
Septa,Kickers and  
Transfer Lines 

Wolfgang Bartmann 

CERN 

(based on lectures by M.J. Barnes, J. Borburgh, 
B. Goddard, V. Kain and M. Meddahi) 



Septa, Kickers and Transfer Lines 

• Beam transfer devices 

– Septa 

– Kickers 

 

• Transfer lines 

– Geometric link between machines/experiment 

– Match optics between machines/experiment 

– Preserve emittance 

– Change particles’ charge state (stripping foils) 

– Measure beam parameters (measurement lines) 

– Protect downstream machine/experiment 

 



Single-turn injection – septum and kicker 

Septum magnet 

Kicker magnet 

•  Septum deflects the beam onto the closed orbit at the centre of the kicker 
•  Kicker compensates for the remaining angle  
•  Septum and kicker either side of D quad to minimise kicker strength 
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Septum 
Location 

Beam 
momentum 

(GeV/c) 

Gap Height 

(mm) 

Max. 
Current (kA) 

B (T) Deflection 
(mrad) 

Septum 
thickness 

(mm) 

LEIR/AD/CTF 
(13 systems) 

Various 25 to 55 1 DC to  
40 pulsed 

0.5 to 1.6 up to 130 3 - 19.2 

PS Booster 
(6 systems) 

1.4 25 to 50 28 pulsed 0.1 to 0.6 up to 80 1 – 15 

PS complex  
(8 systems) 

26 20 to 40 2.5 DC to 33  
pulsed 

0.2 to 1.2 up to 55 3 - 11.2 

SPS Ext. 450 20 24 1.5 2.25 4.2 - 17.2 

Example Parameters for Septa at CERN 



Kicker 
Location 

Beam 
momentum 

(GeV/c) 

# 
Magnets 

Gap Height 
[Vap] (mm) 

Current 
(kA) 

Impedance 
(Ω) 

Rise 
Time 
(ns) 

Total 
Deflection 

(mrad) 

CTF3 0.2 4 40 0.056 50 ~4 1.2 

PS Inj. 2.14 4 53 1.52 26.3 42 4.2 

SPS Inj. 13/26 16 54 to 61 1.47/1.96 16.67/12.5 115/200 3.92 

SPS Ext. 
(MKE4) 

450 5 32 to 35 2.56 10 1100 0.48 

LHC Inj. 450 4 54 5.12 5 900 0.82 

LHC Abort 450 to 7000 15 73 1.3 to 18.5 1.5 (not T-line) 2700 0.275 

Example Parameters for Kickers at CERN 



Septa 



Septa 

• Main Types: 

– Electrostatic Septum (DC) 

– DC Magnetic Septum 

– Direct Drive Pulsed Magnetic Septum 

– Eddy Current Septum 

– Lambertson Septum (deflection orthogonal to kicker deflection) 

 

• Main Difficulties: 

– associated with Electrostatic septa is surface conditioning for High 
Voltage 

– associated with Magnetic septa are not electrical but rather 
mechanical (cooling, support of this septum blades, radiation 
resistance) 



Electrostatic Septum 

• Thin septum < 0.1 mm 

• Vacuum as insulator 

between septum and 

electrode  vacuum tank 

• Remote positioning system 
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Electrostatic Septum 

• Variable gap width: 10 - 35 mm 

• Vacuum: 10-9 to 10-12 mbar range 

• Voltage: up to 300 kV 

• Electric field strength: up to 10 MV/m; 

• Septum Molybdenum foil or Tungsten 
wires 

• Electrodes made of anodised 
aluminium, stainless steel or Titanium  

Beam Screen Electrode 

Foil 

Foil Tensioners 
Deflector 



DC Magnetic Septum 

• Continuously powered 

• Usually multi-turn coil to reduce the 
current needed 

• Coil and the magnet yoke can be split 
for installation and maintenance 

• Rarely under vacuum 

Magnet yoke 
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• Gap height: 25 - 60 mm 

• Septum thickness: 6 - 20 mm 

• Outside vacuum; 

• Laminated steel yoke; 

• Coil water cooling circuits (12 - 60 
l/min.) 

