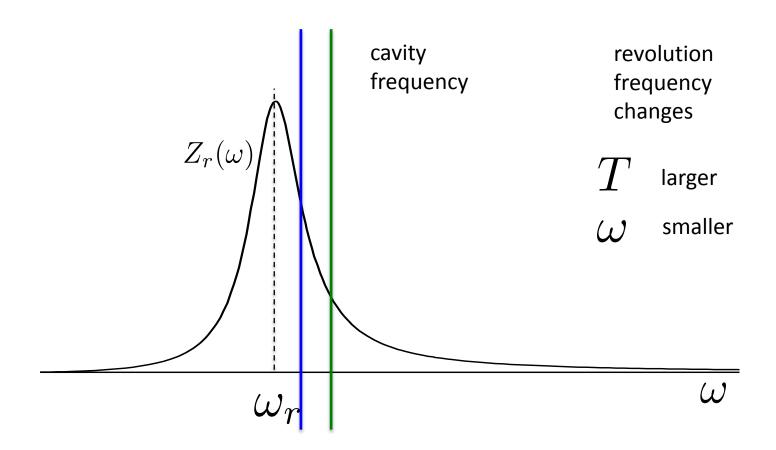


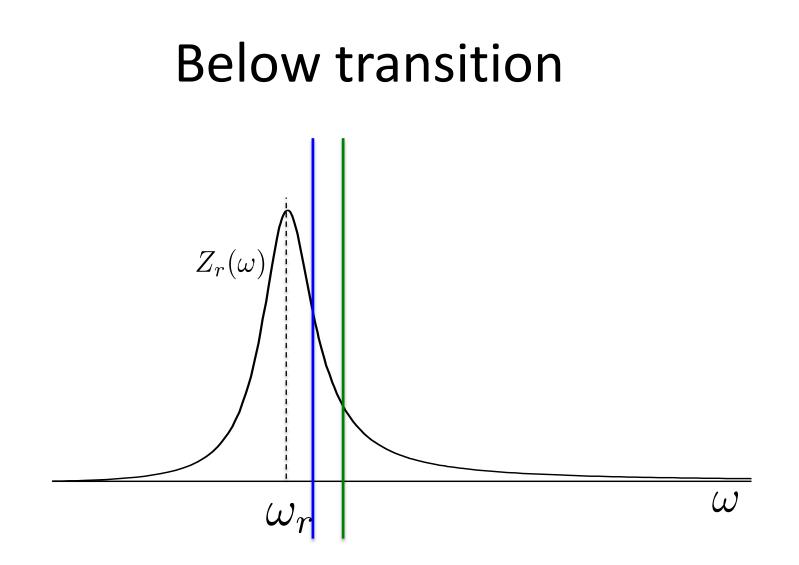
G. Franchetti



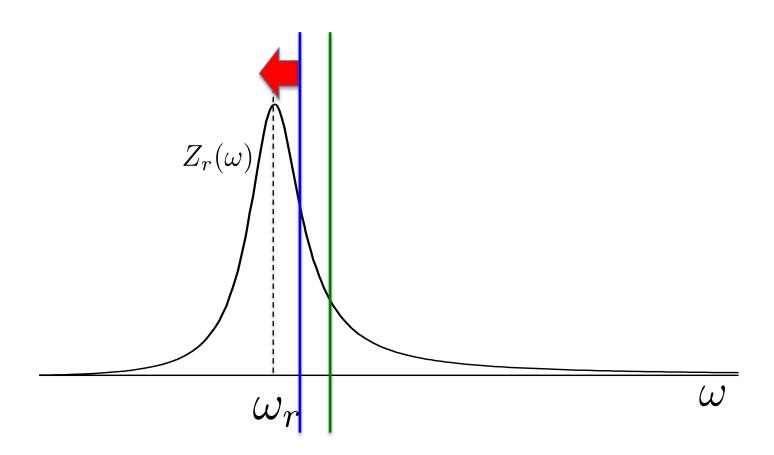


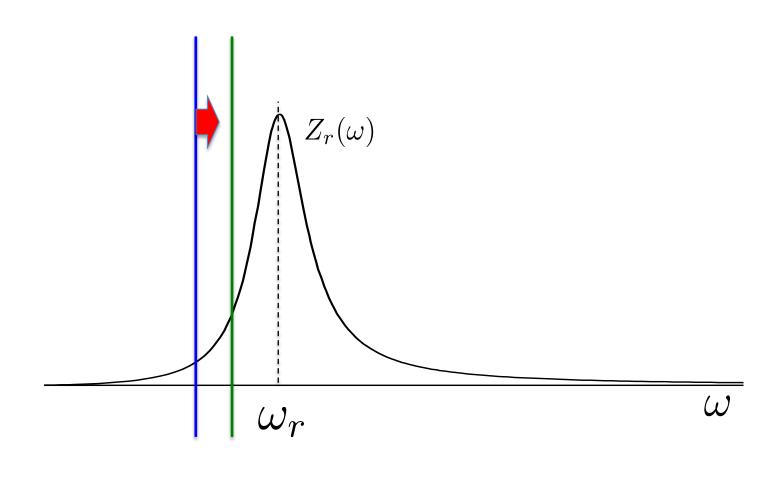
#### In one turn energy is lost but compensated by the RF



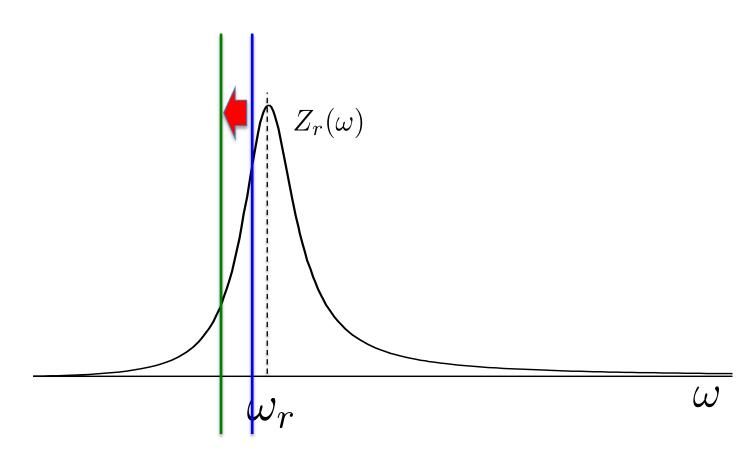


Energy lost  $\rightarrow$  increase  $\omega \rightarrow$  increase  $Z_r \rightarrow$  increase energy loss !!!

