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R R/β 

Cavity 

Generator 

IG 

 
P 

C=Q/(Rω0) 

Vgap 

Beam 

IB 

L=R/(Qω0) L C 

𝛽:  coupling factor 

𝑅: Shunt impedance : R-upon-Q 

Simplification: single mode 

We have used this before 
when explaining the “fast 
feedback” 
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Example: KEK photon factory 500 MHz         
 -  R as good as it gets  - 

  this cavity optimized 
   pillbox 
 R/Q: 111 Ω 107.5 Ω 
 Q: 44270 41630 
 R: 4.9 MΩ 4.47 MΩ 

Nose cones increase transit time factor,  round outer shape minimizes losses. 

nose cone 
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0 5 1 0 1 5 2 0 

t f0 
- 1 

0 

1 

Voltage induced by a 
single charge q: 

R R/β 

Cavity 

Beam 

C=Q/(Rω0) 

V (induced) 
IB 

L=R/(Qω0) L C Energy deposited by a 
single charge q: 

Impedance seen by the beam 
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Vgap 
gap voltage 

Ploss 
Power lost in the 

cavity walls 

W 
Energy stored 

inside the cavity 
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 With zero beam current, RF power fed into the cavity excites a gap 
voltage, but it will be entirely lost in the cavity walls; this is 
characterized by the shunt impedance 𝑅: 

𝑉𝑎𝑎𝑎 =
1
2

4𝑃 𝑅  

 A non-zero beam current induces a voltage reducing the gap voltage*); 
this is known as beam loading and normally considered a 
disadvantage. 

𝑉𝑎𝑎𝑎 =
1
2

4𝑃 + 𝐼𝑏𝑏𝑏𝑏2 𝑅 𝑅 − 𝐼𝑏𝑏𝑏𝑏𝑅  

 But: if we define the RF to beam efficiency as “increase of beam power” 
divided by “RF input power”, we find that large efficiency can be 
obtained only with large beam loading (at the expense of reduced 
accelerating voltage). 

 Example: CLIC drive beam accelerated with 98% RF to beam efficiency. 

2nd Nov, 2012 8 CAS Granada     -     EJ:  RF Systems II 

*) for an accelerated beam! For a decelerated beam the voltage is increased 



 Resonance frequency 

 Transit time factor 
field varies while particle is traversing the gap 
 

 Shunt impedance 
gap voltage – power relation 

 Q factor 

  R/Q 
independent of losses – only geometry! 
 

  loss factor 
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Linac definition Circuit definition 
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IB 

R3, Q3,ω3 R2, Q2,ω2 R1, Q1,ω1 

... ... 

external dampers 

n1 n3 n2 



without dampers 

with dampers 
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electric field (@ 0º) magnetic field (@ 90º) 

(only 1/8 shown) (TM110) 
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For particles moving virtually at 𝑣 = 𝑐, the integrated 
transverse force (kick) can be determined from the 
transverse variation of the integrated longitudinal force! 

W.K.H. Panofsky, W.A. Wenzel: “Some Considerations Concerning the Transverse Deflection of Charged 
Particles in Radio-Frequency Fields”, RSI 27, 1957] 

Pure TE modes: No net transverse force ! 

Transverse modes are characterized by 
• the transverse impedance in 𝜔-domain 
• the transverse loss factor (kick factor) in t-domain ! 
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inductive (loop) coupling, low self-inductance 
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Example 
shown: 

80 MHz 
cavity PS for 
LHC. 

Color-coded: 
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PEP II cavity 
476 MHz, single cell, 
1 MV gap with 150 kW,  
strong HOM damping, 

LEP normal-conducting Cu RF cavities, 
352 MHz. 5 cell standing wave + 
spherical cavity for energy storage, 3 MV 
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example for 
capacitive coupling 

cavity 

coupling C 
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• The 𝑅 𝑄⁄  of a single gap cavity is limited to some 100 W. 
Now consider to distribute the available power to n identical 
cavities: each will receive 𝑃 𝑛⁄ , thus produce an accelerating 

voltage of 2𝑅𝑅/𝑛. 
The total accelerating voltage thus increased, equivalent to 
a total equivalent shunt impedance of 𝑛𝑛. 

      𝑉𝑎𝑎𝑎 = 𝑛 2 𝑅 𝑃
𝑛

= 

             = 2 𝑛𝑛 𝑃 

1 2 3 n 

P/n P/n P/n P/n 
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• Instead of distributing the power from the amplifier, 
one might as well couple the cavities, such that the 
power automatically distributes, or have a cavity with 
many gaps (e.g. drift tube linac).  

