

Beam Dynamics of Energy Recovery Linacs

Andreas Jankowiak & Michael Abo-Bakr Helmholtz-Zentrum Berlin

The CERN Accelerator School Free Electron Lasers and Energy Recovery Linacs Hamburg, 04.06.2016

ERL Beam Dynamics

- Goal Beam Parameter & Energy Recovery Issues
- Linear Beam Optics
- Nonlinear Beam Optics
- Collective Effects
 - Space Charge effects
 - CSR coherent synchrotron radiation
 - Geometric wakes
- BBU beam break up
- Unwanted Beam: dark current & halo
- Ion Trapping

Goal Beam Parameter:

- **1.** efficient "Energy Recovery"
 - adjust recovery conditions: rf phase advance & path length
 - minimize losses of high current beam:
 - small transverse beam size, dispersive regions \rightarrow small E-spread
 - halo: avoid, remove, transport
 - instabilities: tune for high threshold currents
- 2. maintain beam quality from source
 - transport emittance without degradation
- 3. bunch manipulation: compression
 - increase longitudinal bunch density as far as energy spread and transverse emittance degradation allow

many topics relevant for Linacs \rightarrow focus here mostly on ERL specific topics

(Linear) Beam Optics: recovery of energy by passing the linac @ dec. phase

recirculator path length: $L_{Rec} / (\beta c) = (n + 1/2) T_{rf} \rightarrow 180^{\circ}$ rf phase advance

path length may change: v = f(E), misalignments & field offsets \rightarrow orbit oscillations

ightarrow adjust recirculation length

 \rightarrow adjust f_{rf} : \otimes

ERL Beam Dynamics: Linear Beam Optics

recirculator path length: $L_{Rec} / (\beta c) = (n + 1/2) T_{rf} \rightarrow 180^{\circ}$ rf phase advance

path length may change: v = f(E), misalignments & field offsets \rightarrow orbit oscillations \rightarrow adjust recirculation length

 \rightarrow adjust f_{rf} : \otimes

ERL Beam Dynamics: Linear Beam Optics

Linear Beam Optics: Bunch Compression

1. "Off Crest" acceleration

 $V(t) = V_0 \cos(\omega t + \phi_0)$

2. Dispersive section: $R_{56} \neq 0$

ERL: bunch length @ acceleration (deceleration)? _

- short: rf curvature
- long: minimize beam loading into linac HOM's

$$\left. - \sigma_{s,out}^{Pass1} = \sigma_{s,in}^{Pass2} \right.$$

decompression: $\Delta \phi = 180^{\circ} \rightarrow \text{chirp restored} \rightarrow R_{56,Arc2} = -R_{56,Arc1}$ $R_{56,Arc2} = R_{56,Arc1} \rightarrow \text{inverted chirp} \rightarrow \Delta \phi \text{ with unbalanced beam loading}$

Linear Beam Optics

One stage ERL = Injector \rightarrow Merger \rightarrow Linac(acc) \rightarrow Arc1 \rightarrow Straight Section \rightarrow Arc2 \rightarrow Linac(dec) \rightarrow Splitter \rightarrow Dumpline

Injectionline / Merger / Splitter /Dumpline:

- low energy beam transport
- beam dump & dump merge / separate low & high energy bunches
 - first stage of bunch compression

Linac- / Straight-Sections:

- merger / splitter chicanes
- matching between to injection line, arcs and dump line
- ar Recirculator-Arcs:
 - 180° total bending angle: TBA, DDBA, Bates arc, FODO arc
 - further bunch compression

next: some design aspects on the example of bERLinPro

ERL Beam Dynamics: Linear Beam Optics

Michael Abo-Bakr & Andreas Jankowiak, Beam Dynamics of ERL, CAS2016, Hamburg, 04.06.2016

Linear Beam Optics: Merger

R. Hajima / Nuclear Instruments and Methods in Physics Research A 557 (2006) 45-50

• SC sensitivity / ε compensation

- (c) BINP-ERL
- (d) BNL-ERL (proposed)

Linear Beam Optics: Merger

- beam dynamics dominated by SC
 - ightarrow emittance compensation continued
 - → beam transport in dispersive section: ϵ -growth

bERLinPro merger

- first stage of compression
 - \rightarrow rf curvature limits R₅₆

Linear Beam Optics: Merger

- beam dynamics dominated by SC
 - ightarrow emittance compensation continued
 - \rightarrow beam transport in dispersive section: ϵ -growth

Linear Beam Optics: Linac Section

- rf focusing in the linac (with few/no quads)
- two (or multi) energy beam optics: matching beam optics from merger (LE) & Arc2 (HE) and into Arc1 (HE) & Dumpline (LE)
- adjust β -function in the linac cavities for maximum BBU threshold current
- include merger and splitter chicanes for the HE beam