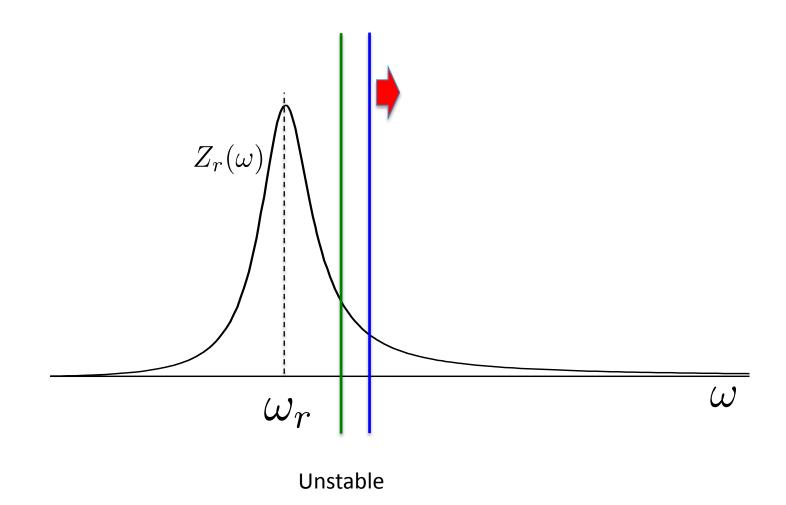


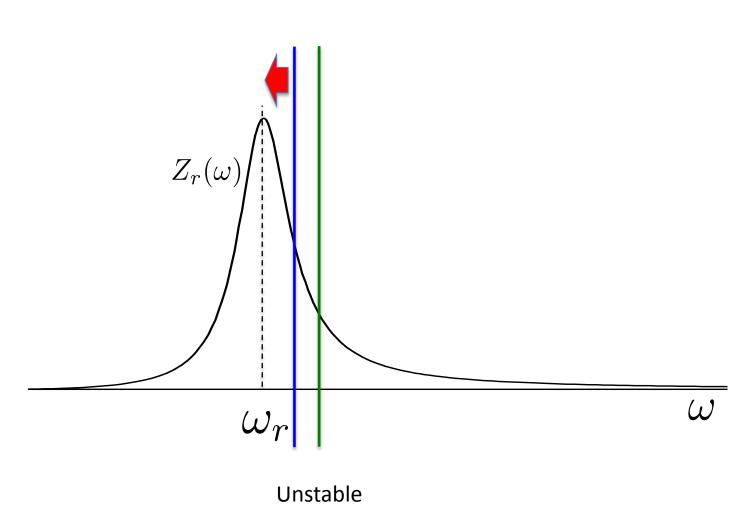




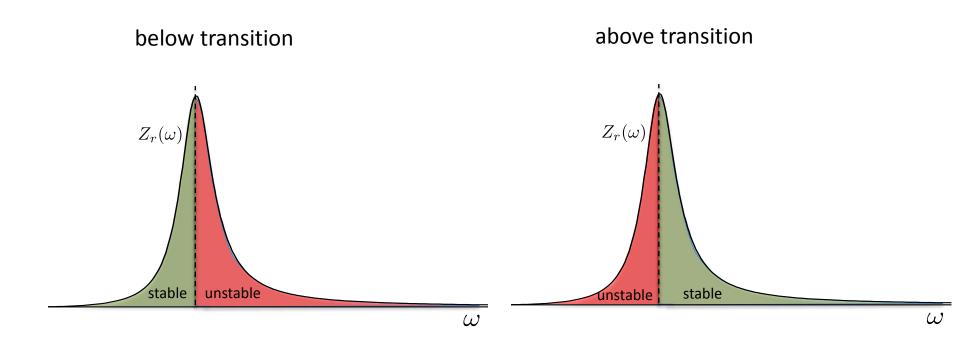


Stable

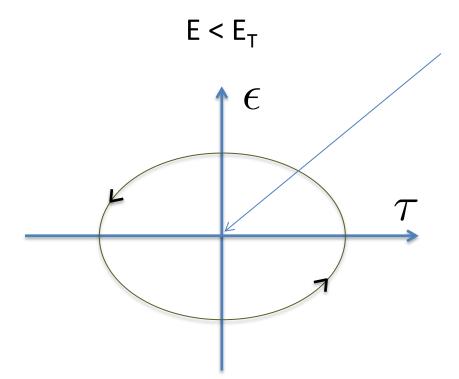




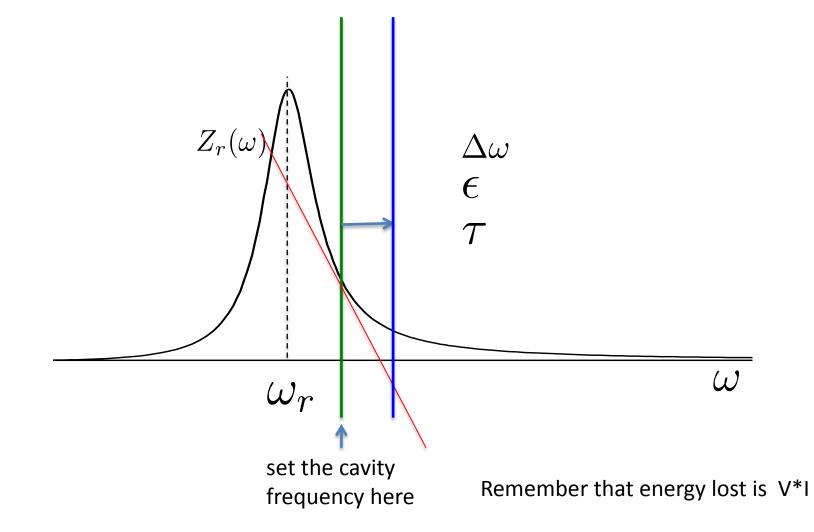
# Summary of the reasoning

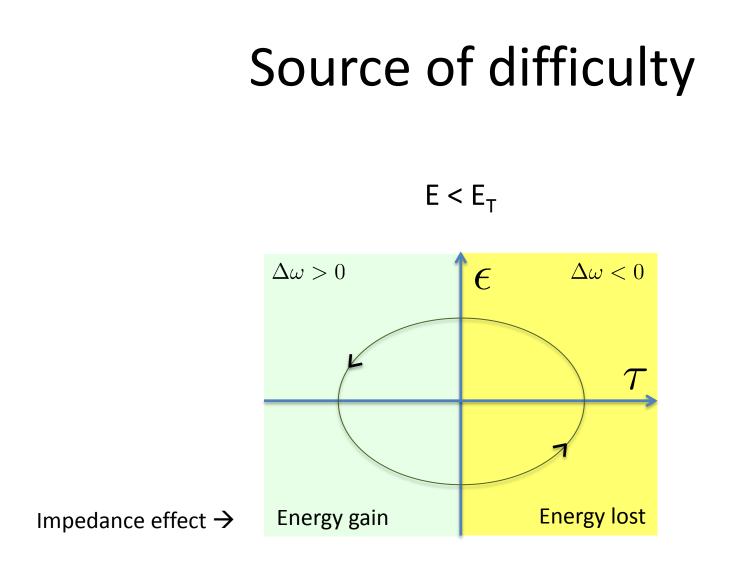


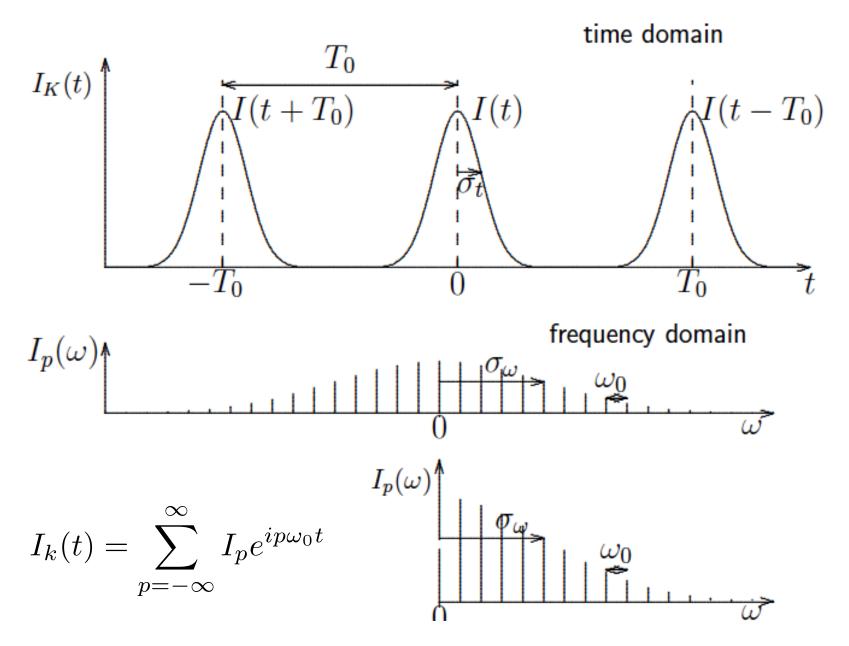
# More complicated



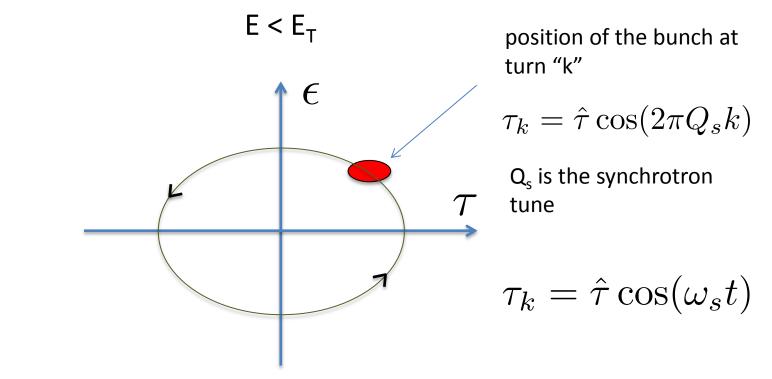
No Energy Loss: RF give the same energy lost by the impedance



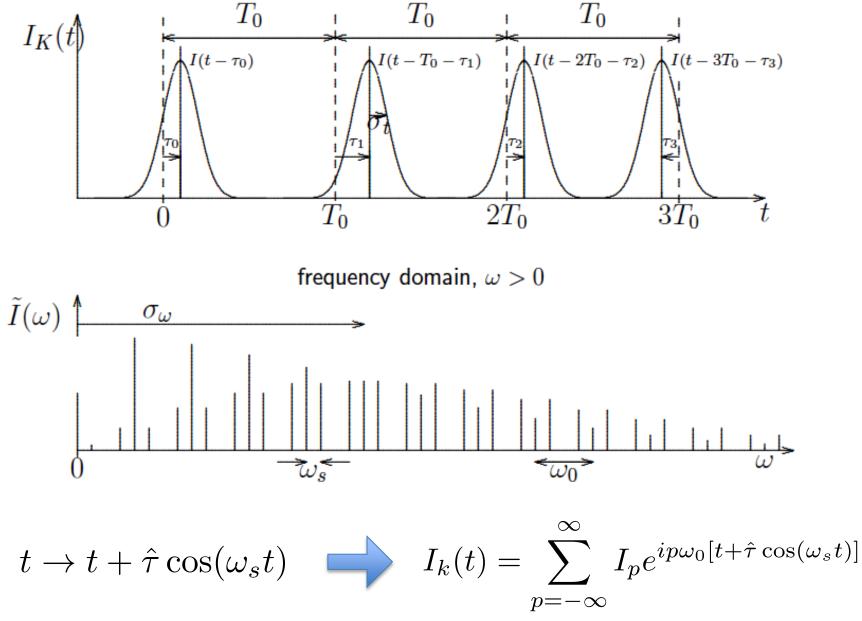




# Still we neglect something



#### time domain

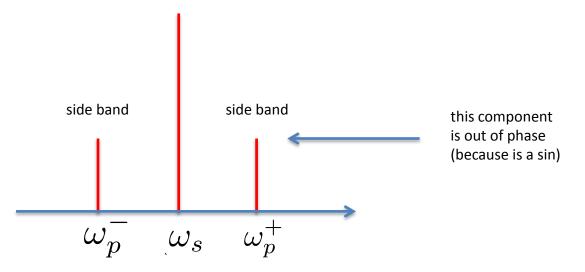


G. Franchetti

# Current

$$I_k(t) \simeq \sum_{\omega > 0} I_p \left[ \cos(p\omega_0 t) + \frac{p\omega_0 \tau}{2} \sin((p + Q_s)\omega_0 t) + \frac{p\omega_0 \tau}{2} \sin((p - Q_s)\omega_0 t) \right]$$
$$\underbrace{\omega_p^+}{\omega_p^+}$$

The bunch current can be described by 3 components with frequency very close



That means that the energy loss due to the impedance has to be computed on the 3 currents...