• Current range: 1 - 10 kA; 

• Power consumption: 10 - 100 kW ! 

Cooling Electrical 

Connections Circulating Beam 

DC Magnetic Septum 



Direct Drive Pulsed Magnetic Septum 

• Powered with a half sine wave current 
of a few ms 

• Single turn coil to minimize magnet 
self-inductance 

• Under vacuum 
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• Septum thickness: 3 - 20 mm 

• Vacuum ~10-9 mbar 

• Laminated steel yoke of 0.35 mm - 1.5 
mm thick laminations 

• Water cooling circuits 1 - 80 l/min 

• Current: half-sine 7 - 40 kA, half-
period ~3 ms; 

• Power supplied by capacitor discharge 

• Transformer between power supply 
and magnet 

Remote 

positioning 

system 

Beam “monitor” Beam  

screen 

Infrared bake-out lamp 

Septum 

Direct Drive Pulsed Magnetic Septum 



Eddy Current Septum 

• Powered with a half or full sine wave 
current with a period of typically 50 μs. 

• Single turn coil to minimize magnet 
self-inductance 

• Coil dimensions not critical 

• Magnetic field induces eddy currents 
in the septum blade  counteracting 
the fringe field 

• Long decay time of eddy currents 

• Thin septum x 

y 
z 
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y 
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• I I 

Magnetic Screen 

Return Box 

Beam Screen 

Coil • Return box allows to reach 
better fringe field 
compensation (~10-3 of 
main field) and improves 
heat transfer 

• Magnetic screen for 
circulating beam shielding 

Eddy Current Septum 



Lambertson Septum 

• DC or pulsed 

• Conductors are enclosed in 
steel yoke, “well away” from 
beam 

• Thin steel yoke between 
aperture and circulating beam 
– however extra steel required 
to avoid saturation 

• Lambertson deflects beam 
orthogonal to kicker deflection 
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• Septum deflects beam horizontally to 
the right 

• Kicker deflects beam vertically onto 
central orbit 

Transfer line 
from SPS 

Counter-rotating 
LHC Beam 

Beam Injected 
into LHC 

Lambertson Septum 



Kickers 



Terminating 

Resistor

Transmission 

Line

Z

Kicker 

Magnet

Z

Z
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Switch
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Z

RCPS

Dump 

Switch

Dump 

Resistor
Z

Single-way Delay τp

Simplified kicker schematic 

• Pulse forming network or line (PFL/PFN) charged to voltage Vp by the 
resonant charging power supply (RCPS) 

• Close main switch  voltage pulse of Vp/2 through transmission line towards 
magnet 

• Once the current pulse reaches the (matched) terminating resistor full-field 
has been established in the kicker magnet 

• Pulse length control with dump switch 



Reflections 
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Magnets - historic 

• Kicker magnets in the 1960’s (AA accumulator ejection) 

• Current pulses were limited  small aperture to reach required field and kick 
angle 

• Needed to be operated hydraulically to put the kicker around the beam when 
the beam size at extraction was small enough… 



Magnets – transmission line 

• Todays fast kickers are generally ferrite loaded transmission line magnets 

• Consists of many cells to approximate a broadband coaxial cable 
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Magnets – lumped inductance 

Robust and cheap construction  
BUT impedance mismatch and slow response 



Magnets – in/outside vacuum 
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Drawbacks: 

• Costly to construct: bake-out, vacuum tank, pumping, 
cooling 

• A suitably treated chamber (ceramics) anyway needed 
for coupling impedance to beam 

Why put the magnet under vacuum: 

• Reduce aperture and therefore voltage 
and current 

• Machine vacuum is a reliable dielectric 
(70 kV/cm OK) 

