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Introduction: H,0 In Vacuum
From 5 Torr to the UHV boundary

— the interaction of water on (metal) surfaces is the dominant
problem in vacuum systems

For unbaked systems, the pumping of H,O determines the pumping
time constant

P=P,t*, whereo=-1
For baked systems, H,O removal, and H,O mediated C removal,
dominate the gas removal
For UHV/XHV system, H,O interactions are still important

— residual H,O from previously absorbed H,O or oxide
decomposition can account for the remaining residual gases
(usually H,, CH, and CO)



Outgassing Behavior of an Unbaked Vacuum System
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Understand H,O in Vacuum---Save $3$

« With a better understanding of H,O interactions on technical surfaces (mainly 300
series SS and 6000 series Al), e.qg.

— minimize H,O adsorption (and re-adsorption) during gas exposure

— minimize H,O formation (from oxide decomposition)

— maximize H,O desorption and removal during pumping

» There would be significant time savings (i.e., COST SAVINGS) with the
operation and maintenance of high performance vacuum systems:

— turn-around time for large UHV systems used in science (ie, accelerators)
— target changes in sputter source chambers in “cluster tools”

— baking costs



H,O /Surfaces: What have we studied?

« 50 years of outgassing measurements

— predominately 300 series stainless steel (technical material of
choice)

— some data on Al, Cu, other UHV metals, various coatings (TiC,
BN, etc.)

— ceramics and glasses that have been qualified for vacuum use
» 35 years of surface science measurements
— largely on model systems: single crystal metals (W, Mo, Fe, etc.)

o 40 years of theoretical studies

— modeling of adsorption/desorption phenomena on both technical
and model surfaces



H,O on Stainless Steel

» Given the breadth of this subject, restrict the problem to a
high priority subset that is relevant to the design,
fabrication and operation of vacuum systems

— the problem of H,O adsorption/desorption from
stainless steel

— the practical, relatively inexpensive, widely used
structural material for vacuum systems

Let’s analyze the problem in three parts:
— the H,0O molecule
— H,0 interacting with the surface

— H,0 interacting with bulk material 6



H,O: from the Greeks to Kauzmann

« The first Physicists (Democritus et al) recognized the
Importance of H,O

— One of the Four Elements




H,O: from the Greeks to Kauzmann, cont.

The early Chemists Cavendish and Lavoisier (1783-84 identified the elemental
composition of H,0)

The modern physical-chemical view of H,O (Kauzman et al.”)
« large dipole moment—polarizability->H-bonding
* unique solid and liquid structures
« universal solvent/structural component for chemistry/biology

Hydrogen -
atom

Lone pair

- Oxygen

*D. Eisenberg and W. Kauzmann, The Structue and Properties of Water (Oxford, 1969)



physisorbed H20 Water on Stainless Steel: Sources

* multilayer
* weakly bound
e desorbs in vacuum easily

AR,

Ftr‘:2 Cr, 0,
ke (OH) N 0 10-20
nm
Y
""""""""""""""""""""" passivation
oxide layer

pores (grain boundary fissures?)

chemisorbed H20
* < 1 monolayer on "accessible' surface

* > 5 monolayers compared to geometric
surface

* Strongly bound (15-25 kcal/mole)

* Easily recharged by atmospheric exposure



Other sources of H,O

Other sources of H20 within the
oxide layer?:

* Decomposition of reducible oxides by
diffusing hydrogen

Fe (0)_+ 2[H] —> Fe (0), , + H20
Kp~1

«.r, O;+2[H] —> Cr + H>0O
Kp ~ 1024



H,O/Stainless Steel Studies

« What is known about H,O /SS adsorption/desorption phenomena?

— large record of outgassing measurements from 300 series SS
from which empirical relations and some fundamental Kinetic
data can be extracted

 Outgassing data generally fit Q =Q, t
— large variation in Q,, o from the literature
« Comparisons of data difficult because:

— different measurement techniques: throughput (S=finite) vs
static(S=0)

— poorly documented calibration techniques
— 1ll defined starting conditions

— poorly documented surface conditions .
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Outgassing rate (Torr £/ecm®

Typical Outgassing Data
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Outgassing rate (Torr £/cm? s)

Stainless Steel
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1. Electropolish (Li and Dylla")

2. Electropolish; 3. Vac.Remelt/Detergent; 4. Mill Finish/Detergent;
5. Bake/Electropolish; 6. Compound Electropolish (Dylla et al?)

7. SUS 304 /Filled with H,0 for one day; 8. Normal air venting(Chen et al®)

9. Electropolish (Edwards*)

10. Literature average (Varian®); 11. Eletropolish (Barton & Govier®)

12. Sulphidized; 13. Untreated; 14. Electropolished; 15. Treated with cord—brush %
16. Cleaned Ultrasonically (Zilnin et al’)
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1. A6063—EX/H20, one week; 2. A6063—EX/H20, one day;
6. A6063—EX/Normal air; 7. A6063—EX/Air, one and half years;
9. A6063+1050 clading/Fresh;
10. ABO63+1050 clading/Air, one day (Chen et al*®)
3. Innert Extrude(EX)/EBW; 4. Innert EXtrude(EX)/TIG;
5. Mirror Finish; 8. Mill Finish/Detergen (Dylla et al?)
11. IPL—hs; 12. EL hs; 13. EL—dia; 14. IPL—dia; 15. OMCP (Suemitsu et o!g)
16. Clean (Varian®)
17. Untreated; 18. Extrusion, Chemically polished (Zilnin et o|7)



Outgassing vs. Surface Treatment

o A study in 1993 (Dylla, Manos and LaMarche, JVST, All,

2623, 1993) tried to quantify outgassing vs. surface
treatment

e Observed a factor of 4 variation in outgassing rate with 5
different surface treatments with surface roughness factor
varying a factor of 100

Electropolish
Vacuum remelt
Vacuum bake/EP
Compound EP

16



Stainless Steel
O Electropolished
¢ Detergent/DI H,0
o Vacuum Remeit
A Vac. Bake/EP
a Compound EP

Outgassing rate (torr « I/s « cm?)
o
|
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Outgassing results for the stainless steel surface treatmentst?



