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1.2.5 Temporal coherence

We have seen that spatial coherence measures the correlation of the field at two

separate spatial locations. In a similar manner, temporal coherence specifies the

extent to which the radiation maintains a definite phase relationship at two dif-

ferent times. Temporal coherence is characterized by the coherence time, which

can be experimentally determined by measuring the path length difference over

which fringes can be observed in a Michelson interferometer. A simple represen-

tation of a coherent wave in time is given by

E0(t) = e0 exp

(
− t2

4σ2
τ

− iω1t

)
. (1.100)

Here στ is the rms temporal width of the intensity profile |E0(t)
2|. The coherence

time tcoh can be defined as

tcoh ≡
∫
dτ |C(τ)|2 , (1.101)

where C(τ) is the normalized, first order correlation function (or complex degree

of temporal coherence) given by

C(τ) ≡
〈∫

dt E(t)E∗(t+ τ)
〉〈∫

dt |E(t)|2〉 , (1.102)

and the brackets denote ensemble averaging. In the simple Gaussian model of

Eq. (1.100), the coherence time tcoh = 2
√
πστ .

In the frequency domain, we have

E0
ω =

∫
dt eiωtE0(t) =

e0
√
π

σω
exp

[
− (ω − ω1)

2

4σ2
ω

]
, (1.103)

where σω = (2στ )
−1 is the rms width of the frequency profile |Eω|2. Let us

introduce the temporal (longitudinal) phase space variables ct and (ω−ω1)/ω1 =

Δω/ω1. The Gaussian wave packet then satisfies

cστ · σω

ω1
=

λ1

4π
, (1.104)

which is the same phase space area relationship as (1.58) obtained for a trans-

versely coherent Gaussian beam.

Most radiation observed in nature, however, is temporally incoherent. Sunlight,

fluorescent light bulbs, black-body radiation, and undulator radiation (which we

study in the next chapter) are all temporally incoherent, and are often referred

to as chaotic light or as a partially coherent wave. As a mathematical model of

such chaotic light, we consider a collection of coherent Gaussian pulses that are

displaced randomly in time with respect to each other:

E(t) =

Ne∑
j=1

E0(t− tj) = e0

Ne∑
j=1

exp

[
− (t− tj)

2

4σ2
τ

− iω1(t− tj)

]
. (1.105)
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Figure 1.12 (a) Representation of the randomly phased wave packets that chooses 10
out of the 100 total waves. The individual waves are shown transversely displaced for
illustration purpose only. (b) Total electric field, given by the incoherent sum of the
100 wave packets. The field consists of order T/4στ ≈ 10 regular regions (i.e.,
ML ≈ 10 longitudinal modes).

In Eq. (1.105), tj is a random number, and the sum extends to Ne to suggest that

these wave packets have been created by electrons. We illustrate this partially

coherent wave (chaotic light) in Fig. 1.12, which we obtained by using Ne = 100

wave packets with λ1 = 2π/ω1 = 1 and στ = 2 (σω = 0.25), assuming that

the tj ’s are randomly distributed with equal probability over the bunch length

duration T = 100. Panel (a) shows 10 randomly chosen such wave packets;

plotting many more than this results in a jumbled disarray. Fig. 1.12(b) shows

the E(t) that results by summing over all 100 waves. The remarkable feature

of this plot is that the resultant wave is a relatively regular oscillation that is

interrupted only a few times, much fewer than one might have naively guessed

based on the fact that it is a random superposition of 100 wave packets. In

fact, the duration of each regular region is independent of the number of wave

packets, and is instead governed by the time over which the wave maintains a

definite phase relationship, namely, the coherence time. Note that the coherence

time of a random collection of Gaussian waves (1.105) equals that of the single

mode (1.100). Thus, each regular region can be identified with a coherent mode

whose temporal width is of order the coherence time tcoh. The number of regular

regions equals the number of coherent longitudinal modes ML, which is roughly

the ratio of the bunch length to the coherence length. Approximately, we have

ML ≈ T

tcoh
=

T

2
√
πστ

≈ T

4στ
. (1.106)