#### Voltage created by the resistive impedance

$$\begin{split} \text{Main component} & V = 2\sum_{\omega>0}^{\infty} I_p Z_r(p\omega_0) \cos(p\omega_0 t) \\ \\ \text{1}^{\text{st}} \text{ sideband} & V = \sum_{\omega>0}^{\infty} I_p p\omega_0 \hat{\tau} Z_r(\omega_p^+) \sin(\omega_p^+ t) \\ \\ \text{2}^{\text{nd}} \text{ sideband} & V = \sum_{\omega>0}^{\infty} I_p p\omega_0 \hat{\tau} Z_r(\omega_p^-) \sin(\omega_p^- t) \end{split}$$

$$\sin(\omega_p^- t) = \sin(p\omega_0 t)\cos(\omega_s t) - \cos(p\omega_0 t)\sin(\omega_s t)$$
$$\sin(\omega_p^+ t) = \sin(p\omega_0 t)\cos(\omega_s t) + \cos(p\omega_0 t)\sin(\omega_s t)$$

But 
$$\tau = \hat{\tau} \cos(\omega_s t)$$
  $\Rightarrow$  
$$\begin{cases} \cos(\omega_s t) = \frac{\tau}{\hat{\tau}} \\ \sin(\omega_s t) = -\frac{\dot{\tau}}{\hat{\tau}\omega_s} \end{cases}$$

(

$$\sin(\omega_p^+ t) = \sin(p\omega_0 t)\frac{\tau}{\hat{\tau}} - \cos(p\omega_0 t)\frac{\dot{\tau}}{\hat{\tau}\omega_s}$$
$$\sin(\omega_p^- t) = \sin(p\omega_0 t)\frac{\tau}{\hat{\tau}} + \cos(p\omega_0 t)\frac{\dot{\tau}}{\hat{\tau}\omega_s}$$

#### Voltage created by the resistive impedance

Main component

$$V = 2\sum_{\omega>0}^{\infty} I_p Z_r(p\omega_0) \cos(p\omega_0 t)$$

1<sup>st</sup> sideband 
$$V = \sum_{\omega>0} I_p p \omega_0 Z_r(\omega_p^+) [\sin(p\omega_0 t)\tau - \cos(p\omega_0 t)\frac{\tau}{\omega_s}]$$

2<sup>nd</sup> sideband 
$$V = \sum_{\omega>0}^{\infty} I_p p \omega_0 Z_r(\omega_p^-) [\sin(p\omega_0 t)\tau + \cos(p\omega_0 t)\frac{\dot{\tau}}{\omega_s}]$$

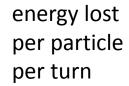
Therefore the induced Voltage depends on  $~~ au, \dot{ au}$ 

 $\infty$ 

# Energy lost in one turn

$$E_l = \int_0^{T_0} V(t)I(t)dt$$

 $U = \frac{2e}{I_0} \left[ I_p^2 Z_r(p\omega_0) - \frac{I_p^2 p\omega_0}{2} (Z_r(\omega_p^+) - Z_r(\omega_p^-)) \frac{\dot{\tau}}{\omega_s} \right]$ 



this term can give rise to a constant loss, or a constant gain of energy

# In terms of the energy of a particle

$$U = \frac{2e}{I_0} \left[ I_p^2 Z_r(p\omega_0) - \frac{I_p^2 p\omega_0}{2} (Z_r(\omega_p^+) - Z_r(\omega_p^-)) \frac{\eta \epsilon}{\omega_s} \right]$$

$$\frac{\partial U}{\partial \epsilon} = -\frac{e}{I_0} \sum_{\omega > 0} \frac{I_p^2 p \omega_0}{2} (Z_r(\omega_p^+) - Z_r(\omega_p^-)) \frac{\eta}{\omega_s}$$

This is a slope in the energy, and the sign of the slope depends on

$$Z_r(\omega_p^+)-Z_r(\omega_p^-)$$
 and  $\eta$ 

G. Franchetti

# The longitudinal motion now!

$$\ddot{\tau} + 2\alpha_s \dot{\tau} + \omega_{s0}^2 \tau = 0$$

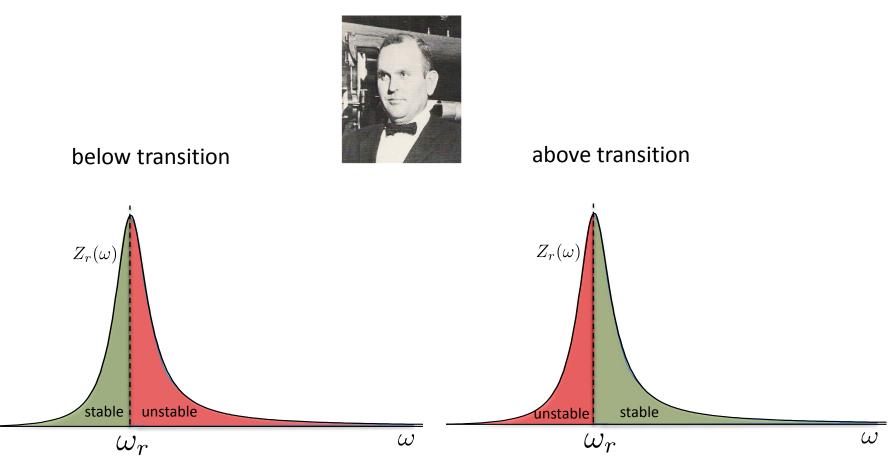
$$\alpha_S = \frac{1}{2} \frac{\omega_0}{2\pi} \frac{\partial U}{\partial E} = \frac{\omega_0}{4\pi E} \frac{\partial U}{\partial \epsilon} = \frac{\omega_s \sum p I_p^2 (Z_r(\omega_p^+) - Z_r(\omega_p^-))}{2I_0 h \hat{V} \cos \phi_s}$$

#### **Robinson Instability**

If  $\alpha_S > 0$  there is a damping If  $\alpha_s < 0$  there is an instability

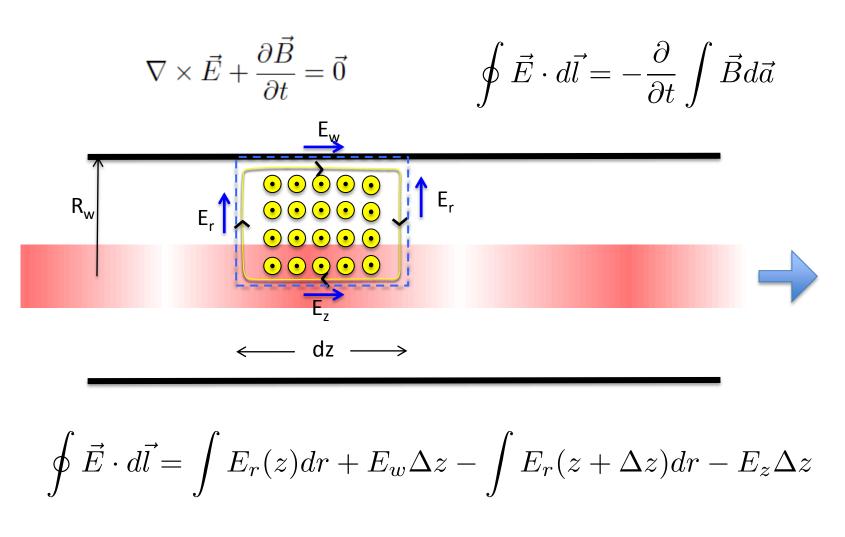


#### **Robinson Instability**



# Longitudinal space charge and resistive wall impedance

# Space charge longitudinal field



For a KV beam Electric Field  $E_r = \begin{cases} \frac{\lambda(z)}{2\epsilon_0}r & \text{if } r < r_0\\ \frac{\lambda(z)r_0^2}{2\epsilon_0}\frac{1}{r} & \text{if } r > r_0 \end{cases}$ 

$$\int_0^{r_w} E_r(z)dr = \int_0^{r_0} \frac{\lambda(z)}{2\epsilon_0} r dr + \int_{r_0}^{r_w} \frac{\lambda(z)r_0^2}{2\epsilon_0} \frac{1}{r} dr$$
$$\int_0^{r_w} E_r(z)dr = \frac{\lambda(z)r_0^2}{4\epsilon_0} \left[1 + 2\ln\left(\frac{r_w}{r_0}\right)\right]$$

#### Therefore

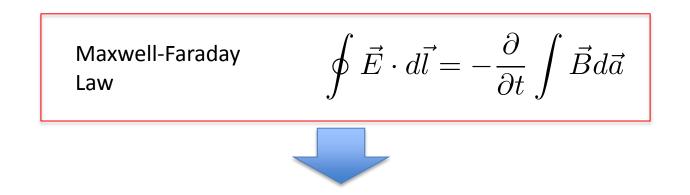
$$\int E_r(z)dr - \int E_r(z + \Delta z)dr = -\frac{r_0^2}{4\epsilon_0} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] \frac{\partial\lambda(z)}{\partial z} \Delta z$$

$$\oint \vec{E} \cdot d\vec{l} = (E_w - E_z)\Delta z - \frac{r_0^2}{4\epsilon_0} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] \frac{\partial\lambda(z)}{\partial z} \Delta z$$

Magnetic Field 
$$B_{\perp} = \begin{cases} \frac{\mu_0 v_z \lambda(z)}{2} r & \text{if } r < r_0 \\ \frac{\mu_0 v_z \lambda(z) r_0^2}{2} \frac{1}{r} & \text{if } r > r_0 \end{cases}$$

$$\int B_{\perp} da = \int_0^{r_0} dr \int_z^{z+\Delta z} \frac{\mu_0 v_z \lambda(z)}{2} r + \int_{r_0}^{r_w} dr \int_z^{z+\Delta z} \frac{\mu_0 v_z \lambda(z) r_0^2}{2} \frac{1}{r}$$

$$\int B_{\perp} da = \frac{\mu_0 v_z r_0^2 \lambda \Delta z}{4} \left[ 1 + 2 \ln \left( \frac{r_w}{r_0} \right) \right]$$



$$(E_w - E_z)\Delta z - \frac{r_0^2}{4\epsilon_0} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] \frac{\partial\lambda(z)}{\partial z} \Delta z = +\frac{\mu_0 v_z r_0^2 \Delta z}{4} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] \frac{\partial\lambda}{\partial t} \frac{\partial\lambda(z)}{\partial t} \Delta z = +\frac{\mu_0 v_z r_0^2 \Delta z}{4} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] \frac{\partial\lambda}{\partial t} \frac{\partial\lambda(z)}{\partial t} \Delta z = +\frac{\mu_0 v_z r_0^2 \Delta z}{4} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] \frac{\partial\lambda}{\partial t} \frac{\partial\lambda(z)}{\partial t} \Delta z = +\frac{\mu_0 v_z r_0^2 \Delta z}{4} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] \frac{\partial\lambda}{\partial t} \frac{\partial\lambda(z)}{\partial t} \Delta z = +\frac{\mu_0 v_z r_0^2 \Delta z}{4} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] \frac{\partial\lambda}{\partial t} \frac{\partial\lambda(z)}{\partial t} \Delta z = +\frac{\mu_0 v_z r_0^2 \Delta z}{4} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] \frac{\partial\lambda}{\partial t} \frac{\partial\lambda}{$$

from the equation of continuity

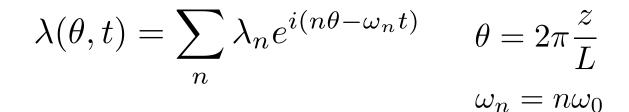
 $\frac{\partial \lambda}{\partial t} + v_z \frac{\partial \lambda}{\partial z} = 0$ 

