The Problem of Water in Vacuum Systems

H. F. Dylla Jefferson Lab Newport News, VA 23606 and College of William and Mary Depts. Of Physics and Applied Science Williamsburg, VA 23185

CERN Accelerator School May 2006

1

Introduction: H₂0 in Vacuum

- From 5 Torr to the UHV boundary
 - the interaction of water on (metal) surfaces is the dominant problem in vacuum systems
- For unbaked systems, the pumping of H_2O determines the pumping time constant

 $P = P_0 t^{-\alpha}$, where $\alpha \cong -1$

- For baked systems, H₂O removal, and H₂O mediated C removal, dominate the gas removal
- For UHV/XHV system, H₂O interactions are still important
 - residual H,O from previously absorbed H₂O or oxide decomposition can account for the remaining residual gases (usually H₂, CH₄ and CO)

Outgassing Behavior of an Unbaked Vacuum System

Understand H₂O in Vacuum---Save \$\$

- With a better understanding of H₂O interactions on technical surfaces (mainly 300 series SS and 6000 series Al), e.g.
 - minimize H_2O adsorption (and re-adsorption) during gas exposure
 - minimize H₂O formation (from oxide decomposition)
 - maximize H_2O desorption and removal during pumping
- There would be significant time savings (i.e., COST SAVINGS) with the operation and maintenance of high performance vacuum systems:
 - turn-around time for large UHV systems used in science (ie, accelerators)
 - target changes in sputter source chambers in "cluster tools"
 - baking costs

H₂O /Surfaces: What have we studied?

- 50 years of outgassing measurements
 - predominately 300 series stainless steel (technical material of choice)
 - some data on Al, Cu, other UHV metals, various coatings (TiC, BN, etc.)
 - ceramics and glasses that have been qualified for vacuum use
- 35 years of surface science measurements
 - largely on model systems: single crystal metals (W, Mo, Fe, etc.)
- 40 years of theoretical studies
 - modeling of adsorption/desorption phenomena on both technical and model surfaces

H₂O on Stainless Steel

- Given the breadth of this subject, restrict the problem to a high priority subset that is relevant to the design, fabrication and operation of vacuum systems
 - the problem of H_2O adsorption/desorption from stainless steel
 - the practical, relatively inexpensive, widely used structural material for vacuum systems
- Let's analyze the problem in three parts:
 - the H₂O molecule
 - H₂O interacting with the surface
 - H₂O interacting with bulk material

H₂O: from the Greeks to Kauzmann

- The first Physicists (Democritus et al) recognized the importance of H_2O
 - One of the Four Elements

H₂O: from the Greeks to Kauzmann, cont.

The early Chemists Cavendish and Lavoisier (1783-84 identified the elemental composition of H_2O)

The modern physical-chemical view of H_2O (Kauzman et al.*)

- large dipole moment—polarizability \rightarrow H-bonding
- unique solid and liquid structures
- universal solvent/structural component for chemistry/biology

Water on Stainless Steel: Sources

physisorbed H₂0

- multilayer
- weakly bound
- desorbs in vacuum easily

• • •

chemisorbed H₂0

- <1 monolayer on "accessible" surface
- > 5 monolayers compared to geometric surface
- Strongly bound (15-25 kcal/mole)
- Easily recharged by atmospheric exposure

Other sources of H₂O

Other sources of H₂0 within the oxide layer?:

• Decomposition of reducible oxides by diffusing hydrogen

$$Fe (0)_{x} + 2 [H] \longrightarrow Fe (0)_{x-1} + H_{2}0$$
$$Kp \sim 1$$

 $Cr_2 0_3 + 2 [H] \longrightarrow Cr + H_20$ $Kp \sim 10^{-24}$

H₂O/Stainless Steel Studies

- What is known about H_2O/SS adsorption/desorption phenomena?
 - large record of outgassing measurements from 300 series SS
 from which empirical relations and some fundamental kinetic
 data can be extracted
- Outgassing data generally fit $Q = Q_0 t^{-\alpha}$
 - large variation in Q_0 , α from the literature
- Comparisons of data difficult because:
 - different measurement techniques: throughput (S=finite) vs static(S=0)
 - poorly documented calibration techniques
 - ill defined starting conditions
 - poorly documented surface conditions

Outgassing Measurements

Typical Outgassing Data

Outgassing vs. Surface Treatment

- A study in 1993 (Dylla, Manos and LaMarche, JVST, A11, 2623, 1993) tried to quantify outgassing vs. surface treatment
- Observed a factor of 4 variation in outgassing rate with 5 different surface treatments with surface roughness factor varying a factor of 100
 - Electropolish Vacuum remelt Vacuum bake/EP Compound EP

Outgassing results for the stainless steel surface treatments¹⁷

Outgassing vs. surface roughness

- Uncontrolled variables were surface roughness and water content of initial atmospheric exposure
- Suemitsu et al (JVSTA 10, 570 1992) showed that for well defined oxides on Al, the outgassing rate scaled with surface roughness

Outgassing rate after 10 h of evacuation vs. roughness factor defined by Eq¹⁹(1).