• Coupled cavity accelerating structure (side coupled) 

• The phase relation between gaps is important! 
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A 3 GHz Side Coupled  
Structure to accelerate  
protons out of cyclotrons  
from 62 MeV to 200 MeV 
 
Medical application: 
treatment of tumours. 
 
Prototype of Module 1 
built at CERN (2000) 
 
Collaboration CERN/INFN/ 
Tera Foundation  
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This Picture made it to the title page of CERN Courier vol. 41 No. 1 (Jan./Feb. 2001) 
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synchronous 

2π 

ω L/c 

speed of light line,  
ω = β /c 

π 

π/2 

π π/2 β L 0 

0 

π/2 

π 

2π/3 
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1 cm 

30 GHz structure (CLIC) 

11.4 GHz structure (NLC) 
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Dimensions in mm 
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¼ geometry shown 
Input coupler 

Output coupler 

Travelling wave structure 
(CTF3 drive beam, 3 GHz) 

shown: Re {Poynting vector} 
(power density) 
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-4.00

-2.00

0.000E+00

2.00

4.00

0.000E+00 0.500 1.00 1.50 2.00 2.50

FRAME:   1 01/06/00 - 17:06:38 VERSION[V4.024] SICA32.DRD

SI: A+3,10,4, B-5,CELL-6,15
 A:  1.700E+01 MM, B:  3.703E+01 MM.
 FOR REF., E.J., JUNE 2000
X COMPONENT OF WAKE POTENTIAL IN V [INDIRECT CALC.]

OP-:4024
#1DGRAPH

ORDINATE: WAKET
COMPONENT: X

FIXED COORDINATES:
DIM...........MESHLINE
 X      11
 Y       1

ABSCISSA: GEOMWAKE
[BASE OF WAKET]

REFERENCE COORDINATE: S
VARY..........MESHLINE
FROM       0
 TO     2994

3 GHz SICA structure: Transverse wake suppression 

s [m]

transverse wake for 3 cells.
offset 10 mm,  2.5 mmσ

W  [V/pC]t
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“T18”  reached 105 MV/m! 
“HDS” – novel fabrication technique 
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 Different from DC, at RF the resistance 
is not exactly zero, but just very small. It 
is  
 
 

 The maximum accelerating gradient is 
normally limited by the maximum 
possible surface magnetic field (the 
“superheating field”, 180 mT for Nb,  
400 mT for Nb3Sn). 
 

 Maximum acc. gradients are however 
obtained for Nb (ILC, ≈ 40 MV/m). 

1.3 GHz 
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25 -35 MV/m 
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10.2 MV/ per cavity 
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 Sputtering Nb on Cu 
 Advantages: 

 Due to the high cost of Nb, this can reduce cost! 
 The Cu substrate increases the mechanical & thermal stability (quench 

resistance). 
 Technology initially developed at CERN (Benvenuti, LEP, 1980); 

experts today at JLAB, Legnaro, Saclay, Sheffield & CERN 
 Technique used today for ALPI (LNL), Soleil, LHC & HIE-Isolde  
 Today, the max. fields are still smaller than for bulk Nb – is this 

an intrinsic limitation? An interesting field of R&D!   
 Can this technique be extended to new materials? (NbTiN, V3Si, Nb3Sn, 

HTS?) 
 “Energetic Condensation”- HiPIMS 

 Gas phase deposition of Nb with additional kinetic energy to 
slow ions. 

 Cathodic Arc Deposition 
 … 
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5-cell cavities (1.6 m long), 8 per cryomodule 
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How to reach “power grid  beam” efficiencies above 100% 
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RF Power in 

beam 

accelerating phase En
er

gy
 

En
er

gy
 

RF Power out 

decelerating phase En
er

gy
 

beam 

accelerating phase decelerating phase 

(Smaller) RF Power in 

En
er

gy
 

En
er

gy
 

En
er

gy
 

waveguide for power feedback 

One could use a waveguide and reuse the RF power! 
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http://clic-study.org/accelerator/CLIC-inaNutshell.php 
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Long RF Pulses 
P0 , f0 , τ0 

to accelerate the drive beam 
 

Short RF Pulses 
PA = P0 × N 
τA  = τ0 / N  
fA =  f0 × N 

extracted from  
recombined drive beam 

98% RF  beam 

long bunch train, moderate current, 1 GHz short bunch train with 12 x current, 12 GHz 

90% beam  RF 

beam manipulation 

to main beam 

here: 
combination 

factor 2 



 One could use the same accelerating structure more than once! 