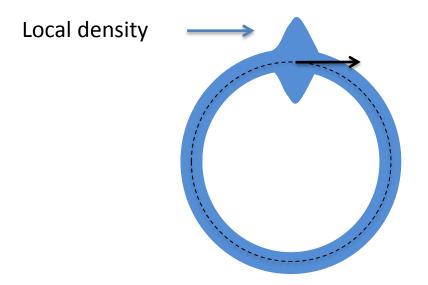
$$E_{z} = E_{w} - \frac{r_{0}^{2}}{4\epsilon_{0}} \left[ 1 + 2\ln\left(\frac{r_{w}}{r_{0}}\right) \right] \frac{1}{\gamma^{2}} \frac{\partial\lambda}{\partial z}$$

$$\uparrow$$
again we find the factor  $1/\gamma^{2}$ 

ļ

## Space charge impedance





$$V_{z0} = 2\pi R E_{zw} - i \sum_{n} \frac{I_n}{4\pi\epsilon_0} \frac{2\pi n}{\beta c \gamma^2} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] e^{i(n\theta - \omega_n t)}$$

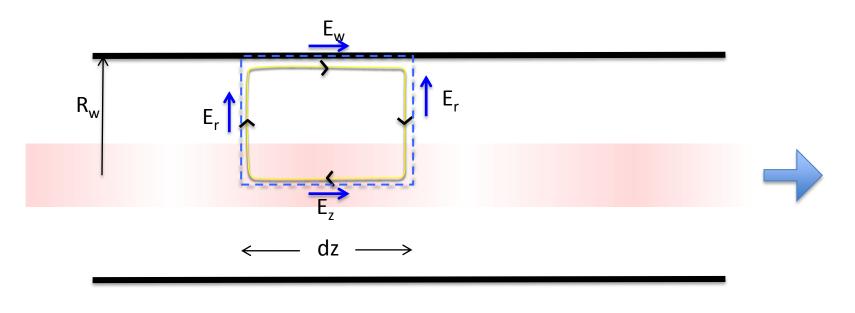
Perfect vacuum chamber  $E_{zw} = 0$ 

Г

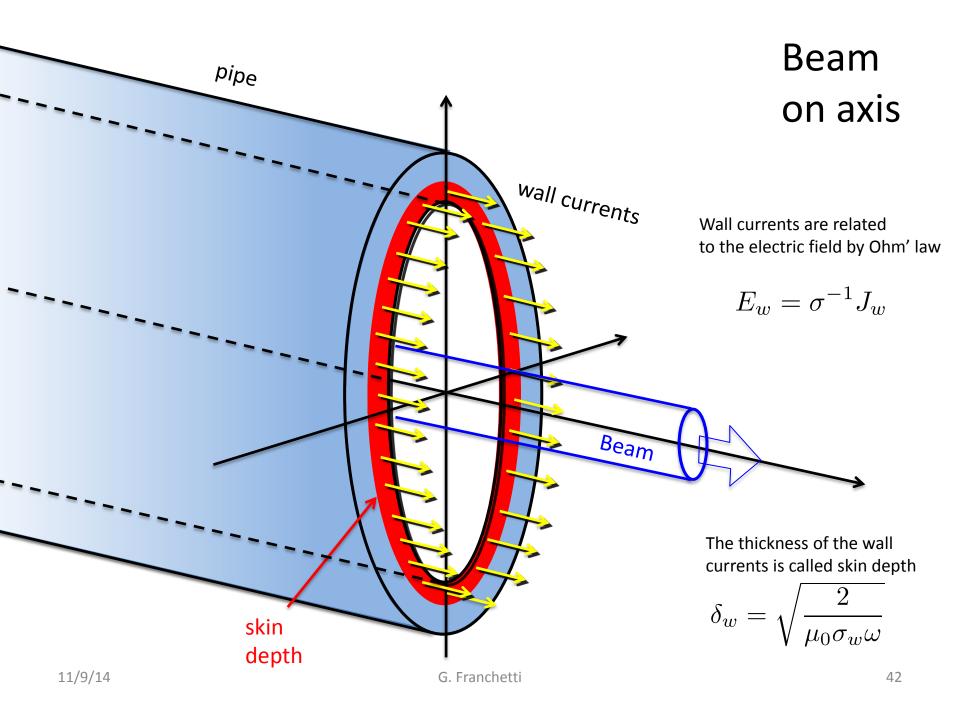
$$I = I_n e^{i(n\theta - \omega_n t)} \qquad \checkmark \qquad V = -i \frac{I_n}{4\pi\epsilon_0} \frac{2\pi n}{\beta c \gamma^2} \left[ 1 + 2\ln\left(\frac{r_w}{r_0}\right) \right] e^{i(n\theta - \omega_n t)}$$

## **Resistive Wall impedance**

Do not take into account B



 $E_w = E_z$ 



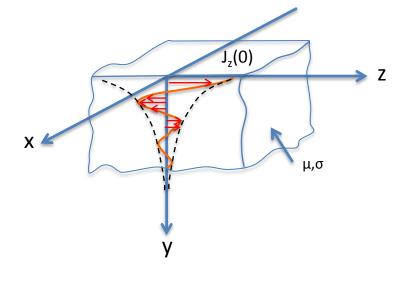
Impedance of the surface (pipe)

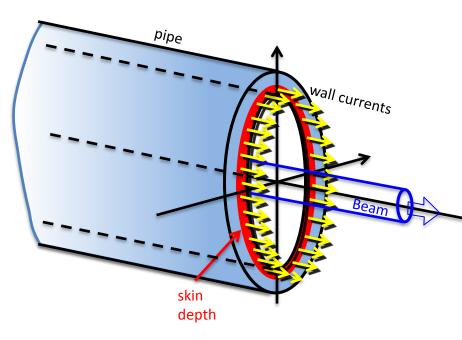
$$Z_{surf} = \frac{1+i}{\sigma\delta_w}$$



Longitudinal impedance (beam)

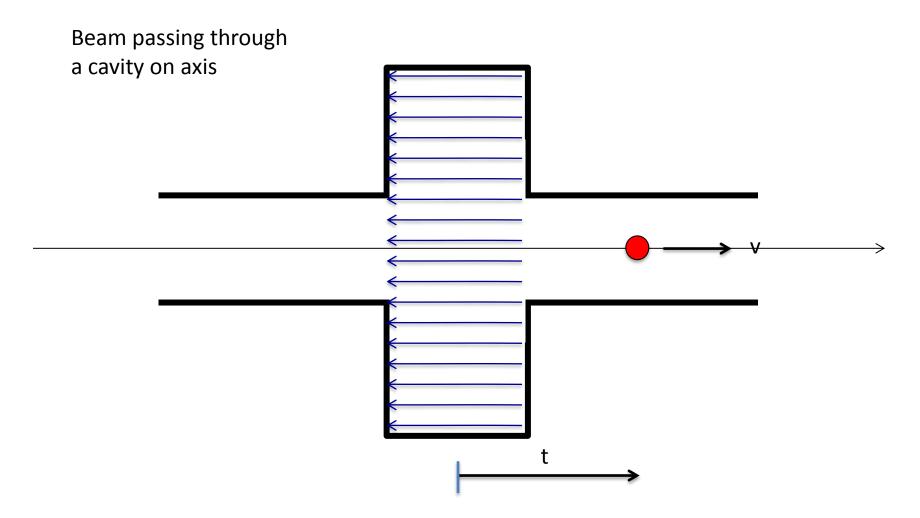
$$Z_{||} = \frac{2\pi R}{2\pi r_p} \frac{1+i}{\sigma \delta_w}$$