ERL Beam Dynamics: Linear Beam Optics

design considerations: Linear Beam Optics: Recirculator length & hardware **Arc Optics:** various option also known from SR's flexibility / tunability \rightarrow DBA, TBA, MBA (achromatic closed FODO) chromatic properties, R₅₆ range \rightarrow Bates Arc ISR / CSR properties 6 **Bates Arc** 5 4 2138.80 <u>ع</u> 3 TBA ⊳ 2 1 0 R783.91 Nur fü **bERLinPro**: 0 1 2 3 5 4 (2 x double) bend achromat х [m] **MBA** with antibend dipole FSF: A. Matveenko, et al., ERL WS, 2013. anti-dipole quadrupole H.L. Owen et al., "Choice of Arc Design for the ERL Prototype at Daresbury Laboratory", EPAC, Lucerne, Switzerland 2004.

Linear Beam Optics: Recirculator

High transmission:

- moderate β-functions around the recirculator
- opportunities for independent matching to the linac section
- closed and small dispersion function in the arcs

Variable R₅₆:

- tunable -0.25 m < R₅₆ < 0.25 m
- standard mode $R_{56} = +/-0.14$ m
- recirculator in total isochronous

Betatron phase advance:

- minimize CSR induced emittance growth
- maximize BBU limited current threshold

difficult to meet all demands simultaneously in a small machine

Linear Beam Optics: Recirculator

Linear Beam Optics: Dumpline

safe disposal of the high power (MW range) beam !!!

long dumpline \rightarrow vacuum: separation of outgassing dump $\leftarrow \rightarrow$ SRF Linac

beam transport into dump: minimize losses

- control β-functions: small in first part
- dogleg: dispersion closed out of it → symmetric beam with beam size decoupled from energy spread

dump high power beam: 650 kW needs to be distributed over dump surface

- static beam widening (strong increase of beta-function downstream the last quadrupole) or/and
- dynamic sweeping hor.-vert. steerer

ERL Beam Dynamics: Linear Beam Optics

Linear Beam Optics: Dumpline

safe disposal of the high power (MW range

long dumpline \rightarrow vacuum: separation of outgass

beam transport into dump: minimize losses

- control β-functions: small in first part
- dogleg: dispersion closed out of it → sym from energy spread

dump high power beam: 650 kW needs to be dis

- static beam widening (strong increase of quadrupole) or/and
- dynamic sweeping hor.-vert. steerer

Xianghong Liu et al., "A High Average Power Beam Dump for an Electron Accelerator", Nuclear Instruments and Methods in Physics Research A 709 (2013) 37–43.

Linear Beam Optics: Dumpline

Linear Beam Optics: Dumpline

bERLinPro simulations: distribution of beam power inside the dump

Michael Abo-Bakr & Andreas Jankowiak, Beam Dynamics of ERL, CAS2016, Hamburg, 04.06.2016

Nonlinear Beam Optics:

• RF curvature: $E(t)=E_0 \cos(\omega t + \phi_0)$

bERLinPro: long. phase space @ end of merger including space charge effects too!

Nonlinear Beam Optics:

- RF curvature: $E(t)=E_0 \cos(\omega t + \phi_0)$
- aberrations: geometric & chromatic ٠ caused and counteracted by nonlinear fields \rightarrow multipole magnets Example: bunch compression

bERLinPro recirculator test: bunch compression with

octupole magnets optimized

$$E(s_i) = E_0 \cos(s \ 2\pi/\lambda - \varphi_0) \rightarrow \delta_i = E(s_i)/E_0 \cos(-\varphi_0)$$
$$\Delta L_i = R_{56} \delta_i + T_{566} \delta_i^2 + U_{5666} \delta_i^3 + \dots$$

Nonlinear Beam Optics: **bERLinPro**

Two modes of operation: both require multipole magnets for nonlinear corrections

 \rightarrow four sextupole magnets per arc (each individually powered)

Low emittance mode: high current, emittance ≤ 1 mm mrad, $\sigma_t = 2$ ps

- sextupoles in first arc \rightarrow counteract chromatic effects causing emittance growth
- sextupoles in second arc → reproduce longitudinal phase space to minimize energy spread of decelerated beam

Short pulse mode: $\sigma_t \le 100$ fs @ reduced current & degraded emittance

- sextupoles in first arc \rightarrow linearize long. phase space and optimize T₅₆₆
- sextupoles in second arc \rightarrow reproduce long. phase for deceleration (like in LEM)

optimization procedure:

1. analytical for bunch compression in SPM:

$$\begin{split} \delta(s) &= \mathsf{E}(s)/\mathsf{E}_0\mathsf{cos}(-\phi_0) \rightarrow \mathsf{f}^{-1}(\delta(s)) = \mathsf{s}(\delta) = \mathsf{a}_1 \delta + \mathsf{a}_2 \delta^2 + \mathsf{a}_3 \delta^3 + \dots \\ & \mathsf{beam transport in arc: } \Delta \mathsf{L} = \mathsf{R}_{56} \delta + \mathsf{T}_{566} \delta^2 + \mathsf{U}_{5666} \delta^3 + \dots \\ & \mathsf{full compression: } \mathsf{s}(\delta) + \Delta \mathsf{L} = \mathsf{O} \rightarrow \mathsf{set: } \mathsf{R}_{56} = -\mathsf{a}_1, \mathsf{T}_{566} = -\mathsf{a}_2, \dots \end{split}$$