Outgassing vs. H₂O exposure

- With carefully controlled exposures to H₂0 of previously degassed stainless steel surfaces, the empircal data set became reproducible:
- $\alpha \rightarrow 1/2$ for low exposures (< 0.01 ML)
- $\alpha \rightarrow 3/2$ for large exposures (>100 ML)

(Ref: Li and Dylla, JVST 11, 1702, 1993; A12, 1772, 1994)

Water Outgassing Apparatus

H₂O/SS Engineering Formula

These measurements resulted in series of empircal formulae that can be used to predict the adsorption/desorption rates from SS vacuum systems knowing:

- water exposure ($P_o x t_{exp}$)
- chamber area (A)/ pumping speed (S)
- chamber temperature

Relation between the quantity desorbed and the H₂0 exposure pressure

The dependence of the quantity desorbed on the exposure duration under different exposure conditions (a) T=310 K, $p_0=0.8$ Torr, (b) T=350 K, $p_0=0.4$ Torr; (c) T=390 K, $p_0=0.8$ Torr.

H₂O/SS Adsorption/Desorption Modelling

The outgassing measurements in the literature have spawned modelling efforts since Dayton's pioneering study in 1962 (B.Dayton, Trans.Vac.Symp., 1962) Models of H_2O Outgassing

Diffusion Limited

Dayton

Malev

Li and Dylla

Surface Limited

Edwards

Weiss

Redhead

Assumption

multivarible D non-uniform source function non-uniform source function

multivariable wall pumping Dubinin-Radushkevich isotherm Tempkin isotherm

Li & Dylla Outgas Data and Fits

P. Redhead Analysis

JVST A , <u>13</u>, 467 (1995)

H₂O/SS Models (continued)

- The available models are phenomenological and several can fit the available data
- Is adsorption/desorption diffusion limited or surface limited?
- What we don't know?
- If diffusion limited:
 - nature of the diffusion constant D, source function c[x]
 - nature of the diffusant [O, H, OH, etc.]
 - bulk vs pore diffusion?
- If surface limited:
 - appropriate isotherm [adsorption energy E_d]
 - sticking coefficient
 - possibility of multilayer adsorption at room temperature

30

Connections to Fundamental Surface Studies

- Excellent body of fundamental surface studies of H_2O adsorption/desorption on metal surfaces:
- see for example: P.A. Thiel and T.E. Madey, Surface Science Reports 7, 211-385 (1987) "The Interaction of Water with Surfaces: Fundamental Aspects"
- We have to make the connection between these fundamental studies on (typically) single crystal, pure metallic elements (Fe, Mo, etc.) to the macroscopic studies on adsorption/desorption from real world surfaces (stainless steel with its complicated chemical and "messy" physical structure)
- Approach the problem from both directions:
 - use of microscopic techniques on SS samples (FIM –Ishikawa; SIMS-Li)
 - use of radiotracer techniques for sorption/desorption (Drobrozemsky)

Deuterium trapped in the oxide in Stainless Steel (Ishikawa)

FIM Image (Metallic elements: green, Oxygen containing species: blue Deuterium: red spheres)

Deuterium and Oxygen Concentration Depth Profiles in Stainless Steel

SIMS Profile of Adsorbed H_2O^{18} (Li)

Future Studies List:1

Two important experimental challenges:

- 1) Can we design/apply a passivating surface to technical surfaces that minimize the adsorption (and sorption) of H_2O ?
 - minimize surface adsorption (lower the adsorption energy)
 - minimize pore and grain boundary density which may represent bulk sorption sites

Examples: Au, Cr, Al, TiN coatings – not very successful

- grain boundary diffusion and chemistry can't be shut down?

Cu/ CuCr as UHV/XHV Material (Watanabe)

Future Studies List: 2

- 2) Can we design/apply techniques that enhance the desorption of H₂O during pump-down beyond the thermal desorption rate?
 - some modest success here with :
 - glow discharges
 - UV-photodesorption
 - electron stimulated desorption
 - experimental problems:
 - treating the entire internal surface area
 - formation of gas phase products that can be removed by the pump non-deleterious to other components in vacuum system

Outgassing after glow discharge treatment (JVST A13, 571, 1995)

38

Summary

Measurements

- The outgassing of water from SS (Al) depends on the exposure pressure ($P_o^{0.25}$) and exposure time ($a_1+a_2logt_o$)
- The observed power low dependence

 $Q = Q_o t^{-\alpha}$ depends on the exposure, $P_o t_o$

- $\alpha \sim \frac{1}{2}$ for low exposures, long times
- $\alpha \sim 1$ typical air exposures
- $\alpha \sim 3/2$ for high exposures
- Little difference among good cleaning methods
- Effects of surface roughness, oxide thickness, oxide conditions need more work

Modeling

• Several models can fit data from controlled experiments

More work needed on :

- Source distribution functions
- Realistic values for diffusion constants D (x, T)
- Relevant isotherms for H₂O/SS

References

- Dylla, Manos and La Marche, JVST A11, 2623 (1993)
- Li and Dylla, JVST A11, 1702 (1993); A12, 1772 (1994); A13,1872(1995)
- Redhead, JVST A13, 467 (1995)

Workshops

- NIST Workshop: H₂O in Vacuum (May 1994)
- IUVSTA Workshop: Conditioning of UHV Systems (Geneva, March 1995)
- IUVSTA Workshop: Outgassing Properties of Materials (Graftavellen, April 1997)
- AVS Workshop: Extreme High Vacuum (Newport News,VA, June 2000)

Acknowledgements

C. Benvenuti	P. LaMarche
B. Dayton	D. Manos
R. Drobrozemski	P. Redhead
Y. Ishikawa	R. Weiss
M. Li	F. Watanabe

US Dept. of Energy, Eaton Corp., Sematech