Resonances

Introduction: driven oscillators and resonance condition
smooth approximation for motion in accelerators

field imperfections and normalized field errors
perturbation treatment

Poincare section

stabilization via amplitude dependent tune changes
sextupole perturbation & slow extraction

chaotic particle motion



Introduction: Damped Harmonic Oscillator

B equation of motion for a damped harmonic oscillator:
2 _ 2
LW(t) + @, - Q- G W(t) + e, -W(t) =0

Q Is the damping coefficient

— (amplitude decreases with time)

®, 1S the Eigenfrequency of the HO

B example: weight on a spring (Q = o)

k%
I ;—ZW(t)-FkW(t):O —>W(t):as|n(\/Et+¢o)



Introduction: Driven Oscillators

B an external driving force can ‘pump’ energy into the system:
d2 -1 d 2 F
Fw(t)+a)o-Q - W(t) + o, -W(t)=H-COS(a)-t)

B general solution:
) W(t) = W, (t) + W, (t)

B stationary solution:

W, (1) =W (w) - cos|w -t —a(w)]

- where ‘®’ is the driving angular frequency!
and W(w) can become large for certain frequencies!



Introduction: Driven Oscillators

B stationary solution

stationary solution follows the frequency of the driving
force:
W, (t) =W (w) - cos|w -t —a(w)]

o) |

/2

)

V) 0

®

B oscillation amplitude can become large for weak damping



Introduction: Pulsed Driven Resonances Example

B higher harmonics:

B example of a bridge:

2”0' harmonic: 3nd harmonic: 4t harmonic:

d ﬁﬁ
M ?‘?F%
=\ h .
wodi

B peak amplitude depends on the excitation frequency and damping

= e

e — -




Introduction: Instabilities

Bl resonance catastrophe without damping:

W(w)=W(0)- 1
@) =R J[l—(&)2]2+(JL>2

a)O Q a)O

Bl weak damping:

resonance condition:

Tacoma Narrow bridge
1940

excitation by strong wind on the Eigenfrequencies



Smooth Approximation: Resonances In
Accelerators

B revolution frequency:

— periodic kick
@ — excitation with f,

ﬁ F ((Drev =27 1:rev)

betatron oscillations: .
- Eigenfrequency: o, = 2n fg

D4 _ /
Q _ (DO Oorev
— driven oscillator
ﬁ i —— weak or no damping!

(synchrotron radiation damping (single particle) or Landau damping distributions)



Smooth Approximation: Free Parameter

B co-moving coordinate system:

=» choose the longitudinal
y coordinate as the free
A\ parameter for the equations
S

of motion
X
B cequations of motion:
d __ds d o ds _
dt — dt " ds with: dt =V



Smooth Approximation: Equation of Motion |

B Smooth approximation for Hills equation:

K(s) = const d )

ds?

d82 W(S) +K(s)-w(s)=0 w(s) + 6002 -W(s)=0

(constant B-function and phase advance along the storage ring)

" W(s) = A-cos(a, -S+¢) w,=27-Q, /L
(Q is the number of oscillations during one revolution)

B perturbation of Hills equation:

= 42 W(s)+@,” - W(s) = F(W(s),s) /(v- p)

in the following the force term will be the Lorenz force of a
charged particle in a magnetic field:

R
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O
<
X
C



Field Imperfections: Origins for Perturbations

B linear magnet imperfections: derivation from the design dipole
and quadrupole fields due to powering and alignment errors

B time varying fields: feedback systems (damper) and wake
fields due to collective effects (wall currents)

non-linear magnets: sextupole magnets for chromaticity
correction and octupole magnets for Landau damping

beam-beam interactions: strongly non-linear field!

non-linear magnetic field imperfections: particularly difficult
to control for super conducting magnets where the field quality
IS entirely determined by the coil winding accuracy