2. numerical optimization: Elegant \rightarrow minimize goal function from tracked bunch: ε or σ_s

Collective Effects:

- Space Charge
- Coherent Synchrotron Radiation
- Geometric Wakes

in general: interaction of wake fields with bunch

wake fields: co-propagating EM-Fields, generated by the bunch itself or by preceding bunches

ightarrow spatial depending forces over the bunch ightarrow degradation of beam quality

other relevant wake fields: resistive wall, surface roughness

Space Charge Forces

r≤

$$\rho = \frac{I}{\pi a^2 v}$$
uniform cylindrical beam
$$J = \frac{I}{\pi a^2}$$
Gauss' law:
$$Ampere's law:$$

$$\frac{1}{\mu_0 \epsilon_0} = c^2$$
a:
$$E_r(r) = \frac{1}{r \epsilon_0} \int_0^r \rho(r') r' dr'$$

$$B_\theta(r) = \frac{\mu_0 \beta_z c}{r} \int_0^r \rho(r') r' dr' = \frac{\beta_z}{c} E_r(r)$$
repulsive / defocusing
$$I = \frac{1}{r \epsilon_0} \int_0^r \rho(r') r' dr'$$

$$I = \frac{1}{r \epsilon_0} \int_0^r$$

at high energies ($\beta \sim 1$) \rightarrow repulsive electric forces are compensated by attractive magnetic ones

at low energies ($\beta < 1$) \rightarrow dominating repulsive electric forces \rightarrow strongly defocusing

Space Charge Forces

equation of motion in free space with SC:

$$\frac{dp_r}{dt} = m_0 \gamma \ \frac{d^2 r}{dt^2} = F_r$$

uniform density distribution:

$$m_0 \gamma \frac{d^2 r}{dt^2} = m_0 \gamma \beta^2 c^2 \frac{d^2 r}{dz^2} = \frac{e E_r}{\gamma^2}$$
$$E_r(r) = \frac{1}{r \varepsilon_0} \int_0^r \rho(r') r' dr' = \frac{I}{2\pi \epsilon_0 \beta c a^2} r$$

$$\rightarrow r'' - \frac{e I}{2\pi\epsilon_0 m_0 c^3 \beta^3 \gamma^3} \frac{1}{a^2} r = 0$$
perveance K

with ext. focusing $\kappa(s)$ $r'' + \kappa(s) r - K(s)/a^2 r = 0$

SC \rightarrow additional focusing (quadrupole magnets) storage rings: cause for current dep. tune shift

Space Charge Effects in ERLs

- (moderate) tune shift: minor issue in single pass devices like ERLs
- emittance growth
 - nonlinear SC forces \rightarrow phase space nonlinearities (x-x', y-y', t-p)

Space Charge Effects in ERLs

- (moderate) tune shift: minor issue in ERLs
- emittance growth
 - nonlinear SC forces \rightarrow phase space nonlinearities (x-x', y-y', t-p)

charge densit

• varying strength of SC effects along bunch

bunch: longitudinally sliced

each slice with individual

- charge & charge density
- transverse size & divergence $\rightarrow \epsilon$
- energy & energy spread

\rightarrow individual SC forces

$$r^{\prime\prime}+[\kappa - K/a^2] r=0$$

transverse slice sizes oscillate around an
"reference" value
(e.g. the "invariant envelope")
→ increase of effective (proj.) emittance

simulation codes for SC dominated beam transport:

ASTRA, Parmela, OPAL, GPT, HOMDYN, SCO (AM's space charge optimizer?)... Example of SC dominated beam line with applied emittance compensation:

OPAL simulations of the bERLinPro Injector:

Michael Abo-Bakr & Andreas Jankowiak, Beam Dynamics of ERL, CAS2016, Hamburg, 04.06.2016

simulation codes for SC dominated beam transport:

ASTRA, Parmela, OPAL, GPT, HOMDYN, SCO (AM's space charge optimizer?)... Example of SC dominated beam line with applied emittance compensation:

OPAL simulations of the bERLinPro Injector:

Michael Abo-Bakr & Andreas Jankowiak, Beam Dynamics of ERL, CAS2016, Hamburg, 04.06.2016

OPAL simulations of the bERLinPro Injector:

Only a small part of SC effects introduced here! Not mentioned: long. SC, SC effects in ERL beam mergers, ...
Coherent Synchrotron Radiation:

incoherent emission of Synchrotron Radiation

$$\sigma_{s} >> \lambda_{Ph}$$

coherent emission of Synchrotron Radiation

$$\sigma_{s} \ll \lambda_{Ph}$$

g: form factor

$$g(\sigma_s, \omega) = F(\lambda(\sigma_s, t))$$
$$g^2(\sigma_s, \omega) = \exp\left[-2\pi^2 \left(\frac{\omega \sigma_s}{2\pi c}\right)\right]$$

ERL Beam Dynamics: Collective Effects

Coherent Synchrotron Radiation:

$$P_{CSR} = \frac{f_0 Q^2 R^{\frac{1}{3}}}{4\sqrt[3]{2}\varepsilon_0 \sigma_z^{\frac{4}{3}}} \left\{ 1 + N \frac{2\sqrt[3]{2}}{3\pi\sqrt{3}} \frac{\sigma_z^{\frac{1}{3}}}{R^{\frac{1}{3}}} \left[\ln(\frac{\sqrt{12}\sigma_z \gamma^3}{R}) - 4 \right] \right\}, \quad \frac{1}{\gamma} < < \left(\frac{48\sqrt{3}\sigma_z}{R} \right)^{\frac{1}{3}} \le \frac{2\pi}{N}$$

bERLinPro: LEM \rightarrow P_{CSR} ~ 4.4 kW (σ_s = 2 ps, Q = 77 pC, N = 8, E = 50 MeV) SPM \rightarrow CSR power (4.4 kW from LEM) limits bunch charge: \rightarrow Q_{SPM} ~ 10 pC $\left(\frac{Q_{SPM}}{Q_{LEM}}\right)^2 = \left(\frac{\sigma_{SPM}}{\sigma_{LPM}}\right)^{4/3}$

Coherent Synchrotron Radiation: Countermeasures \rightarrow Shielding

infinite extended parallel plates suppress THz emission for $\lambda > \lambda_{cut}$

- energy modulation: \otimes (s \rightarrow -s, but crossing full compression with more CSR)
- emittance growth: adjust phase advance in bending plane

- energy modulation: \otimes (s \rightarrow -s, but crossing full compression with more CSR)
- emittance growth: adjust phase advance in bending plane

example: two energy kicks

example: two energy kicks

FSF arc optics (A. Matveenko et al.)

example: CSR induced energy modulation, Q = 5 nC (FSF optics & parameter)

ΔΔ

example: CSR induced energy modulation, Q = 5 nC (FSF optics & parameter)

45

45

Geometric Wakes:

→ Loss factor: $k_{loss} = \frac{\Delta U}{q_b^2}$ → losses can heat / destroy chamber components → wakes induce energy modulation / degrade E-spread & emittance

bERLinPro: CST wake field calculations for all relevant vacuum chamber components

Geometric Wakes:

Komponente	N ₁	N ₂	N_gesamt	k / V/pC	k / V/pC	N ₁ * k / V/pC	N ₂ * k / V/pC	total Loss
	σ_t = 4.5 ps	σ_t = 2.0 ps		σ_t = 4.5 ps	σ_t = 2.0 ps	σ_t = 4.5 ps	σ_t = 2.0 ps	/V/pC
CSR		50	50		10		500	500
Resistive Wall		50	50		0.34		17	17
Surface Roughness		50	50		3.5		175	175
Splitter highE	0	1	1	0.005	0.019	0.000	0.019	0.019
Splitter lowE	0	1	1	0.244	0.829	0.000	0.829	0.829
dipCham40	0	8	8	0.041	0.139	0.000	1.114	1.114
Ventil,zSh=0.2	3	10	13	0.053	0.130	0.160	1.297	1.457
schlitz_03	5	28	33	0.092	0.150	0.461	4.198	4.659
thinSlot	7	34	41	0.056	0.176	0.395	5.993	6.388
erme_All	1	0	1	5.186	17.596	5.186	0.000	5.186
kontBalg	5	28	33	0.147	1.437	0.733	40.227	40.960
erme_Stripline	3	16	19	0.494	1.909	1.483	30.546	32.029
erme_Diag2	1	13	14	0.226	0.767	0.226	9.975	10.201
Koll2_10	1	0	1	6.179	20.967	6.179	0.000	6.179
Summe	26	139	165			14.824	94.197	109.021

- short bunch length \rightarrow "expensive" CST calculations \rightarrow loss factors extrapolated ~ σ^{-x}

- short bunch length \rightarrow "expensive" CST calculations \rightarrow loss factors extrapolated ~ σ^{-x}

Geometric Wakes:

Gesamt-Lossfaktoren (4.5 & 2.0 ps)

- short bunch length \rightarrow "expensive" CST calculations \rightarrow loss factors extrapolated ~ σ^{-x}
- is it a problem ? : $k = 110 \text{ V/pC} \rightarrow P_{\text{total}} = k Q_{\text{B}} \text{I} = 850 \text{ W},$

"first meter" & Kollimator ~ 50 W each \rightarrow \odot when equally distributed