Outgassing vs. surface roughness

« Uncontrolled variables were surface roughness and water
content of initial atmospheric exposure

e Suemitsu et al (JVSTA 10, 570 1992) showed that for well
defined oxides on Al, the outgassing rate scaled with surface
roughness

18
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Outgassing vs. H,O exposure

» With carefully controlled exposures to H,0 of
previously degassed stainless steel surfaces, the
empircal data set became reproducible:

. o — 1/2 for low exposures (< 0.01 ML)
e o ~ 3/2 for large exposures (>100 ML)

(Ref: Li and Dylla, JVST 11, 1702, 1993; Al12, 1772, 1994)

20
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Outgassing Rate (torr - 1/s . cm2)

Water Outgassing on SS as Function of Exposure
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H,O/SS Engineering Formula

These measurements resulted in series of empircal
formulae that can be used to predict the
adsorption/desorption rates from SS vacuum systems
knowing:

- water exposure (P, X te,)
- chamber area (A)/ pumping speed (S)
- chamber temperature

23
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The dependence of the quantity desorbed on the exposure duration under
different exposure conditions (a) T=310 K, p,=0.8 Torr, (b) T=350 K,
P,=0.4 Torr; (c) T=390 K, p,=0.8 Torr. 25



H,O/SS Adsorption/Desorption Modelling

The outgassing measurements in the literature have spawned modelling efforts
since Dayton’s pioneering study in 1962 (B.Dayton, Trans.Vac.Symp., 1962)
Models of H,O Outgassing

Diffusion Limited Assumption
Dayton multivarible D
Malev non-uniform source function
Li and Dylla non-uniform source function
Surface Limited
Edwards multivariable wall pumping
Weiss Dubinin-Radushkevich isotherm

Redhead Tempkin isotherm

26
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P. Redhead Analysis

p (tor
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JVST A, 13, 467 (1995)
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H,O/SS Models (continued)

The available models are phenomenological and several
can fit the available data

Is adsorption/desorption diffusion limited or surface
limited?

What we don’t know?

If diffusion limited:
— nature of the diffusion constant D, source function c[x]
— nature of the diffusant [ O, H, OH, etc.]
— bulk vs pore diffusion?

If surface limited:
— appropriate isotherm [adsorption energy E]
— sticking coefficient

— possibility of multilayer adsorption at room temperature *°



Connections to Fundamental Surface Studies

 Excellent body of fundamental surface studies of H,O
adsorption/desorption on metal surfaces:

- see for example: P.A. Thiel and T.E. Madey, Surface Science
Reports 7, 211-385 (1987) “The Interaction of Water with
Surfaces: Fundamental Aspects”

 \We have to make the connection between these fundamental studies
on (typically) single crystal, pure metallic elements (Fe, Mo, etc.) to
the macroscopic studies on adsorption/desorption from real world
surfaces (stainless steel with its complicated chemical and “messy”
physical structure)

« Approach the problem from both directions:
- use of microscopic techniques on SS samples (FIM —Ishikawa;
SIMS-L1)

- use of radiotracer techniques for sorption/desorption
(Drobrozemsky)
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Deuterium trapped in the oxide In
Stainless Steel (Ishikawa)

FIM Image (Metallic elements: green, Oxygen containing
species: blue Deuterium: red spheres)
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Deuterium and Oxygen Concentration Depth
Profiles in Stainless Steel
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Future Studies List:1

Two important experimental challenges:

1) Can we design/apply a passivating surface to technical
surfaces that minimize the adsorption (and sorption) of
H,O?

- minimize surface adsorption (lower the adsorption energy)
- minimize pore and grain boundary density which may represent
bulk sorption sites
Examples: Au, Cr, Al, TIN coatings — not very successful

- grain boundary diffusion and chemistry can’t be shut down?

35
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Future Studies List: 2

2) Can we design/apply techniques that enhance the desorption of H,O
during pump-down beyond the thermal desorption rate?

- some modest success here with :
- glow discharges
- UV-photodesorption
- electron stimulated desorption

- experimental problems:
- treating the entire internal surface area

- formation of gas phase products that can be removed by the
pump non-deleterious to other components in vacuum system

37



Outgassing after glow discharge treatment
(JVST A13, 571, 1995)
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Summary

Measurements
 The outgassing of water from SS (Al) depends on the exposure pressure (P,%2°) and exposure
time (a,+a,logt,)
» The observed power low dependence
Q =Q,t* depends on the exposure, Pt
o ~ Y2 for low exposures, long times
o~ 1 typical air exposures
o ~ 3/2 for high exposures
 Little difference among good cleaning methods
» Effects of surface roughness, oxide thickness, oxide conditions need more work

Modeling

« Several models can fit data from controlled experiments

More work needed on :

 Source distribution functions

» Realistic values for diffusion constants D (x, T)

« Relevant isotherms for H,0/SS 39
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