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Introduction: H20 in Vacuum
• From  5 Torr  to the UHV boundary

– the interaction of water on (metal) surfaces is the dominant 
problem in vacuum systems

• For unbaked systems, the pumping of H2O determines the pumping 
time constant

P = P0t -α , where α ≅ -1
• For baked systems, H2O removal, and H2O mediated C removal, 

dominate the gas removal
• For UHV/XHV system, H2O interactions are still important

– residual H,O from previously absorbed H2O or oxide 
decomposition can account for the remaining residual gases  
(usually H2, CH4 and CO)
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Outgassing Behavior of an Unbaked Vacuum System
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Understand H2O in Vacuum---Save $$
• With a better understanding of H2O interactions on technical surfaces (mainly 300 

series SS and 6000 series Al), e.g.
– minimize H2O adsorption (and re-adsorption) during gas exposure

– minimize H2O formation (from oxide decomposition)

– maximize H2O desorption and removal during pumping

• There would be significant time savings (i.e., COST SAVINGS) with the 
operation and maintenance of high performance vacuum systems:

– turn-around time for large UHV systems used in science (ie, accelerators)

– target changes in sputter source chambers in “cluster tools”

– baking costs
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H2O /Surfaces:  What have we studied?

• 50 years of outgassing measurements
– predominately 300 series stainless steel (technical material of 

choice)
– some data on Al, Cu, other UHV metals, various coatings (TiC, 

BN, etc.)
– ceramics and glasses that have been qualified for vacuum use  

• 35 years of surface science measurements

– largely on model systems: single crystal metals (W, Mo, Fe, etc.)

• 40 years of theoretical studies
– modeling of adsorption/desorption phenomena on both technical 

and model surfaces
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H2O on Stainless Steel
• Given the breadth of this subject, restrict the problem to a 

high priority subset that is relevant to the design, 
fabrication and operation of vacuum systems

– the problem of H2O adsorption/desorption from 
stainless steel

– the practical, relatively inexpensive, widely used 
structural material for vacuum systems

Let’s analyze the problem in three parts:

– the H2O molecule

– H2O interacting with the surface

– H2O interacting with bulk material
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H2O: from the Greeks to Kauzmann

• The first Physicists (Democritus et al) recognized the 
importance of H2O
– One of the Four Elements
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H2O: from the Greeks to Kauzmann,  cont.
The early Chemists Cavendish and Lavoisier (1783-84 identified the elemental 
composition of H2O)

The modern physical-chemical view of H2O (Kauzman et al.∗)
• large dipole moment—polarizability H-bonding
• unique solid and liquid structures
• universal solvent/structural component for chemistry/biology

*D. Eisenberg and W. Kauzmann, The Structue and Properties of Water (Oxford, 1969)
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Water on Stainless Steel: Sources
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Other sources of  H2O
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H2O/Stainless Steel Studies
• What is known about H2O /SS adsorption/desorption phenomena?

– large record of outgassing measurements from 300 series SS 
from  which empirical relations and some fundamental kinetic 
data can be extracted 

• Outgassing data generally fit Q =Qo t-α

– large variation in Qo, α from the literature

• Comparisons of data difficult because:

– different measurement techniques: throughput (S=finite) vs 
static(S=0)

– poorly documented calibration techniques

– ill defined starting conditions

– poorly documented surface conditions
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Outgassing 
Measurements
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Typical Outgassing Data
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Outgassing vs. Surface Treatment

• A study in 1993 (Dylla, Manos and LaMarche, JVST, A11, 
2623, 1993) tried to quantify outgassing vs. surface 
treatment

• Observed a factor of 4 variation in outgassing rate with 5 
different surface treatments with surface roughness factor 
varying a factor of 100

Electropolish
Vacuum remelt
Vacuum bake/EP
Compound EP



17Outgassing results for the stainless steel surface treatments



18

Outgassing vs. surface roughness
• Uncontrolled variables were surface roughness and water 

content of initial atmospheric exposure

• Suemitsu et al (JVSTA 10, 570 1992) showed that for well 
defined oxides on Al, the outgassing rate scaled with surface 
roughness



19Outgassing rate after 10 h of evacuation vs. roughness factor defined by Eq. (1).
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Outgassing vs. H2O exposure

• With carefully controlled exposures to H20 of 
previously degassed stainless steel surfaces, the 
empircal data set became reproducible:

• α 1/2 for low exposures  (< 0.01 ML)
• α 3/2 for large exposures (>100 ML)

(Ref: Li and Dylla, JVST 11, 1702, 1993; A12, 1772, 1994)
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Water Outgassing Apparatus
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Water Outgassing on SS as Function of Exposure