The average field intensity scales linearly with the number of sources, while

the instantaneous intensity fluctuates as a function of time. Associated with

this intensity variation will be a fluctuation in the observed number of photons

Nph over a given time. Denoting the average photon number by 〈Nph〉, the rms
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Figure 1.13 Intensity spectrum of Eq. (1.110) using identical parameters as
Fig. 1.12(b). The spectrum consists of M ∼ 10 sharp frequency spikes of approximate
width 2/T ≈ 0.02, which are distributed within a Gaussian envelope of rms width
σω ∼ 0.25. The height and placement of the spectral peaks fluctuate by 100% for
different sets of random numbers.

squared fluctuation in the number of photons observed is

σ2
Nph

=
〈Nph〉2
ML

, (1.107)

where ML is the number of longitudinal modes in the observation time T .

The formula (1.107) for the photon number variation can be generalized in

two respects. First, the mode counting must include the number of transverse

modes MT in both the x and y directions, so that the total number of modes

M = MLM
2
T . (1.108)

Second, there are inherent intensity fluctuations arising from quantum mechan-

ical uncertainty in the form of photon shot noise. This number uncertainty is

attributable to the discrete quantum nature of electromagnetic radiation, and,

like any shot noise, it adds a contribution to σ2
Nph

equal to the average number

〈Nph〉. Thus, the rms squared photon number fluctuation is

σ2
Nph

=
〈Nph〉2
M

+ 〈Nph〉 = 〈Nph〉2
M

(
1 +

1

δdegen

)
. (1.109)

The second term in parentheses is the inverse of the number of photons per

mode, which is also known as the degeneracy parameter. In the classical devices

that we consider there are many photons per mode, 〈Nph〉/M ≡ δdegen � 1, and

the fluctuations due to quantum uncertainty are negligible. In this classical limit

the length of the radiation pulse can be determined by measuring its intensity

fluctuations, from which the source electron beam length may be deduced [11].
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It is interesting to note that the mode counting we performed in the time

domain can also be done in the frequency domain. Figure 1.13 shows the intensity

spectrum P (ω) ∝ |Eω|2, where

Eω =
e0
√
π

σω

Ne∑
j=1

exp

[
− (ω − ω1)

2

4σ2
ω

+ iωtj

]
(1.110)

using the same wave parameters as in Fig. 1.12. The spectrum consists of sharp

peaks of width Δω ∼ 2/T that are randomly distributed within the radiation

bandwidth σω = (2στ )
−1. In other words, the frequency bandwidth Δω of each

mode is set by the duration of the entire radiation pulse T , while the frequency

range over which the modes exist is given by the inverse coherence time. Thus,

the total number of spectral peaks is the same as the number of the coherent

modes in the time domain.

1.2.6 Bunching and intensity enhancement

Let us calculate the average electric field intensity generated by many electrons

as expressed in Eq. (1.110). Defining
∣∣E0

ω

∣∣2 to be the intensity due to a single

electron, we have

〈∣∣E(ω)
∣∣2〉 =

∣∣E0
ω

∣∣2 〈
∣∣∣∣∣

Ne∑
j=1

eiωtj

∣∣∣∣∣
2〉

, (1.111)

where the angular bracket denotes an ensemble average over many instances of

the initial particle distribution. Dividing the double sum into the piece where the

particles are identical (the phase factor being unity) and the remaining terms,

we obtain 〈∣∣∣∣∣
Ne∑
j=1

eiωtj

∣∣∣∣∣
2〉

= Ne +

〈
Ne∑
j �=k

eiω(tj−tk)

〉
. (1.112)

We assume that the electrons are uncorrelated, so that the probability of find-

ing any electron at position tj is independent of the positions of all the other

electrons. Thus, the temporal statistics are completely specified by the single

particle probability distribution function f(t), and the sum in Eq. (1.112) can

be expressed as Ne(Ne − 1) identical integrals over f :