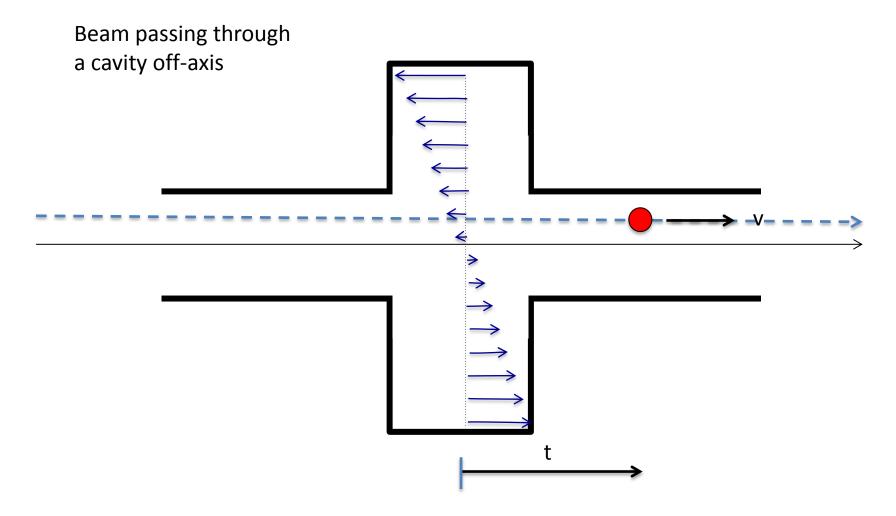


## Transverse impedance

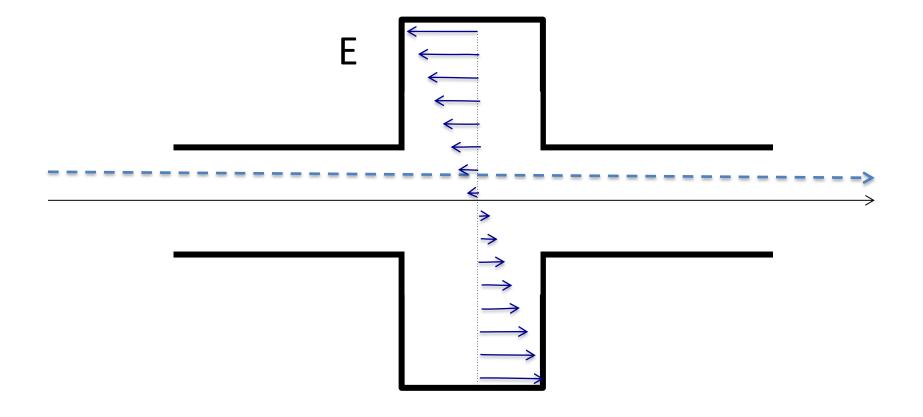
# Origin

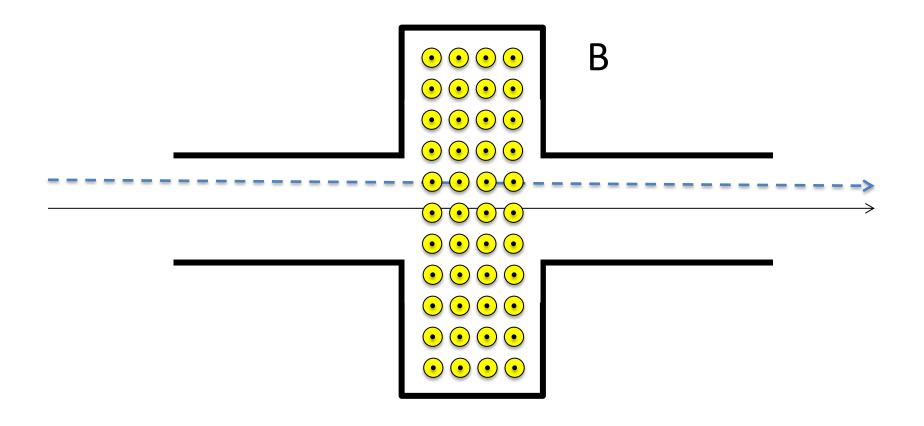


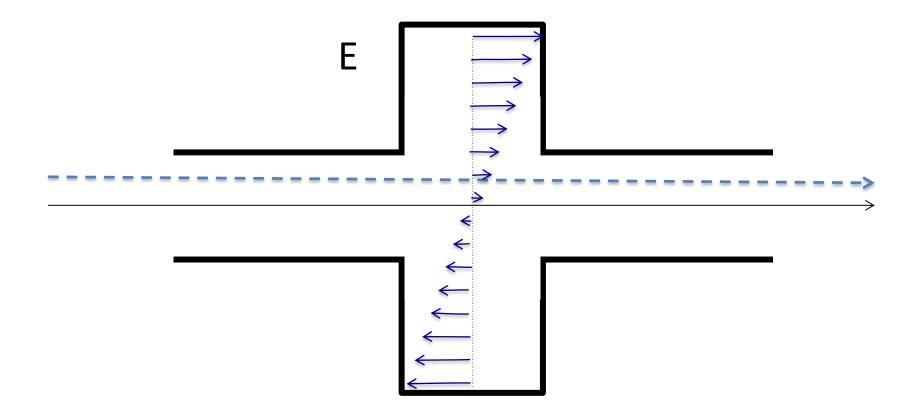
# Origin

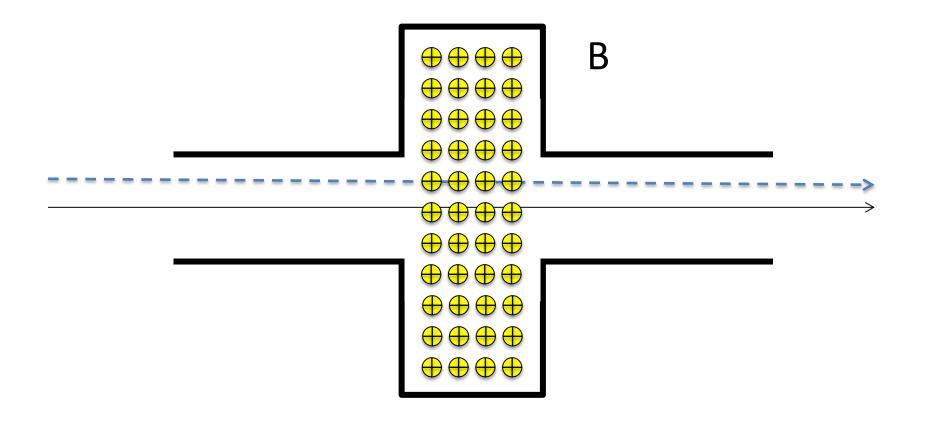


## But the field transform it-self !









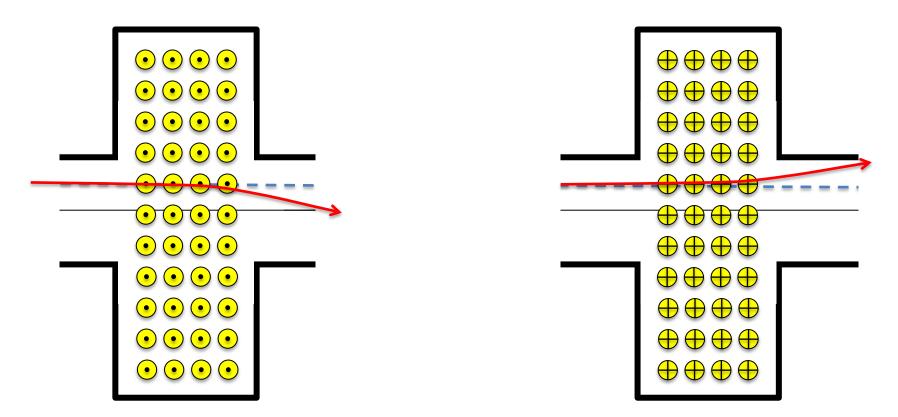
## Effect on the dynamics

The dynamics is much more affected by B, than E because

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

this speed is high

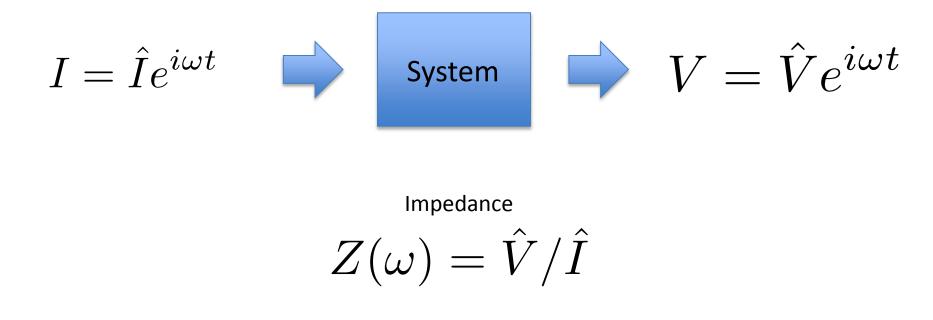
# The beam creates its own dipolar magnetic field !



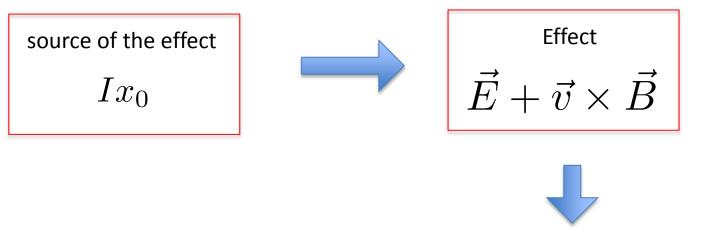
(dipolar errors create integer resonances.... we expect the same...)

## Transverse impedance

**Definition of longitudinal impedance (classical)** 



#### For a displaced beam



this field acts on a single particle

It means that in the equation of motion we have to add this effect

$$\frac{d^2x}{ds^2} + k_x x = \frac{q}{m\gamma v_0^2} [E_x + (\vec{v} \times \vec{E})_x]$$

therefore for a weak effect or distributed we find

$$\frac{d^2x}{ds^2} + \left(\frac{Q_x}{R}\right)^2 x = \frac{q}{m\gamma v_0^2} \frac{1}{2\pi R} \int_0^{2\pi R} [E_x + (\vec{v} \times \vec{E})_x] ds$$

In the time domain

$$\frac{d^2x}{dt^2} + (Q_x\omega_0)^2 x = \frac{q}{m\gamma} \frac{1}{2\pi R} \int_0^{2\pi R} [E_x + (\vec{v} \times \vec{E})_x] ds$$

But 
$$\int_{0}^{2\pi R} [E_x + (\vec{v} \times \vec{E})_x] ds$$
 is like a "strange" voltage

$$V = -\int_0^{2\pi R} [\vec{E} + \vec{v} \times \vec{B}]_\perp ds$$

Now the situation is the following:

$$Ix_0$$
   
 System  $V = -\int_0^{2\pi R} [\vec{E} + \vec{v} \times \vec{B}]_{\perp} ds$ 

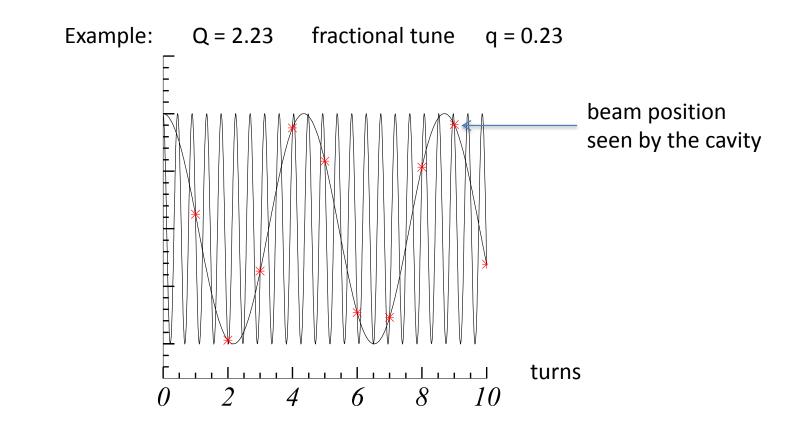
### Transverse beam coupling impedance

$$Z_{\perp}(\omega) = i \frac{\int_{0}^{2\pi R} [\vec{E} + \vec{v} \times \vec{B}]_{\perp} ds}{\beta I x_{0}}$$

now the question is what is  $\omega$  ?