 CEBAF (Continuous Electron Beam Accelerator Facility) at JLAB, Newport 
News, VA, USA has been using this scheme successfully for many years. 
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L. Merminga ‘07: In a storage ring, electrons are stored for hours in an equilibrium state, whereas in an ERL it is the  
energy of the electrons that is stored. The electrons themselves spend little time in the accelerator (from ~1 to 10’s of 
μs) thus never reach equilibrium. As a result, in common with linacs, the 6-dimensional phase space in ERLs is 
largely determined by the electron source properties by design. On the other hand, in common with storage rings, 
ERLs have high current carrying capability enabled by the energy recovery process, thus promising high efficiencies. 
http://accelconf.web.cern.ch/AccelConf/p07/PAPERS/MOYKI03.PDF 

Linac 
•Accelerating Structure used for 1 passage 
• Less efficient  
•Only single pass instabilities 

Recirculating Linac 
•Accelerating Structure used for some (2-10) passages 
•Return arcs different for different energies 
•Concerning instabilities, a good compromise 

Synchrotron 
•Accelerator Structure used many times 
•Periodic lattice 
• Instabilities develop over many turns (coupled bunch, mode coupling 
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x  (IP) 
RF Power in 

beam 

accelerating phase 

En
er

gy
 

En
er

gy
 

low energy beam 
from injector 

decelerating phase 

total return arc length: 𝑛 + 1
2

𝛽 𝑐
𝑓

 

N.B.: With bunches in both the  
accelerating and decelerating phase in the  
accelerator, the net beam loading is zero! 

The beam provides (most of) its own power! 
… like a perpetual motion machine 

low energy 
beam to dump 
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Two passes ‘up’ + Two passes ‘down’  

5 MeV ∆E = 75 MeV 

∆E = 75 MeV 

5 MeV 
∆C = λ/2 

This model and animation by Alex Bogacz, Jefferson Lab 

5 MeV ∆E = 75 MeV 

∆E = 75 MeV 

5 MeV 
∆C = λ/2 
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Typical ranges (commercially available)
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IOT CCTWTs
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MRF151G 
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Taken from M. Paoluzzi, LEIR RF system 
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75 kW Coaxial 
combiner tree 
with λ/4 transformers 

650 W RF module 
 6th generation LDMOSFET 

(BLF 578 / NXP), Vds = 50 V 

 Efficiency: 68 to 70 % 

x 128 x 2 

• Initially developed by SOLEIL 
• Transfer of technology to ELTA / AREVA 

Pair of push-pull transistors 

150 kW - 352.2 MHz Solid State 
Amplifiers for the ESRF booster 
Efficiency: > 55 % at nominal power 

• 1st batch of 4 x 150 kW SSAs from ELTA in operation on ESRF booster since March 2012 
• 2nd batch of 3 x 150 kW SSAs in fabrication, will power 3 new cavities on ESRF storage ring 

Taken from J. Jacob, CWRF 2012 



RS 1084 CJ (ex Siemens, now Thales), 
< 30 MHz, 75 kW 

YL1520 (ex Philips, now Richardson), 
< 260 MHz, 25 kW 

4CX250B 
(Eimac/CPI), 
< 500 MHz, 600 W 
(Anode removed) 
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CERN Linac3: 100 MHz, 350 kW 

CERN PS: 13-20 MHz, 30 kW  

50 kW Driver: TH345, Final: RS 2054 SK  

Driver: solid state 400 W, Final: RS 1084 CJSC  
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RF in RF out

Cathode Collector

z

t

velocity
modulation

drift density
modulation

-V0
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CERN CTF3 (LIL): 
3 GHz, 45 MW,  
4.5 µs, 50 Hz, η 45 % 

CERN LHC: 
400 MHz, 300 kW,  

CW, η 62 % 
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BOC „Barrel Open Cavity“ 
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Electric field, logarithmic scale 

2.99848 GHz, 
S11: -12.9 dB 

Magnetic field 
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Some Power RF systems at CERN 



On-going project for CERN PSB upgrade 
Instantaneous bandwidth: 
0.6 MHz … 4 MHz, 0.7 kV per gap 
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Finemet  exhibits wideband response 

10
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|Z|
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XL

XC

CP mostly depends on geometry and drives the high 
frequency response. The capacitive effect is enhanced by 
the final stage output capacitance. 

 
RP and LP drive 
 the  low 
frequency  
response. They 
and are mostly 
dependent on 
Finemet®  
Characteristics. 

 BEAM

FINEMET

GAP

Mauro PAOLUZZI (CERN) 
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4 TW cavities 

Siemens: 
4 x 550 kW (28 tetrode amplifiers) 
 
Philips: 
4 x 550 kW (72 tetrode amplifiers) 
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2 TW cavities 

8 (old) klystrons 

… soon to be replaced by an IOT based system 
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 16 Klystrons 
 4 SC Cavity Modules 
 300 kW @ 400 MHz 

 
 1000 Interlocks 
 … of which each could dump 

the beam 
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Thank you for your attention! 
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