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Liouville: in reasonable storage rings  
area in phase space is constant. 

               A = π*ε=const  

ε  beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter,  
                                 cannot be changed by the foc. properties.  
Scientifiquely spoken: area covered in transverse x, x´ phase space … and it is constant !!!  
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Beam Emittance corresponds to the area covered in the  
x, x´ Phase Space Ellipse 

Liouville: Area in phase space is constant. 

But so sorry ...  ε ≠ const ! 

●

Classical Mechanics:  

 phase space = diagram of the two canonical variables  
                  position    &  momentum                                           
                      x                         px 



According to Hamiltonian mechanics:     
phase space diagram relates the variables q and p 

Liouvilles Theorem: 

for convenience (i.e. because we are lazy bones) we use in accelerator theory: 

where βx= vx / c 

the beam emittance  
shrinks during  
acceleration   ε ~ 1 / γ 

q = position = x 
p = momentum = γmv = mcγβx 

ε 



1.)  A proton machine … or an electron linac … needs the highest aperture at injection energy !!! 
      as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes. 

2.) At lowest energy the machine will have the major aperture problems,  
       here we have to minimise  

3.) we need different beam optics adopted to the energy:  
     A Mini Beta concept will only be adequate at flat top.  

LHC injection  
optics at 450 GeV 

LHC mini beta  
optics at 7000 GeV 



Example: HERA proton ring 

injection energy: 40 GeV        γ = 43 
flat top  energy: 920 GeV        γ = 980 

emittance ε (40GeV)   = 1.2 * 10 -7 

                 ε (920GeV) = 5.1 * 10 -9 

7 σ beam envelope at E = 40 GeV  

… and at E = 920 GeV  



„nearly ideal“ accelerator: Cockroft Walton or van de Graaf  

MP Tandem van de Graaf Accelerator  
at MPI for Nucl. Phys. Heidelberg 

Vivitron, Straßbourg, inner  
structure of the acc. section 



RF Acceleration 1928, Wideroe 

+  +  +  + -̶  -̶ -̶ 

* RF Acceleration: multiple application of  
  the same acceleration voltage; 
  brillant idea to gain higher energies 

Energy Gain per „Gap“: 

500 MHz cavities in an electron storage ring 

drift tube structure at a proton linac 
(GSI Unilac) 



Problem: panta rhei !!! 
(Heraklit: 540-480 v. Chr.) 

Bunch length of Electrons ≈ 1cm Example:  HERA RF: 

U0 

t

typical momentum spread of an electron bunch:  



Dispersive and Chromatic Effects: Δp/p ≠ 0  

Are there any Problems ???  
       Sure there are !!! 

font colors due to  
pedagogical reasons 



Question: do you remember last session, page 12 ? … sure you do 

y
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remember: x ≈ mm , ρ ≈ m …   develop for small x 

consider only linear fields,  and change independent variable: t → s  

● 

p=p0+Δp 

Force acting on the particle 

… but now take a small momentum error into account !!! 



develop for small momentum error 

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. 
 inhomogeneous differential equation. 



general solution: 

Normalise with respect to Δp/p: 

Dispersion function D(s)  

        * is that special orbit, an ideal particle would have  for Δp/p = 1  

        * the orbit of any particle is the sum of the well known xβ  and the dispersion 

        * as D(s) is just another orbit it will be subject to the focusing properties of the lattice  
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Closed orbit for Δp/p > 0 

Matrix formalism: 

Dispersion 
 Example: homogeneous dipole field 

xβ 

€ 

C = cos( k s) S =
1
k
sin( k s)

C'= dC
ds

S'= dS
ds



Example  

Amplitude of Orbit oscillation  
                           contribution due to Dispersion ≈ beam size 

           Dispersion must vanish at the collision point  

Calculate D, D´:  ... takes a couple of sunny Sunday evenings ! 

or expressed as 3x3 matrix 

! 



Example: Drift 

Example: Dipole 



Example: Dispersion, calculated by an optics code for a real machine 

 *  D(s) is created by the dipole magnets  
                           … and afterwards focused by the quadrupole fields 

D(s) ≈ 1 … 2 m 
s 

Mini Beta Section,  
          no dipoles !!! 