## What is it $\omega$ ?

It is given by the fractional tune, as this is the frequency seen in a cavity



## B-field induced by beam displacement

From 
$$\frac{\partial E_z}{\partial x} = kIx_0$$
  $E_z = kIx_0x$ 

electric field at the position of beam  $x_0$  is

$$E_z(x_0) = kIx_0^2$$

Longitudinal impedance

$$Z_{||} = -\frac{E_z(x_0)l}{I} = -kx_0^2l$$

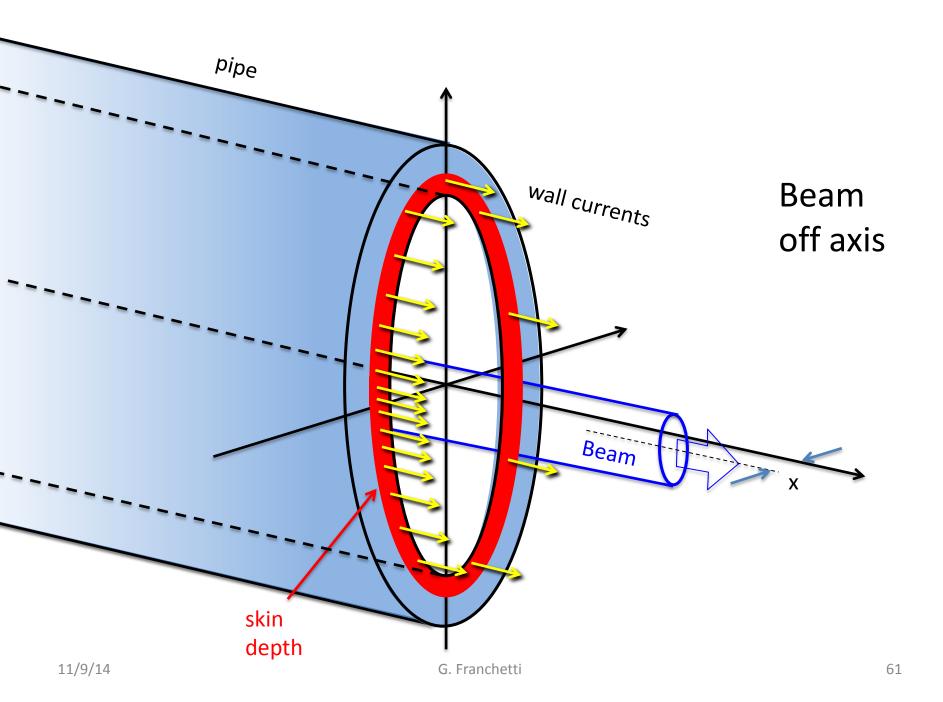
The magnetic field comes from Maxwell

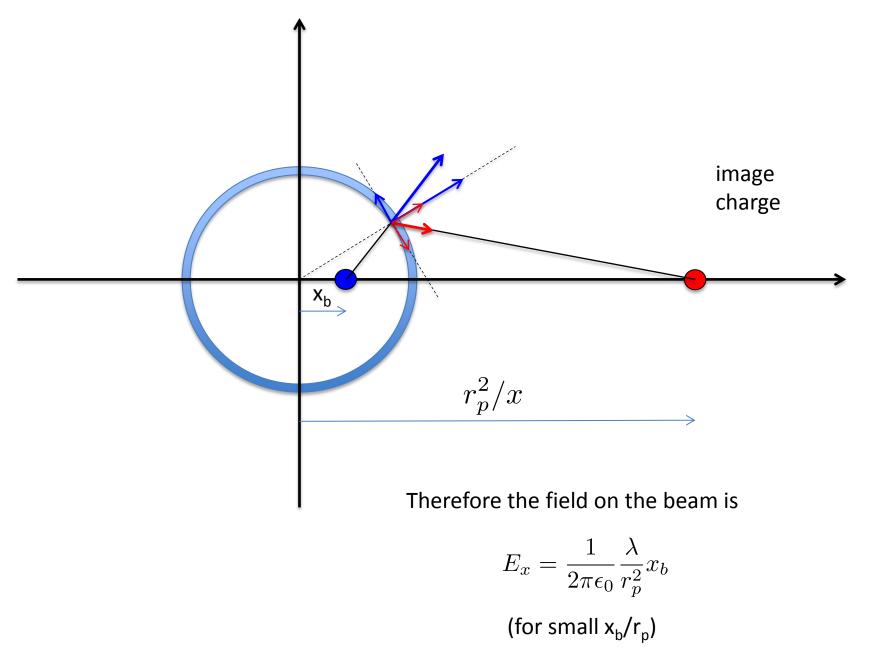
$$\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = \vec{0}$$

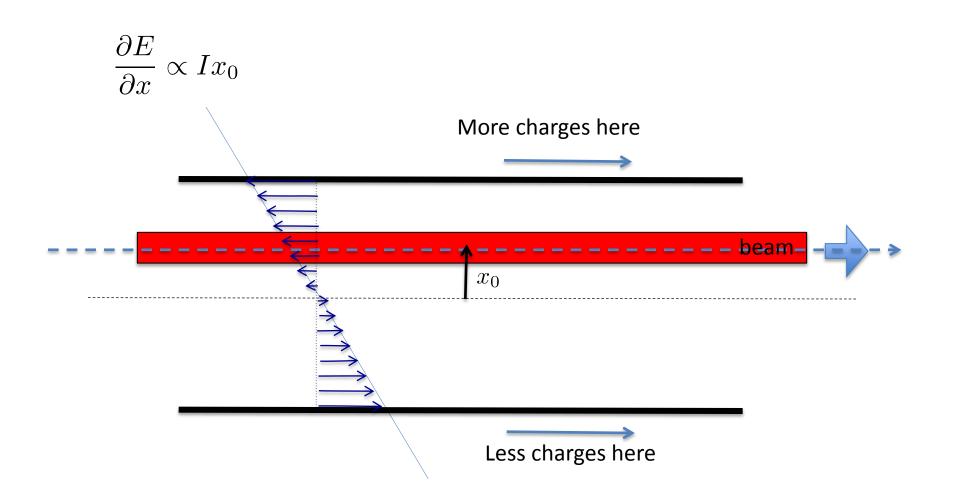
 $\frac{\partial B_y}{\partial t}|_{x_0} = kIx_0 \qquad \qquad \text{taking} \qquad Ix_0 = I\hat{x}e^{i\omega t}$ 

$$B_y = \frac{kI\hat{x}}{i\omega}e^{i\omega t} = \frac{kIx_0}{i\omega}$$

Transverse impedance







Transverse resistive Wall impedance

$$Z(\omega_n)_{\perp} = \frac{2R}{r_p^2} \frac{Z_{||}(\omega_n)}{n}|_{res}$$

## Transverse instability

## Coasting beam instability

Force due to the impedance (in the complex notation)

 $F_{\perp} = i \frac{q Z_{\perp} I_0}{2\pi R} x_b$ 



Equation of motion of one particle for a beam on axis

 $\ddot{x} + Q^2 \omega_0^2 x = 0$ 

Equation of motion of a beam particle when the beam is off-axis

$$\ddot{x} + Q^2 \omega_0^2 x = -i \frac{q Z_\perp I_0}{2\pi R m \gamma} x_b$$

## **Collective motion**

On the other hand the beam center is

$$x_b = \int x n(x, y, s) dx dy$$
$$\int \tilde{n} dV = 1$$

therefore

$$\int \ddot{x}\tilde{n}dV + \int Q^2\omega_0^2x\tilde{n}dV = -i\frac{qZ_\perp I_0}{2\pi Rm\gamma}x_b$$

If all particles have the same frequency, i.e. each particle experience a force

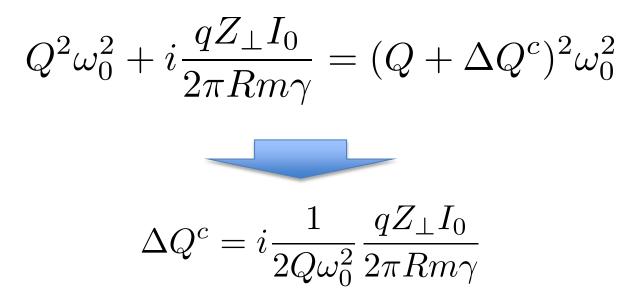
with

 $Q^2 \omega^2 x$ 

then 
$$\ddot{x}_b + Q^2 \omega_0^2 x_b = -i \frac{q Z_\perp I_0}{2\pi R m \gamma} x_b$$

$$\ddot{x}_b + Q^2 \omega_0^2 x_b = -i \frac{q Z_\perp I_0}{2\pi R m \gamma} x_b$$

We can define a coherent "detuning" because this is a linear equation



$$\ddot{x}_b + Q^2 \omega_0^2 x_b = -2Q\omega^2 \Delta Q^c x_b$$

that is

$$\ddot{x}_b + (Q^2\omega_0^2 + 2Q\omega_0^2\Delta Q^c)x_b = 0$$

But now  $\Delta Q^c$  is a complex number !!

Solution  $x_b = A \exp[-\omega_0 I_m(\Delta Q^c)t + i\omega_0 [Q + Re(\Delta Q^c)]t]$ 

$$\tau_I^{-1} = \omega_0 Im(\Delta Q^c)$$

Is the growth rate of the transverse resistive wall instability

$$\frac{1}{\tau} = \frac{qRe\{Z_{\perp}\}I_0}{4\pi Rm\gamma Q\omega_0}$$

This instability always take place

Instability suppression
 → Landau damping

## An important assumption

We assumed that all particles have the same frequency so that

$$\int Q^2 \omega_0^2 x \tilde{n} dV = Q^2 \omega_0^2 \int x \tilde{n} dV = Q^2 \omega_0^2 x_b$$

This assumption means that each particle of the beam respond in the same way to a change of particle amplitude

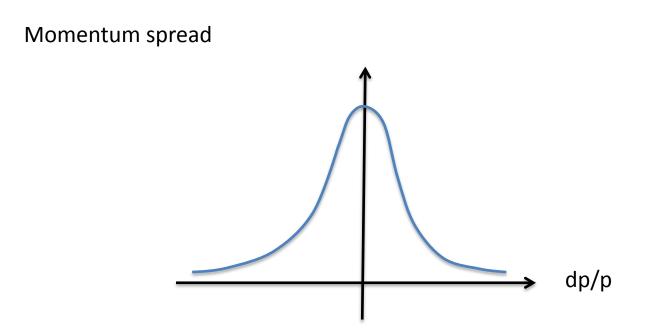
Coherent motion



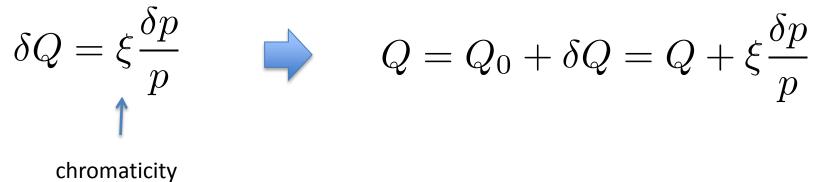
drive particle motion, which is again coherent

## Chromaticity ?

What happened if the incoherent force created by the accelerator do not allow a coherent build up



one particle with off-momentum dp/p has tune



If each particle of the beam has different dp/p then the force that the lattice exert on a particle depends on the particle !