• Recovers after a flashover 



Terminated vs. Short circuit 

Main switch: 
trigger voltage 
pulse 

Dump switch: 
Control pulse 
length 

Short circuit switch: 
when fired magnet 
current is doubled 

Short-circuit mode allows to reach almost double the deflection angle 
at the expense of also a factor two longer rise/fall time 



Switches 

~340mm 

Thyratron 

GTO die 

damaged 

during testing 

at high di/dt 

Semiconductor 

Thyratrons: 
• can hold off 80 kV and switch 6 kA within 30 ns 
• BUT: housing, insulation, erratics 

 
Semiconductors: 
• Allows beam energy tracking, eg. LHC dump kickers 
• Rise time > 1μs 
• Low maintenance 
 



PFN/PFL 

Pulse forming line Pulse forming network 

• Coaxial cable charged to double the 
required pulse voltage 

• Short pulses (< 3 μs) 

• Low attenuation required to minimize 
droop  above 50 kV SF6 pressurized 
cables 

• Bulky! 

• For low droop and long pulses 
(> 3 μs) 

• Artificial coaxial cable made of 
lumped elements 

Reels of PFL LHC Injection PFN 



Transfer lines 



Circular Machine 
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•  The solution is periodic  

•  Periodicity condition for one turn (closed ring) imposes α 1= α 2, β 1= β 2, D1= D2 

•  This condition uniquely determines α(s), β(s), μ(s), D(s) around the whole ring 
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Transfer line 
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•  No periodic condition exists 

•  The Twiss parameters are simply propagated from beginning to end of line 

•  At any point in line, α(s) β(s) are functions of α1 β1  

One pass: 



Linking Machines 
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Optics Matching 

• Need to “match” 8 variables (αx βx Dx D’x and αy βy Dy D’y) 

• Independently powered quadrupoles 

 

• Maximum β and D values are imposed by magnet apertures 

 

• Other constraints can exist 

• phase conditions for collimators, 

• insertions  for special equipment like stripping foils 



Optics Matching 
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• Optical errors occur in transfer line and ring, such that the beam can be 
injected with a mismatch. 

 

 

 

Blow-up from betatron mismatch 

• Filamentation will produce an emittance 
increase. 

• In normalised phase space, consider the 
matched beam as a circle, and the 
mismatched beam as an ellipse. 

 

 

 

Mismatched 
beam 

Matched 
beam 

X

'X



• Optical errors occur in transfer line and ring, such that the beam can be 
injected with a mismatch. 

 

 

 

Blow-up from betatron mismatch 

• Filamentation will produce an emittance 
increase 

• In normalised phase space, consider the 
matched beam as a circle, and the 
mismatched beam as an ellipse. 
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Resulting emittance after filamentation: 
(see Appendix for derivation) 



Blow-up from betatron mismatch 

 

0

22

0

67.1

1
2

1







new

o

3/  ab

A numerical example….consider b = 3a for the mismatched ellipse 

Mismatched 
beam 

Matched 
Beam  

a b=3a 

Then 

X

'X



Steering (dipole) errors 

• Precise delivery of the beam is important. 

– To avoid injection oscillations and emittance growth in rings 

– For stability on secondary particle production targets 

• Convenient to express injection error in s (includes x and x’ errors) 
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Blow-up from steering error 

• Consider a collection of particles with max. amplitudes A 

• The beam can be injected with a error in angle and position. 

• For an injection error Δay (in units of sigma = β) the mis-injected beam is 
offset in normalised phase space by L = Δayε 
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Resulting emittance after filamentation: 
(see Appendix for derivation) 



Blow-up from steering error 
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Damping of injection oscillations 

• Residual transverse oscillations lead to an emittance blow-up through 
filamentation 

• “Transverse damper” systems used to damp injection oscillations - bunch 
position measured by a pick-up, which is linked to a kicker 

• Damper measures offset of bunch on one turn, then kicks the bunch on a 
subsequent turn to reduce the oscillation amplitude 
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Example: LHC injection of beam 1 

• Oscillation down the line has developed in horizontal plane 

• Injection oscillation amplitude > 1.5 mm 

• Good working range of LHC transverse damper +/- 2 mm 

 

 

 

 

 

 

 

 

• Aperture margin for injection oscillation is 2 mm 

 

 

 



• Scattering elements are sometimes required in the beam 

– Thin beam screens (Al2O3,Ti) used to generate profiles. 