ERL Beam Dynamics: Collective Effects

single bunch wake: @ high Q field from previous bunches not sufficiently damped

Geometric Wakes:

single bunch wake: @ high Q field from previous bunches not sufficiently damped → in multi bunch operation: EM fields = equilibrium by beam excitation & damping

wake field effects from realistic bunches in multi bunch operation still to be estimated

(G. Hoffstätter: Compensation of wakefield-driven energy spread in energy recovery linacs, PR ST-AB 11, 070701 (2008))

Beam Break Up: resonant interaction of short & long range cavity wake fields with the generating bunch or subsequent bunches → instability & beam loss

BBU variants:

1. Single Bunch BBU: head of "off-axis" bunch induces cavity wakes

ightarrow resonant excitation of betatron oscillations of the bunch's tail

instability growth parameter:

$$\tau = \frac{x_t}{x_h} = \frac{Nr_e W_{\perp}(2\sigma_s)}{4k_{\beta}\gamma L_{cav}} L_{acc}$$

 $\tau \sim 1 \rightarrow$ no instability (τ -1) << 1 \rightarrow no emittance growth

BNS damping: tail stronger focused than head

SLAC linac: SB BBU + BNS

not relevant for bERLinPro

V.Balakin, A.Novokhatsky and V.Smirnov, "VLEPP: Transverse Beam Dynamics", Proc. of the 12th International Conference on High-Energy Accelerators, Batavia, Illinois, p. 119 (1983).

BBU variants:

2. Multibunch BBU: many flavours: cumulative / regenerative, transverse / longitudinal, single-/multi-cavity, single-/multiple-turn

regenerative transverse BBU (single cavity, single turn, one mode):

- bunch passes cavity "off axis" during accelerating passage → induce HOM voltage & transverse kick due to HOM
- 2. after recirculation kick transforms to an offset & HOM damp according to its Q
- bunch passes cavity with varied offset on decelerating passage → induce HOM voltage & transverse kick due to HOM

BBU: HOM excitation exceeds HOM damping \rightarrow kick strength growth up to loss

beam induced change of cavity energy:

$$\Delta U_1 = -q_b \frac{V_a}{a} \cos(\varphi) \left(x_1 \cos(\alpha) + y_1 \sin(\alpha) \right)$$

$$\Delta U_2 = -q_b \frac{V_a}{a} \cos(\varphi + \omega_\lambda T_{rec}) \left(x_2 \cos(\alpha) + y_2 \sin(\alpha) \right)$$

bunch offset at 2nd passage: $x_2 = m_{11}x_1 + m_{12}x_1' + m_{13}y_1 + m_{14}y_1' - \frac{qV_a}{\omega_\lambda a p}\sin(\varphi)(m_{12}\cos(\alpha) + m_{34}\sin(\alpha))$

T 7

ohmic losses \rightarrow damping of HOM: $P_c = \frac{V_a^2}{(\omega_\lambda / c)^2 a^2 (R/Q)_\lambda Q_\lambda}$

balanced HOM: $\left< \Delta U_1 + \Delta U_2 \right>_{\varphi} \cdot f_b = P_c$

→ threshold current:

$$I_{th} = -\frac{2pc^2}{e\omega_{\lambda} \left(\frac{R}{Q}\right)_{\lambda} Q_{\lambda} m^* \sin(\omega_{\lambda} T_{rec})}$$

valid for:

- $m^* sin(\omega_\lambda T_{rec}) < 0$

$$m^* = m_{12}\cos^2(\alpha) + (m_{14} + m_{32})\sin(\alpha)\cos(\alpha) + m_{34}\sin^2(\alpha)$$

E. Pozdeyev et al.: Multipass beam breakup in energy recovery linacs, NIM-A 557 (2006) 176–188

G. Hoffstaetter et al.: Beam-breakup instability theory for energy recovery linacs, PRST-AB 7, 054401 (2004)

G. Hoffstaetter et al.: Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling, PRST-AB 10, 044401 (2007)

Countermeasures:

$$I_{th} = -\frac{2pc^2}{e\omega_{\lambda} \left(\frac{R}{Q}\right)_{\lambda} Q_{\lambda} m^* \sin(\omega_{\lambda} T_{rec})}$$

1. cavity design:

- HOMs: small R/Q, varying ω_{λ} at fixed $\omega_0 \rightarrow$ multi cavity BBU thresholds increase
- no HOM on a fundamental's harmonics: $\omega_{\lambda} \neq n^* \omega_{rf}$
- low Q for HOM \rightarrow HOM dampers (ferrites, waveguides, ...)