Field Imperfections: Localized Perturbation

B periodic delta function:

otherwise

1 for s’ = s,
0, (s—5,) = | and f&L(s—so)ds:l
B cquation of motion for a single perturbation in the storage ring:
d32 w(s) + a)o -W(S)=0,(s—5,)1-F(w,s)/(v-p)
Fourier expansion of the periodic delta function:

d32 W(S) +a)o -W(S) =1 icos(r 27-s/L)F(w,s)/(v-p)

— infinite number of driving frequencies



Field Imperfections: Constant Dipole

B normalized field error: I :q,‘7XB "B o Blp=k,
v-p v-p

B cquation of motion for single kick:

[ro——
— O|2W(s)+a)O -w(s) == > cos(r-2z-s/L)
[=—00
. _ 0=27QIL A _
. resonance condition: Wy =r-2rlL—""—=5Q,=r

—| avoid integer tunes!

—— remember the example of a single dipole imperfection
from the ‘Linear Imperfection’ lecture yesterday!



Field Imperfections: Constant Quadrupole

equations of motion:
B e 92 X(8)+ 0, X(8) =k - X(5)

y(s)=0

x(s)+(a) —k,)-x(s)=0

d52

— change of tune but no amplitude growth due to resonance
excitations!



Field Imperfections: Single Quadrupole Perturbation

B assumey=0andB, =0: F(s)/(v-p)=0,(s—5,)-1-k; -x

2 Ik ~
3'52 X(S)+ @, - X(s) =2 _Zcos(27z- r-s/L)-x(s)

[X(S):A'COS(C‘)O'S)] — :%icos@mr-s/Lia)O-s)-x(s)

y=—=00

B resonance condition: @, ,=r-27/Lt o, ,—2="0r 50 =r/2

avolid half integer tunes plus resonance width from tune modulation!

B cxact solution: variation of constants =» see the lecture yesterday



Field Imperfections: Time Varying Dipole Perturbation

B time varying perturbation:

F(t)=F,-cos@,, -t)—=>F,-cos@2r- aa))‘?:j -S/L)/(v- p)

> c?szz W(S) + 0)02 . W(S) IFO ZCOS(27Z' [r L Wyick /a)rev] s/ L) /(V p)

resonance condition:

=27-Qy/L
rev)/L e > kICk rev (Q0+r)

— | avoid excitation on the betatron frequency!

(the integer multiple of the revolution frequency corresponds to the modes of the bridge
In the introduction example)



Field Imperfections: Several Bunches
- F (t) — B ) COS(a)kick t)1 a)kick ~ a)rev :

i{/\\\/h:

machine circumference

- F (t) — B | COS(a)kick t)1 a)kick ~ 2 ) a)rev :

AN N
T T

—> higher modes analogous to bridge illustration




Field Imperfections: Multipole Expansion

B Taylor expansion of the magnetic field:

_ B o0 1 ] _ @n+1B
B, +1B, = Zﬁ’ fo - (x+iy)" with: f = ax”+1y
n=0
multipole | order| B, B,
dipole 0 0 Bo
quadrupole | 1 f-y f,-X
sextupole | 2 f,-x-y %'ff(xz—yz)
octupole | 3 Lof,-Byx*—y°) | - f,-(x°—3xy®)

B normalized multipole gradients:

FO) - p) =I5

k =3
p

n

K =03l /M ]
p[GeV /]

[k, 1=

1
mn+1




Field Imperfections: Multipole Illustration
B upright and skew field errors

1
~ skew:

upright: -
n=0 (\




Field Imperfections: Multipole Illustrations
B quadrupole and sextupole magnets

LEP Sextupole

ISR quadrupole




Field Imperfections: Dipole Magnets

B dipole magnet designs:

m
Ty
w =

LEP dipole magnet:

conventional magnet design
relying on pole face accuracy
of a Ferromagnetic Yoke

CROSS SECTION OF THE DIPOLE MAGNET WITH THE VACUUM CHAMBER

P
// rods

res

tressing

—Support
/ bars

Thermal
/" insulati

insulation Support
___/ bars

LHC dipole magnet:

air coil magnet design relying
on precise current distribution




Field Imperfections: Super Conducting Magnets
B time varying field errors in super conducting magnets