$$F_x = \left(Q_0 + \xi \frac{\delta p}{p}\right)^2 \omega^2 x$$

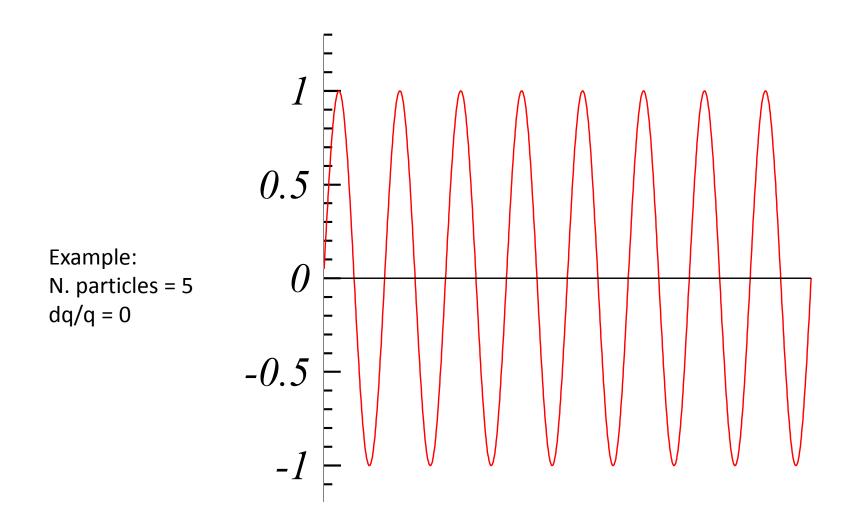
#### Incoherent motion damps x<sub>b</sub>

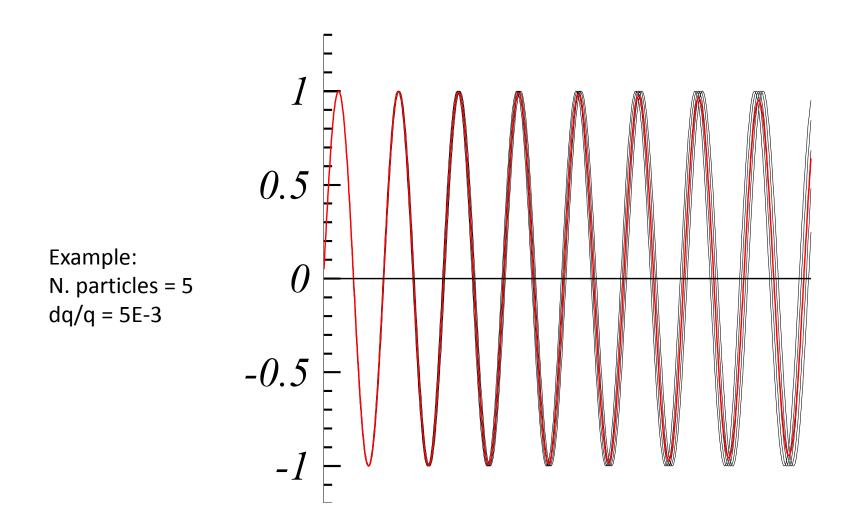
Equation of motion without impedances

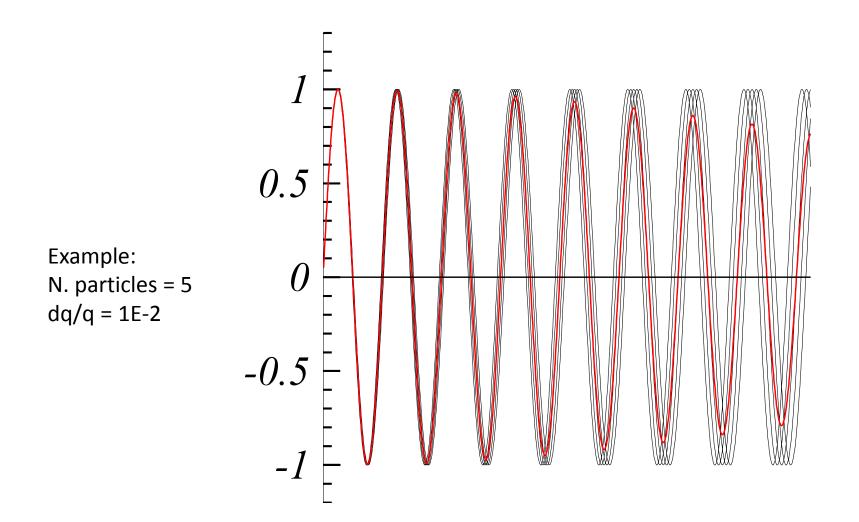
$$\ddot{x} + \left(Q_0 + \xi \frac{\delta p}{p}\right)^2 \omega^2 x = 0$$

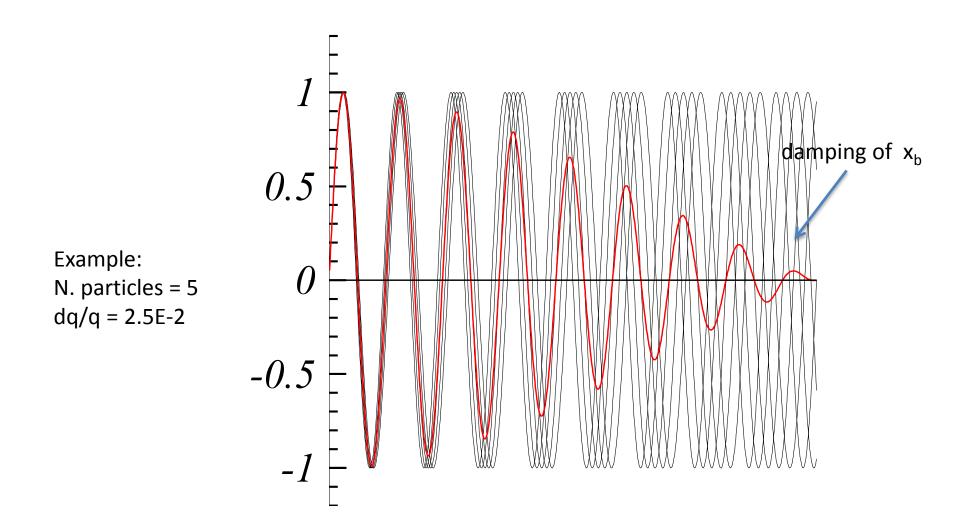
Motion of center of mass as an effect of the spread of the frequencies of oscillation