2. recirculator beam optics:

• for $\alpha = 0$ & uncoupled beam transport $\rightarrow m^* = m_{12} = (\beta_1 \beta_2)^{1/2} \sin(\Delta \phi_x)$ \rightarrow stable for $\Delta \phi = n\pi$

Countermeasures:

$$I_{th} = -\frac{2pc^2}{e\omega_{\lambda} \left(\frac{R}{Q}\right)_{\lambda} Q_{\lambda} m^* \sin(\omega_{\lambda} T_{rec})}$$

- 2. recirculator beam optics (continued):
 - tune optics for large chromaticity ($\xi_{x,y} = dQ_{x,y}/dp$) and give bunches a high energy spread
 - \rightarrow similar to landau damping

phase advance at recirculation

Countermeasures:

$$I_{th} = -\frac{2pc^2}{e\omega_{\lambda} \left(\frac{R}{Q}\right)_{\lambda} Q_{\lambda} m^* \sin(\omega_{\lambda} T_{rec})}$$

2. recirculator beam optics (continued):

tune optics for large chromaticity ($\xi_{x,y} = dQ_{x,y}/dp$) and give bunches a high energy spread

 \rightarrow similar to landau damping

Countermeasures:

$$I_{th} = -\frac{2pc^2}{e\omega_{\lambda} \left(\frac{R}{Q}\right)_{\lambda} Q_{\lambda} m^* \sin(\omega_{\lambda} T_{rec})}$$

2. recirculator beam optics (continued):

• tune optics for large chromaticity ($\xi_{x,y} = dQ_{x,y}/dp$) and give bunches a high energy spread

medium $\xi \& \sigma_p$

х, у

Countermeasures:

$$I_{th} = -\frac{2pc^2}{e\omega_{\lambda} \left(\frac{R}{Q}\right)_{\lambda} Q_{\lambda} m^* \sin(\omega_{\lambda} T_{rec})}$$

2. recirculator beam optics (continued):

• tune optics for large chromaticity ($\xi_{x,y} = dQ_{x,y}/dp$) and give bunches a high energy spread

(very) large $\xi \& \sigma_p$

drawback: large chromaticity by strong sextupoles \rightarrow nonlinearities may cause emittance dilution

Vladimir N. Litvinenko, "Chromaticity of the lattice and beam stability in energy recovery linacs", PRST-AB 15, 074401 (2012)

Michael Abo-Bakr & Andreas Jankowiak, Beam Dynamics of ERL, CAS2016, Hamburg, 04.06.2016

Countermeasures:

$$I_{th} = -\frac{2pc^2}{e\omega_{\lambda} \left(\frac{R}{Q}\right)_{\lambda} Q_{\lambda} m^* \sin(\omega_{\lambda} T_{rec})}$$

2. recirculator beam optics (continued):

coupled beam transport: switching of planes $M=((M_x,0),(0,M_y)) \rightarrow M=((0,M_{yx},0),(0,M_{xy}))$ $m_{12}=0 \rightarrow horizontal HOM kick transforms to vertical offset \rightarrow HOM not further excited$ by the oscillatory part of x_2

Unwanted Beam

Halo

generated by / together with wanted beam

- scattered particles (residual gas, IBS)
- laser stray light on cathode
- laser: limited extinction ratio
- ... (?)

moving together with wanted beam at design rf phases \rightarrow same energy, no dispersive separation

Dark Current

generated independently of wanted beam (laser off)

- field emission in rf cavities
- ghost pulses from laser
- ... (?)

beside Dark Current from the gun \rightarrow lower energy than wanted beam \rightarrow lost in dispersive regions

UBW 2012: https://indico.helmholtz-berlin.de/conferenceDisplay.py?confld=2

Unwanted Beam

Amount:

• not reliably predictable for most sources

Loss positions:

 with initial beam parameter (place of origin, momenta) loss position along the machine can be calculated for the various generation processes → loss probability (to be weighted with unknown loss current ③)

source	generating process	loss positions	amount
Halo	scattered Particles		
	stray light – laser halo		
Dark Current	field emission gun cath & plug	-	(
	field emission booster & linac		(F)

UBW 2012: https://indico.helmholtz-berlin.de/conferenceDisplay.py?confld=2

Halo: 1. residual gas scattering

- 2. intra beam scattering \rightarrow Touschek losses
- 3. laser stray light from cathode

according to storage rings:

$$\begin{aligned} \frac{\mathrm{d}N}{\mathrm{d}t} &= c n \,\sigma_{gas} \,N \\ \sigma_{gas} &= \sigma_{ke} + \sigma_{ki} \quad n = n_Z \,\frac{1}{kT} \,p \\ \\ \overline{\sigma_{ke}} &= \frac{2\pi r_e^2 Z^2}{\gamma^2} (\frac{1}{\theta_x^2} + \frac{1}{\theta_y^2}), \end{aligned}$$

inelastic contributions:

$$\sigma_{ki} = 4\alpha r_e^2 Z^2 \left[\frac{4}{3} \left(\ln \frac{1}{\mathcal{A}^{\|}} - \frac{5}{8} \right) \ln \left(\frac{183}{Z^{1/3}} \right) + \frac{1}{9} \left(\ln \frac{1}{\mathcal{A}^{\|}} - 1 \right) \right]$$