Dispersion is visible  

HERA Standard Orbit 

dedicated energy change of the stored beam 
      closed orbit is moved to a   
         dispersions trajectory 

HERA Dispersion Orbit 

Attention: at the Interaction Points  
                 we require D=D´= 0  



Periodic Dispersion:  
                     „Sawtooth Effect“ at LEP (CERN)  

BPM Number 

Electron course  

In the arc the electron beam loses so much energy in each  
octant that the particle are running  
more and more on a dispersion trajectory. 

In the straight sections they are accelerated by the rf 
cavities so much that they „overshoot“ and  
reach nearly the outer side of the vacuum chamber.  
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ds x 
dl 

design orbit 

particle trajectory particle with a displacement x to the design orbit 
 path length dl ...  

circumference of an off-energy closed orbit 

remember: 

* The lengthening of the orbit for off-momentum  
    particles is given by the dispersion function  
   and the bending radius. 

o 

o 

o 



For first estimates assume:  

Assume:   

Definition: 

αp combines via the dispersion function  
the momentum spread with the longitudinal 
motion of the particle. 



Dx 



Solution of equation of motion 

go back to Lecture I, page 1 

        single particle trajectory  

Quadrupole Errors 

Definition: phase advance  
of the particle oscillation  
per revolution in units of 2π  
is called  tune 

x(s) 

s



Transfer Matrix from point „0“ in the  
lattice to point „s“:  

For one complete turn the Twiss parameters  
have to obey periodic bundary conditions:  

Matrix in Twiss Form 



Quadrupole Error in the Lattice 

        optic perturbation described by thin lens quadrupole 

rule for getting the tune 

ideal storage ring quad error 

z 
ρ 

s 
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remember the old fashioned trigonometric stuff and assume that the error is small !!!  

and referring to Q instead of ψ:     !     the tune shift is proportional to the β-function  
        at the quadrupole 

  !!    field quality, power supply tolerances etc are  
        much tighter at places where β is large 

  !!!    mini beta quads: β ≈ 1900 m  
        arc quads: β ≈ 80 m  

  !!!!    β is a measure for the sensitivity of the beam 

Quadrupole error  Tune Shift 



a quadrupol error leads to a shift of the tune: 

Example: measurement of β in a storage ring: 
                 tune spectrum 



( proof: see appendix ) 



Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  

   

dipole magnet 

focusing lens 

particle having ...   
          to high energy 
          to low energy 
          ideal energy 



definition of chromaticity: 

in case of a  momentum spread: 

… which acts like a quadrupole error in the machine and leads to a tune spread: 

€ 

Q'= − 1
4π

k(s)β(s)ds∫



Where is the Problem ? 



quadrupole error:  tune shift  

 beta beat  

chromaticity  

momentum compaction  

beta function in a symmateric drift 



Ansatz: 

= det M = 1 

remember: for Cs) and S(s) to be independent 
                  solutions the Wronski determinant  
                  has to meet the condition 

Appendix I: 



remember: S & C are solutions of the homog. equation of motion: 

=D(s) 

… or  

qed  

and as it is independent  
of the variable „s“  

we get for the initital  
conditions that we had chosen  …  



a change of quadrupole strength in a synchrotron leads to tune sift: 

tune spectrum ...  

tune shift as a function of a gradient change 

But we should expect an error in the β-function as well … 
                  … shouldn´t  we ??? 

Appendix II: 



Quadrupole Errors and Beta Function 

split the ring into 2 parts, described by two matrices 
A and B  

a quadrupole error will not only influence the oscillation frequency … „tune“  
 … but also the amplitude … „beta function“ 

ρ 

s0 
● 

s1 

● 

matrix of a quad error  
between A and B  

A 

B 



the beta function is usually obtained via the matrix element „m12“, which is in  
Twiss form for the undistorted case 

and including the error:  

As M* is still a matrix for one complete turn we still can express the element m12  
in twiss form: 

Equalising (1) and (2) and assuming a small error 

≈  1                      ≈2πdQ  



ignoring second order terms 

remember: tune shift dQ due to quadrupole error: 
(index „1“ refers to location of the error) 

solve for dβ 

express the matrix elements a12, b12 in Twiss form 



… after some TLC transformations …  

    Nota bene:  !  the beta beat is proportional to the strength of the 
     error Δk 

  !! and to the β function at the place of the error , 

  !!! and to the β function at the observation point,  
            (… remember orbit distortion !!!) 

   
  !!!! there is a resonance denominator 

         