The momentum compaction also provides a spread of the betatron oscillations



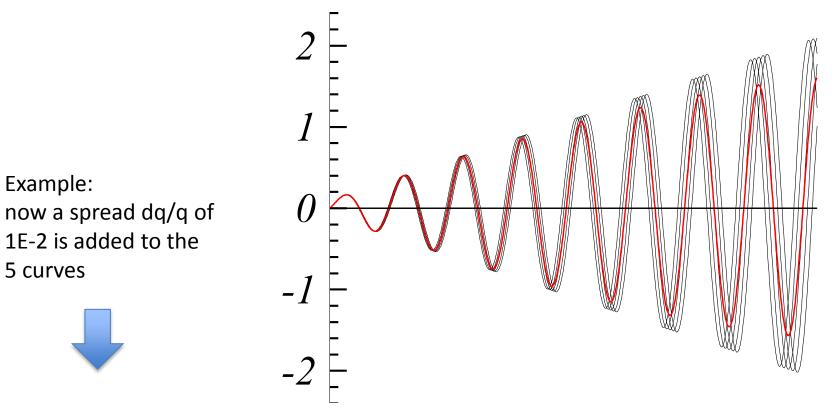




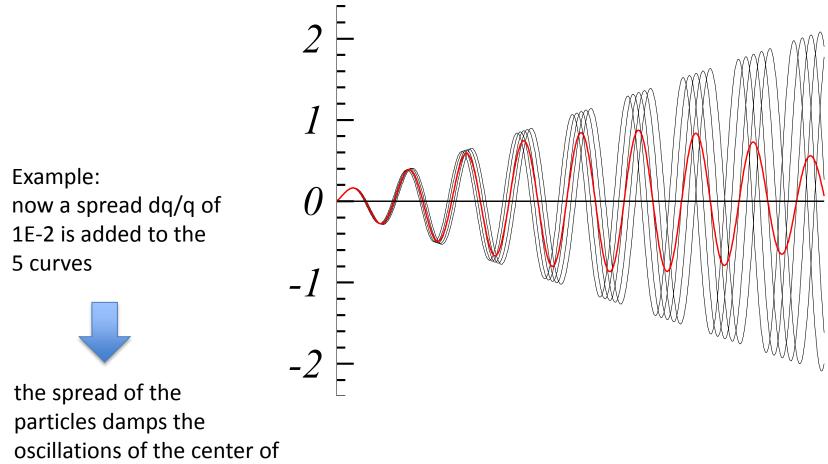


# But incoherent motion reduces x<sub>b</sub>

Example: these are 5 sinusoid with amplitude linearly growth -1 -2

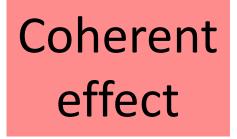


The center of mass growth slower



mass  $\rightarrow$  the instability cannot develop

#### Situation



Growth rate



#### Incoherent effect

Damping rate

 $au_I$ 

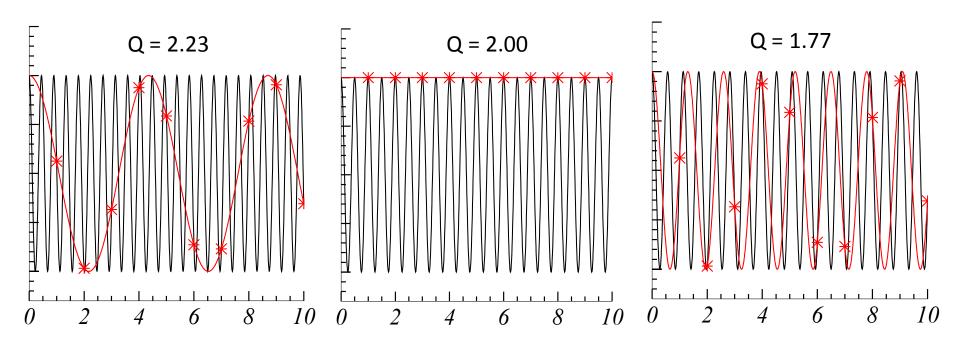
The faster wins

 $au_D$ 

# instability of a single bunch

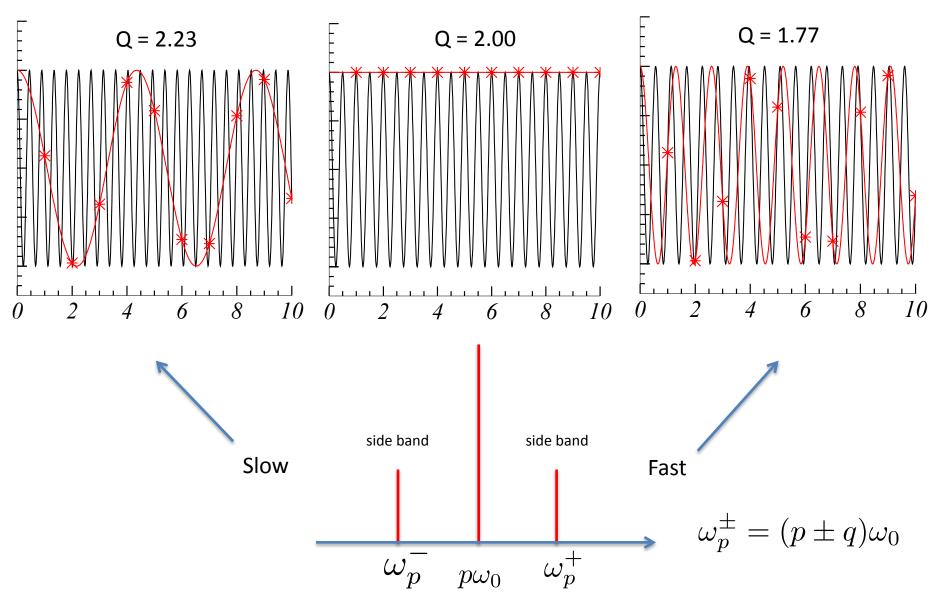
Example

beam position at the cavity



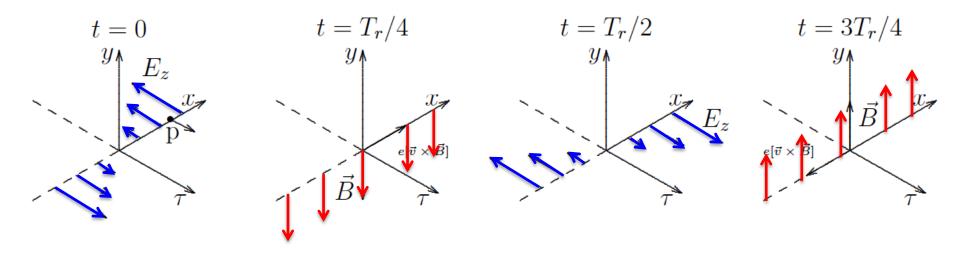
No oscillations  $\rightarrow$ 

 $\omega = 0$ 

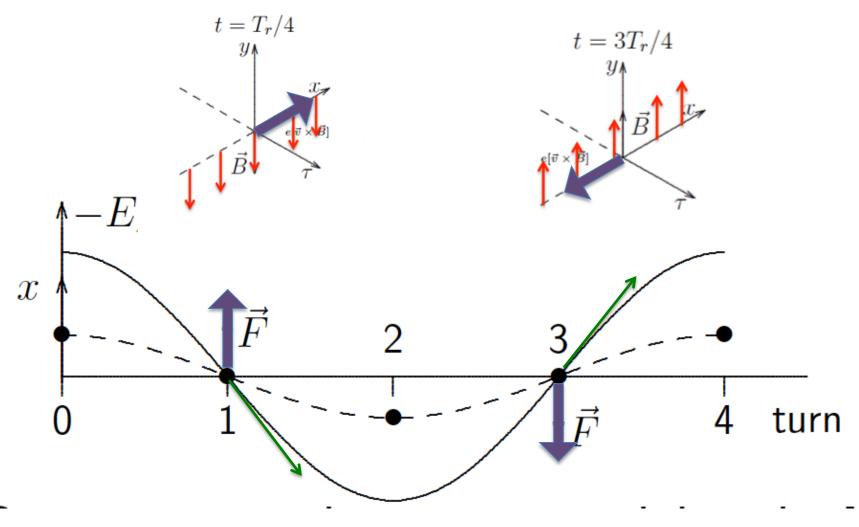


# behavior of the field in the cavity

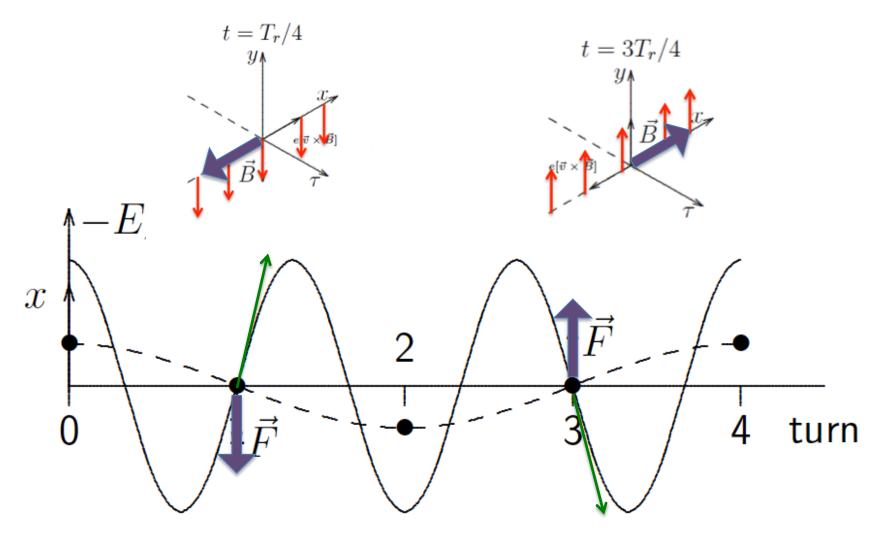
 $T_r$  = time of oscillation of the field in the cavity



# Cavity tuned upper sideband

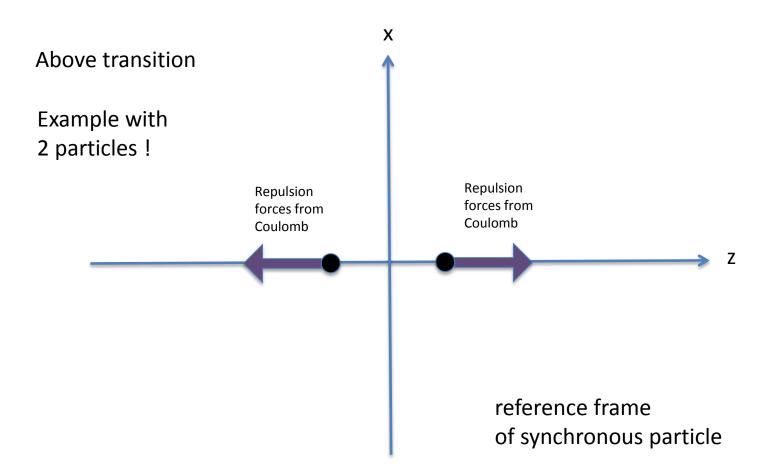


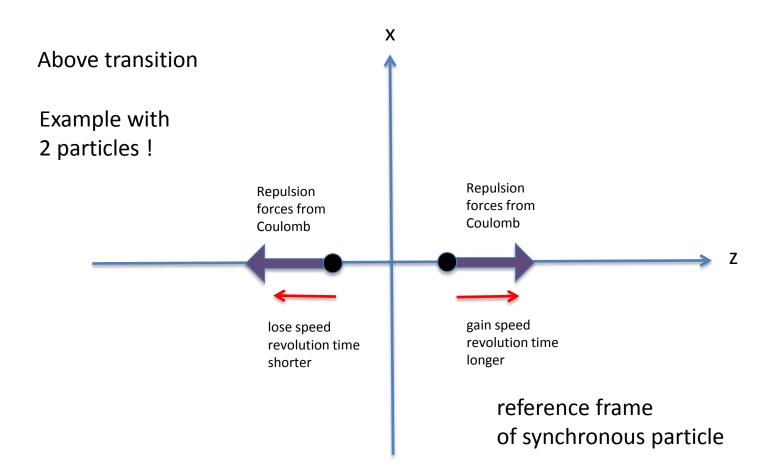
# Cavity tuned upper sideband

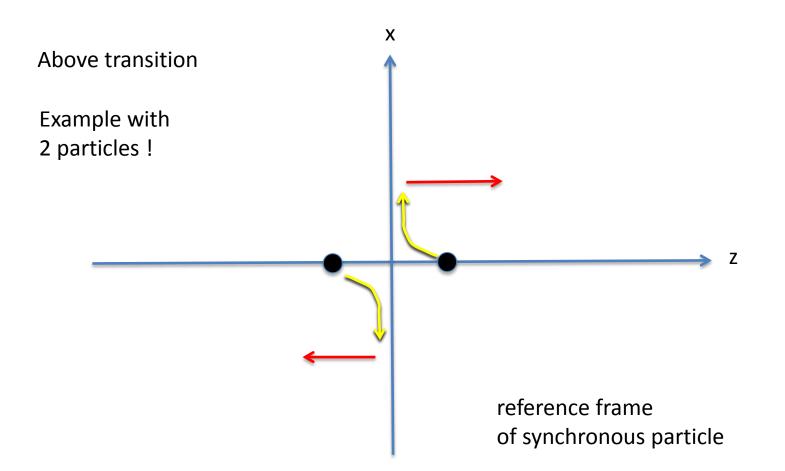


As for the Robinson Instability

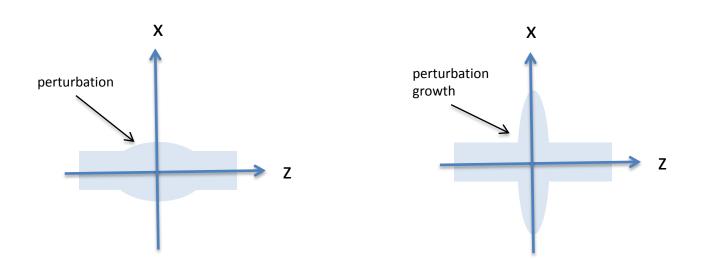
 $\alpha_s = \frac{1}{\tau} \propto \sum_p I_p^2 [Z_\perp(\omega_p^+) - Z_\perp(\omega_p^-)]$  $\mathcal{D}$ 







Above transition



repulsive forces attract particles as if their mass were negative

#### Summary

Robinson instability Longitudinal space charge and resistive wall impedance Transverse impedance Transverse instability Landau damping Single bunch instability Negative mass instability