residual gas species Z : 7.000000 atoms per molecule : 2 electrons per bunch : 4.8124998E+08 Temperature / K : 300.0000 res. gas presure / Pa : 5.000000E-07 / mbar: 5.000000E-09
Case : BERLinPro rec
gamma = 97.84736
app_x = 2.000000E-02
app_y = 2.000000E-02
max_beta_x = 40.00000
max_beta_y = 20.00000
mean_beta_x = 15.00000
mean_beta_y = 12.00000
Circum = 55.00000
density of residual gas 1/m**3 : 2.4143045E+14
cross section (ke only): 5.3624196E-25
loss rate : -1.8691530E+07
Tau / min : 0.4291160
Loss per turn = dNdt * T_Umlauf: -3.4

rel loss per turn : -7.1205832E-09

Halo: 1. residual gas scattering

- 2. intra beam scattering → Touschek losses
- 3. laser stray light from cathode

according to storage rings:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = c n \sigma_{gas} N$$

$$\sigma_{gas} = \sigma_{ke} + \sigma_{ki} \quad n = n_Z \frac{1}{kT} p$$

$$\sigma_{ke} = \frac{2\pi r_e^2 Z^2}{\gamma^2} (\frac{1}{\theta_x^2} + \frac{1}{\theta_y^2}),$$

inelastic contributions:

$$\sigma_{ki} = 4\alpha r_e^2 Z^2 \left[\frac{4}{3} \left(\ln \frac{1}{\mathcal{A}^{\parallel}} - \frac{5}{8} \right) \ln \left(\frac{183}{Z^{1/3}} \right) + \frac{1}{9} \left(\ln \frac{1}{\mathcal{A}^{\parallel}} - 1 \right) \right]$$

residual gas species Z : 7.000000 atoms per molecule : 2 electrons per bunch : 4.8124998E+08 Temperature / K : 300.0000 res. gas presure / Pa : 5.000000E-07 / mbar: 5.000000E-09
Case : BERLinPro injector
gamma = 12.72016
app_x = 2.000000E-02
app_y = 2.000000E-02
max_beta_x = 40.00000
max_beta_y = 40.00000
mean_beta_x = 15.00000
mean_beta_y = 12.00000
Circum = 15.00000
density of residual gas 1/m**3 : 2.4143045E+14
cross section (ke only): 4.0796093E-23
loss rate : -1.4220099E+09
Tau / min : 5.6404909E-03
Loss per turn = dNdt * T_Umlauf: -71
rel loss per turn : -1.4774129E-07

Loss per turn = dNdt * T_Umlauf: -3.4

rel loss per turn : -7.1205832E-09

ERL Beam Dynamics: Unwanted Beam - Halo

Halo: 1. residual gas scattering

2. intra beam scattering \rightarrow Touschek losses

3. laser stray light from cathode

$D(\epsilon)$	=	$\sqrt{\epsilon} \left[-\frac{3}{2}e^{-\epsilon} + \frac{\epsilon}{2} \int_{\epsilon}^{\infty} \frac{\ln u}{u} e^{-u} \mathrm{d}u + \frac{1}{2} \left(3\epsilon - \epsilon \ln \epsilon + 2 \right) \int_{\epsilon}^{\infty} \frac{e^{-u}}{u} \mathrm{d}u \right]$
		$\epsilon = \left(\frac{\beta_x \mathcal{A}^{\scriptscriptstyle \parallel}}{\gamma \sigma_x}\right)^2$

 $n_B = \frac{N_B}{V_B}$

 $V_B = (4 \pi)^{3/2} \,\sigma_x \,\sigma_y \,\sigma_l$

$\boxed{\frac{\mathrm{d}N_B}{\mathrm{d}t}} =$	$\frac{\sqrt{\pi} r_0^2 c n_{\scriptscriptstyle B}}{\gamma^2 \mathcal{A}^{\parallel^3}} D(\epsilon)$
---	--

BERLinPro inject	or:	
	Energy / MeV	6.5
	momentum acceptance / %	1.0 , 0.5
	circumference / m	15
	value of D-function	0.3
	lost electrones per turn and bunch	3,26
	rel. loss per turn	7E-9,5E-8

careful treatment of the longitudinal acceptance A^{II} at the varying ERL energies

	: D		
векі	InPro	recirciliator.	

Energy / MeV	50
momentum acceptance $/ \%$	0.5
electrons per bunch	5E8
norm. transverse emttance / rad m	1.0E-6
$$ / rad m	15
$$ / rad m	12
circumference / m	55
value of D-function	0.3
lost electrones per turn and bunch	12
rel. loss per turn	2.5E-8

Halo: 1. residual gas scattering

- 2. intra beam scattering → Touschek losses
- 3. laser stray light from cathode

Beam halo modeling:

particle distribution from ASTRA.

red - active beam particles,

blue – passive halo particles, green – particles lost in collimators.