Li and Dylla
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H2O/SS Engineering Formula

These measurements resulted in series of empircal 
formulae that can be used to predict the 
adsorption/desorption rates from SS vacuum systems 
knowing:

- water exposure (Po x texp)
- chamber area (A)/ pumping speed (S)
- chamber temperature
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Relation between the quantity desorbed and the H20 exposure pressure
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The dependence of the quantity desorbed on the exposure duration under
different exposure conditions (a) T=310 K, p0=0.8 Torr, (b) T=350 K, 
p0=0.4 Torr; (c) T=390 K, p0=0.8 Torr.
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H2O/SS Adsorption/Desorption Modelling
The outgassing measurements in the literature have spawned modelling efforts
since Dayton’s pioneering study in 1962  (B.Dayton, Trans.Vac.Symp., 1962)
Models of H2O Outgassing

Diffusion Limited Assumption
Dayton                                                 multivarible D
Malev                                                   non-uniform source function
Li and Dylla                                         non-uniform source function

Surface Limited
Edwards                                                 multivariable wall pumping
Weiss                                                     Dubinin-Radushkevich isotherm
Redhead                                                 Tempkin isotherm
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Source
Distribution

Outgassing
Rate

MODEL 1 MODEL 2 MODEL 3
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Li & Dylla Outgas Data and Fits
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P. Redhead Analysis
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H2O/SS Models (continued)
• The available models are phenomenological and several 

can fit the available data

• Is adsorption/desorption diffusion limited or surface 
limited?

• What we don’t know?
• If diffusion limited:

– nature of the diffusion constant D, source function c[x]
– nature of the diffusant  [ O, H, OH, etc.]
– bulk vs pore diffusion?

• If surface limited:
– appropriate isotherm  [adsorption energy Ed]
– sticking coefficient
– possibility of multilayer adsorption at room temperature
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Connections to Fundamental Surface Studies
• Excellent body of fundamental surface studies of H2O      
adsorption/desorption on metal surfaces:

- see for example: P.A. Thiel and T.E. Madey, Surface Science 
Reports 7, 211-385 (1987) “The Interaction of Water with 

Surfaces: Fundamental Aspects”
• We have to make the connection between these fundamental studies 
on (typically) single crystal, pure metallic elements (Fe, Mo, etc.)  to 
the macroscopic studies on adsorption/desorption from real world
surfaces (stainless steel with its complicated chemical and “messy”
physical structure)
• Approach the problem from both directions:

- use of microscopic techniques on SS samples (FIM –Ishikawa; 
SIMS-Li )

- use of radiotracer techniques for sorption/desorption     
(Drobrozemsky)
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Deuterium trapped in the oxide in 
Stainless Steel (Ishikawa)

FIM Image (Metallic elements: green, Oxygen containing 
species: blue Deuterium: red spheres)
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Deuterium and Oxygen Concentration Depth 
Profiles in Stainless Steel

Ref: Ishikawa
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SIMS Profile of Adsorbed H2O18 (Li)
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Future Studies List:1
Two important experimental challenges:
1)  Can we design/apply a passivating surface to technical 

surfaces that minimize the adsorption (and sorption) of 
H2O?

- minimize surface adsorption (lower the adsorption energy)

- minimize pore and grain boundary density which may represent

bulk sorption sites

Examples: Au, Cr , Al , TiN coatings – not very successful
- grain boundary diffusion and chemistry can’t be shut down?
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Cu/ CuCr as UHV/XHV Material (Watanabe)
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Future Studies List: 2
2)  Can we design/apply techniques that enhance the desorption of H2O 

during pump-down beyond the thermal desorption rate?
- some modest success here with :

- glow discharges
- UV-photodesorption
- electron stimulated desorption

- experimental problems:
- treating the entire internal surface area 
- formation of gas phase products that can be removed by the 

pump non-deleterious to other components in vacuum system
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Outgassing after glow discharge treatment
(JVST A13, 571, 1995)
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Measurements
• The outgassing of water from SS (Al) depends on the exposure pressure (Po

0.25) and exposure 
time (a1+a2logto)

• The observed power low dependence
Q = Qot-α depends on the exposure, Poto

α ~   ½ for low exposures, long times
α ~  1 typical air exposures
α ~  3/2 for high exposures 

• Little difference among good cleaning methods
• Effects of surface roughness, oxide thickness, oxide conditions need more work

Modeling
• Several models can fit data from controlled experiments 
More work needed on :
• Source distribution functions
• Realistic values for diffusion constants D (x, T)
• Relevant isotherms for H2O/SS

Summary
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