– Metal windows also used to separate vacuum of transfer lines from vacuum in 
circular machines. 

– Foils are used to strip electrons to change charge state 

• The emittance of the beam increases when it passes through, due to 
multiple Coulomb scattering. 

 

 

 

 Blow-up from thin scatterer 
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 Blow-up from thin scatterer 

s



'

0

'

0

XX

XX

new

new

Ellipse after 

scattering 

Matched 

ellipse 

Each particles gets a random angle change qs 
but there is no effect on the positions at the 
scatterer 

After filamentation the particles have 
different amplitudes and the beam has a 
larger emittance 

X

'X

2

0
2

snew 


 



Blow-up from charge stripping foil 

• For LHC heavy ions, Pb53+ is stripped to Pb82+ at 4.25GeV/u using a 0.8mm 
thick Al foil, in the PS to SPS line  

•  De is minimised with low-b insertion (bxy ~5 m) in the transfer line 

• Emittance increase expected is about 8% 
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Optics measurement with screens 

• A profile monitor is needed to measure the beam size 

– e.g. beam screen (luminescent) provides 2D density profile of the beam 

• Profile fit gives transverse beam sizes σ. 

• If optics is known, ε can be calculated from a single screen 



Optics Measurement with 3 Screens 

M1®2
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• Assume 3 screens in a dispersion free region 

• Measurements of s1,s2,s3, plus the two transfer matrices M12 and M13 

allows determination of ε, α and β 
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Matching screen  

• 1 screen in the circular machine 

• Measure turn-by-turn profile 
after injection 

• Algorithm same as for several 
screens  in transfer line 

 

 

 

• Only allowed with low intensity 
beam 

• Issue: radiation hard fast cameras 

Profiles at matching monitor after 
injection with steering error 



Injection protection 

TED TED TDI 
MKE MKI 

TCDIMOM 
TCDIH/V 

SPS TT40/60 TI 8/2 LHC 

• If beam is powerful enough to 
destroy downstream machine 
elements 

• Intercept large amplitude particles 
with collimators 

Gives additional constraints on 
optics and trajectory  



Injection protection 

Septum magnet 

Kicker magnet 
F-quad 

Circulating beam 

D-quad 

Injection dump in 
case of kicker failure  



Dump protection elements 



Summary 

 

• Depending on the injection/extraction concept chose dedicated septa and 
kickers 

 

• Transfer lines present interesting challenges and differences from circular 
machines 

– No periodic condition mean optics is defined by transfer line element 
strengths and by initial beam ellipse 

– Matching at the extremes is subject to many constraints 

– Emittance blow-up is an important consideration, and arises from several 
sources 

– Measurement beam parameters important for understanding of optics and 
beam transfer process 

 

 

 

 

Thank you for your attention! 
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Blow-up from betatron mismatch 

x2 = a2b2 sin(j +jo ), x '2 = a2 b2 cos(j +jo)-a2 sin(j +jo)[ ]
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General betatron motion 

applying the normalising transformation for the matched beam 

an ellipse is obtained in normalised phase space 

characterised by gnew, bnew and anew, where 
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We can evaluate the square of the distance of a particle from the origin as  

The new emittance is the average over all phases  

If we’re feeling diligent, we can substitute back for l to give  

where subscript 1 refers to matched ellipse, 2 to mismatched ellipse. 
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 Blow-up from thin scatterer 
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Optics Measurement with 3 Screens 

• Remember: 
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