Initial distribution on the cathode in

- a) x-y plane,
- *b) x-t* plane.

Particle distribution after the merger section in

- c) x-z plane,
- d) p_z -z plane.

→ Collimation of large fraction of halo particles, but not 100%.

bERLinpro: one testing collimator in the merger section

Halo: remaining beam downstream the collimator \rightarrow transport without losses \rightarrow optimize acceptance of beam optics (linear & non-linear), JLab

Halo: remaining beam downstream the collimator \rightarrow transport without losses \rightarrow optimize acceptance of beam optics (linear & non-linear), JLab

Halo: remaining beam downstream the collimator \rightarrow transport without losses \rightarrow optimize acceptance of beam optics (linear & non-linear), JLab

recirculator only - not optimized

optimization by adjusting quadrupole and sextupole magnet strengths

- \rightarrow quadrupoles: reduce maxima of beta-function
- \rightarrow sextupoles: reduce nonlinear influence on maxima of beam size: T_{1,n}, T_{3,n}

ERL Beam Dynamics: Unwanted Beam

Dark Current: - consuming rf power (linac)

- MPS relevant: $\mu A @$ tens of MeV $\rightarrow 10^2 \dots 10^3$ W/??
- radiation safety issue

- dark current from booster (E_{max} = 4.5 MeV $\rightarrow \Delta E$ > 30%) will be lost in merger
- dark current from linac (E_{max} = 44 MeV $\rightarrow \Delta E$ > 13%) will be lost in the 1st arc bend

Only dark current from gun will potentially reach the recirculator!

Gun

Dark Current: field emission from gun cathode

Field Emission from gun cathode

- Fowler Nordheim: $\varphi = 1.9 \text{ eV}$, $\beta = 200$, $E_{max} = 30 \text{ MV/m}$
- tracking trough merger incl. SC of reference bunch
- x-y apertures in booster & merger \rightarrow loss distribution

E – electric field, φ – work function

S. Wesch

Dark Current: field emission from gun cathode

Field Emission from gun cathode

- Fowler Nordheim: $\varphi = 1.9 \text{ eV}$, $\beta = 200$, $E_{max} = 30 \text{ MV/m}$
- tracking trough merger incl. SC of reference bunch
- x-y apertures in booster & merger \rightarrow loss distribution

 $j(E) = \frac{A_{FN}(\beta_{FN}E)^2}{\varphi} \exp\left(-\frac{B_{FN}\varphi^3}{\beta_{FN}E}\right)$

E – electric field, φ – work function
Dark Current: field emission from gun cathode

S. Wesch

Dark Current: field emission from booster cavity

Dark current simulations booster cavity:

- calculate trajectories of field emitted electrons inside cavity (2D – cylinder symmetry assumed)
- current weighting according to Fowler-Nordheim: I=f(|E|(t), Φ , β , A)

Simulation: $-|E|_{max} = E_{max,on_axis} = 20MV/m$

- FN parameter: β =100, Φ_{Nb} = 4.3 eV
- emission phase: -30 ... +30 degree
- emission point: max. cavity wall field

ERL Beam Dynamics: Unwanted Beam

Dark Current: field emission from booster cavity

Dark current simulations booster cavity:

- calculate trajectories of field emitted electrons inside cavity (2D – cylinder symmetry assumed)
- current weighting according to Fowler-Nordheim: I=f(|E|(t), Φ , β , A)

Simulation: $-|E|_{max} = E_{max,on_{axis}} = 20MV/m$

- FN parameter: β =100, Φ_{Nb} = 4.3 eV
- emission phase: -30 ... +30 degree
- emission point: max. cavity wall field

Extended Simulations:

- emission from various points on the cavity wall & collect parameters of escaping electrons to track them downstream the machine
- equivalent study for gun cavity

L.Fröhlich PhD Thesis, "Machine Protection for FLASH and the European XFEL", University Hamburg, 2009.

Michael Abo-Bakr & Andreas Jankowiak, Beam Dynamics of ERL, CAS2016, Hamburg, 04.06.2016

Ion Trapping: electric potential of high current beam attracts & traps residual gas ions trapped ions leading to:

- additional focusing → disturb beam optics
- increased pressure → increased losses (radiation)

Countermeasures:

- bunch gap: reduced current / increased bunch charge → ε growth, stability of rf systems
- low pressure: ~ 10^{-10} mbar \rightarrow \$\$\$
- clearing electrodes (static, dynamic)

bERLinPro: Stripline BPMs with HV connectors

G. H. Hoffstaetter, M. Liepe, NIM A 557 (2006) 205–212.G. Pöplau et. al, Phys. Rev. ST Accel. Beams 18, 044401 (2015).

Ion Trapping: bERLinPro vacuum system & clearing electrodes

- 8 shared beam position stripline monitors with HV: "Stripline IonCl."
- 2 extra "Button-devices" exclusively for cleaning