Luca Bottura CERN, AT-MAS

11743A




Perturbation Treatment: Resonance Condition

[ ] equations of motion: (nt order Polynomial in x and y for nt" order multipole)

52W(s)+a)O W(S)=¢&- > @, X -y"-cos@z-r-s/L)

l+m<n,
r

d

: with:  W=X,Y
B perturbation treatment:

T
wis)=w. +&-w, +&w, +...+ O(&" o, = —
0 1 2 0 0

with:  w,(s)=w,-cos@z-Q,-s/L+ @,)

2 2
. %Xﬁa)o -x1:~2amrcos(— [I Q0o +MQ, ,+r]- S)



Perturbation Treatment: Tune Diagram |

B resonance condition: =& (I -Q,+m-Q, +I‘)—— Quy

— [I-Q,+m-Q, =7 avoid rational tune values!

B tune diagram: Q,

up to 11 order (p+l <12)

—

there are resonances
everywhere!

(the rational numbers
lie dens within the
real number)




Perturbation Treatment: Tune Diagram ||

B regions with few resonances:

1-Q, +m-Q, =T

— < 12" order for a
proton beam
without damping

—— < 31 & 5thorder for
electron beams with
damping

B coupling resonance:

regions without low
order resonances
are relatively small!

0.3

Qy

(.28 |

0.26 |

0.24 ¢

0.22

0.2
0.2

avoid low order resonances!
9th 4th & 8th 11th 7th

(.22 (.24 0.26 0.28



Perturbation Treatment: Single Sextupole Perturbation

B perturbed equations of motion: F(s)/(v- p) =36, (s—s;)- 1k, -X’

> 3322 X (s)+a)o - X, (S) =%~Ik2 ~x02 % Zcos(Zmros/ L)

with: %, (S) = A-cos(w,, S+ ) and Wy =27 QL

o0

x(s)+(27zQX0/L) - X, (S) 2—1 .Y cos@x-r-s/L)

F=—00

LS Zcos(zyz [r+2Q,,]-s/L)



Perturbation Treatment: Sextupole Perturbation

B resonance conditions:

- 27Z(gx,o =27 (r)—_)Qx,O =TI

27Q,, =27 -(r£2Q, ,) ——225Q, ,=r/3

r+2QX'0 .
>QX,0 =r

— avolid integer and r/3 tunes!

B Dperturbation treatment:

contrary to the previous examples no exact solution exist!
this iIs a consequence of the non-linear perturbation
(remember the 3 body problem?)

=» graphic tools for analyzing the particle motion




Poincare Section: Definition

B Poincare Section:

X’/(l)f)

C

B resonance in the Poincare section:

9 A¢turn — 272- ) Q

record the particle
coordinates at one
location In the
storage ring

t X' w,

fixed point condition: Q = n/r

points are mapped onto themselves after ‘r’ turns




Poincare Section: Linear Motion

B unperturbed solution:

X(S)= JR - cos(p)  with digb = @,
S

X =L x=—JR-a,-sin(g)
ds

Bl phase space portrait: t X' w,

= the motion lies on an ellipse

=» linear motion is described by

a simple rotation ¢
=» consecutive intersections lie VR

on closed curves




Poincare Section: Non-Linear Motion

BN momentum change due to perturbation: . _ §@-ds

B single n-pole kick:

B phase space portrait with single sextupole:

= Ax’:l-lkz-x2
2

= sextupole kick changes the
amplitude and the phase
advance per turn!

2
A(gturn oc X

[—

V-P

t X' w,

\
..

R+




Poincare Section: Stability?

Bl instability can be fixed by ‘detuning’:

=>» overall stability depends on the balance between amplitude
Increase per turn and tune change per turn:

AQyrm (X) =»  motion moves eventually off resonance

AR, (X) =»  motion becomes unstable

Bl sextupole kick:
amplitudes increases faster then the tune can change

-> overall instability!