〈∣∣∣∣∣
Ne∑
j �=k

eiω(tj−tk)

∣∣∣∣∣
2〉

= Ne(Ne − 1)

∣∣∣∣
∫
dt f(t)eiωt

∣∣∣∣
2

(1.113)

= Ne(Ne − 1) |f(ω)|2 . (1.114)

This expression is general for an arbitrary collection of electrons that are inde-

pendently distributed in time according to f(t). To get a physical understanding
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of (1.113), we consider a Gaussian distributed electron bunch,

f(t) =
1√
2π σe

exp

(
− t2

2σ2
e

)
,

where σe is the bunch length. Carrying out the Gaussian integral, we find〈∣∣E(ω)
∣∣2〉 = Ne

∣∣E0
ω

∣∣2 [1 + (Ne − 1)e−ω2σ2
e

]
. (1.115)

Typically, we have

(Ne − 1)e−ω2σ2
e 
 1

for the frequency range we are interested in. As an example, one nano-Coulomb

of charge has Ne ∼ 1010, in which case Nee
−ω2σ2

e ∼ 1 when cσe ∼ λ. Therefore,

at wavelengths much shorter than the electron bunch length the second term in

(1.115) is negligible, and the average radiation intensity due to Ne electrons is

simply Ne times the intensity calculated for a single electron. This follows the

usual rule of intensity addition for incoherent radiation arising from unbunched

electron beams.

If, however, the bunch length becomes comparable to the radiation wavelength,

we may have

(Ne − 1)e−ω2σ2
e ≥ 1,

resulting in a significant intensity enhancement over the incoherent case. In the

extreme case where cσe 
 λ, i.e., in the limit of a vanishing bunch length, the

intensity equals N2
e

∣∣E0
ω

∣∣2, leading to an enhancement over the incoherent case

by a factor of the number of electrons Ne. Two examples of situations in which

such an intensity enhancement is often observed include coherent transition ra-

diation, produced when an electron bunch traverses an interface between two

media with differing indices of refraction, and coherent synchrotron radiation,

generated when the beam trajectory is bent in a magnetic field. However, the

coherent radiation produced through such processes is limited to the optical re-

gion of the spectrum λ � 300 nm even for very high-charge, single femto-second

electron beams.

For these reasons, typical synchrotron radiation sources generate temporally

incoherent x-rays whose average intensity scales as the number of electrons in

the bunch. We will discuss the properties of such incoherent radiation in the next

chapter, both from simple bending magnets and from undulators, which are a

periodic series of magnets with alternating polarities. There is, however, another

mechanism to produce coherent radiation at wavelengths much shorter than the

electron bunch. If we again consider either expression (1.113) or (1.114), we find

that the coherent term scales as the absolute square of the Fourier transform of

the distribution function. Thus, one can observe a coherent intensity enhance-

ment of
∣∣E0

ω

∣∣2 if the distribution function f(t) has structure (microbunching) at

the frequency ω: 〈∣∣E(ω)
∣∣2〉 = Ne

∣∣E0
ω

∣∣2 (1 + (Ne − 1) |f(ω)|2
)
. (1.116)
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Free-electron lasers (FELs) are devices in which the electron beam distribution

develops a periodic density modulation on the scale of the radiation wavelength,

resulting in a coherent enhancement of the intensity. The density modulation

arises from the resonant interaction of an electron beam with the x-rays in a

periodic undulator; we will see that if the undulator is sufficiently long, the bunch

current is sufficiently high, and the e-beam phase space is of sufficient quality

(small emittance and energy spread), than the radiation acts on the particles to

generate a periodic density modulation whose length scale is near the resonant

x-ray wavelength. This leads to a significant intensity enhancement as compared

to the incoherent undulator radiation, even though the electron bunch length is

much longer than the radiation wavelength.