Poincare Section: Illustration of Topglogy

Off//./
.

A ’/
BB Poincare section: Q<1/3

F(S)/(v-p)=5-6,(5—S,)-Ik, - X*

=" ™

B small amplitudes: =» regular motion
B large amplitudes:  =» instability & particle loss

X
®

B fixed points and seperatrix  border between stable and unstable
motion =» chaotic motion



Poincare Section: Simulatiosn for a Sextupole Perturbation

b

B Poincare Section right after f_o(,
the sextupole kick .

4e-06 +

> for small amplitudes the 3e-06 |
Intersections still lie on closed  2e06 .
curves =» regular motion! o | &

0 F_
=» separatrix location depends on  -ico6 |

the tune distance from the exact .. !
resonance condition (Q < n/3)

-3e-06 : : : : : e
-0.008 -0.006 -0.004 -0.002 0 0002 0.004 0.006

X

for large amplitudes and near the separatrix the intersections
fill areas in the Poincare Section =» chaotic motion;
=>» no analytical solution exist!



Stabilization of Resonances

Bl instability can be fixed by stronger ‘detuning’:

> If the phase advance per turn changes uniformly with
Increasing R the motion moves off resonance and stabilizes

B octupole perturbation: F(s)/(v- p)’

B perturbation treatment:  x(s) = x,(s)+&- x,(s)+ ..

= X(S)+(27ZQX0/L) x(s)_—lk XS X,

2
> X, =A-cos(w, S+d,)=> X, = ?-[1+ cos(2aw, - S + 24, )]

@i A? Ik
s 1O l@m 10 AL ] () = =7 cos (2, -9)



Stabilization of Resonances

9

Bl resonance stability for octupole:

2e-06

1.5e-06

=) an octupole perturbation generates 10 i
phase independent detuning and ~ seor | ||

amplitude growth of the same ol |
order -se-07 F [l
> amplitude growth and detuning %[
are balanced and the 1.56-06 |
overall motion is stable! 206

-0.005  -0.003  -0.001 0 0.00] 0.003

=» this is not generally true in case of several resonance driving
terms and coupling between the horizontal and vertical motion!



Chaotic Motion

9

B octupole + sextupole perturbation: X

2e-06

=> the interference of the octupole seos!
and sextupole perturbations
generate additional resonances
=>»additional island chains in
the Poincare Section!

le-06

Se-07

-5e-07 |

=> intersections near the resonances __, |

lie no longer on closed curves =
local chaotic motion around

the separatrix & instabilities
=>slow amplitude growth (Arnold diffusion) X

-1.5e-06 r

1

e-06 : : : : :
-0.006 -0.004 -0.002 0 0.002 0.004 0.006

=» neighboring resonance islands start to ‘overlap’ for large
amplitudes =» global chaos & fast instabilities



Chaotic Motion

¢ ° bl .
B Russian Doll’ effect: X’
9
X 2e06 106 ppmm
1.5¢-06 | o
9.5¢-07
le-06 |
-  9e-07
S5e-07
0t 8.5e-07
-5e-07 +
8e-07 +
-le-06 +
7.5¢-07 | §
-1.5e-06
2e-06 ' . - : : 7e-07 : : , .
0.006 -0.004 -0.002 0 0.002  0.004 0.006 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006
X X

=» magnifying sections of the Poincare Section reveals always the same
pattern on a finer scale =» renormalization theory!



summary

B field imperfections drive resonances

B higher order than quadrupole field imperfections generate
non-linear equations of motion (no closed analytical solution)

(three body problem of Sun, Earth and Jupiter)
=» solutions only via perturbation treatment
B Poincare Section as a graphical tool for analyzing the stability

B slow extraction as example of resonance application in accelerator

B island chains as signature for non-linear resonances

B island overlap as indicator for globally chaotic & unstable motion



