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Introduction:

» beam-gas basics
» beam-gas interaction cross sections
> beam-gas losses and beam life time

Detector background:
> take an example (ALICE)
Beam-gas imaging: (from LHCb)
> beam profiles
» ghost charge, etc

e Gaseous fixed targets:
> physics with beam-gas (from LHCb)
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Introduction: the Beam & the Gas

beam

particles:
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Beam

~c=3-108 m/s

typically MeV to TeV, and
often E > mc?
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Residual gas

molecules, mostly contain-
ing the following atoms:
H, C, O, (N, He) ...

~ 100 m/s (K ¢)

thermal, Ey, = ng T ~
1...40 meV
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A typical spectrum (LHCb VE:elOcior vacuum, Rest Gas Analyzer)
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What is a beam-gas interaction ?
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What is a beam-gas interaction ?

Beam particles can interact with residual gas atoms by

e strong interaction (“hadronic”): relevant only for hadron beams
(protons, ions, ...), which interact with the nuclei of the residual gas
atoms

> strong, but range is short ~ 1 fm ~ size of a nucleon
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What is a beam-gas interaction ?

Beam particles can interact with residual gas atoms by

e strong interaction (“hadronic”): relevant only for hadron beams
(protons, ions, ...), which interact with the nuclei of the residual gas
atoms

> strong, but range is short ~ 1 fm ~ size of a nucleon

e electromagnetic interaction: relevant for all beams, interaction with
nuclei and atomic electrons

» medium strong (strong/137), but long range (infinite!)
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What is a beam-gas interaction ?

Beam particles can interact with residual gas atoms by

e strong interaction (“hadronic”): relevant only for hadron beams
(protons, ions, ...), which interact with the nuclei of the residual gas
atoms

> strong, but range is short ~ 1 fm ~ size of a nucleon

e electromagnetic interaction: relevant for all beams, interaction with

nuclei and atomic electrons
» medium strong (strong/137), but long range (infinite!)

NB: the weak interaction is irrelevant in this context.



Introduction: beam-gas interactions

oo OO ° interaction
o 00gf2
beam """ © oo
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What is the probability p of an interaction per pass ?
Define:

e N = number of beam particles passing

e © = [ p(z) dz = “target thickness”

p atoms/cm 3

Clearly, expect pp ox N - ©

The proportionality constant opnys
M = Ophys * N-©

is the cross section of the physical process.

0
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p(z) = density of
gas atoms along the
beam path z



Introduction: beam-gas interactions
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Units of opys are those of a surface area, but... tiny, tiny.

Hence, define the barn: 1 b =10"2* c¢m?
barn (en) = grange (fr) = Scheune (de) = fienile (it) = ladugard (se)

For fun, the origin of this name from wikipedia

Etymology [edit]

The etymology of the unit barn is whimsical: during wartime research on the atomic bomb, American
physicists at Purdue University needed a secretive unit to describe the approximate cross sectional
area presented by the typical nucleus (10728 m2) and decided on "barn." This was particularly
applicable because they considered this a large target for particle accelerators that needed to have
direct strikes on nuclei and the American idiom "couldn't hit the broad side of a barn"[2] refers to
someone whose aim is terrible. Initially they hoped the name would obscure any reference to the
study of nuclear structure; eventually, the word became a standard unit in nuclear and particle
physics.[3114]



Introduction: beam-gas interactions (do'p)
ooofo interaction
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Repeat the passes many times, say, at a frequency f.
The rate R of interactions is then

p atoms/cm3

R=f p=0pnhys-L

where L = luminosity (how intense or dense the beam and target are)

L=f-N-©
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For example, hadronic cross section of p + p (total and elastic) from [4]
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/s 7?7  what's that ?

You can change frame of reference,
i.e. move yourself relative to the gas and beam.
This changes the apparent speed of the gas and beam particles.
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/s 7?7  what's that ?

You can change frame of reference,
i.e. move yourself relative to the gas and beam.
This changes the apparent speed of the gas and beam particles.

But the total interaction rate cannot (and does not) depend on the
speed of the observer!
It is the same for all observers!
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/s 7?7  what's that ?

You can change frame of reference,
i.e. move yourself relative to the gas and beam.
This changes the apparent speed of the gas and beam particles.

But the total interaction rate cannot (and does not) depend on the
speed of the observer!
It is the same for all observers!

We need a bit of relativistic kinematics.
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Introduction: beam-gas interactions

Lorentz boost (along z):

Px
Observe particle with energy E and momentum p = | p,
Pz
Move yourself by velocity v along z.
. 1
Define =% and = (1-p%)":2
E v (E ~Bpz)
The new “four-momentum” vector is: IZX = Px
Py Py
ﬁz Y (pZ - ﬁ E)

These are the particle’s energy and momentum that you observe in your

new frame.
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The (invariant) rest mass m of a particle (E, p) is given by
m® = E? —p* = E? — (p} + p} + p2)

Coming back to our beam particle (E, p1) and gas particle (Ez, p2) ...

The frame invariant s is defined as

s =(E1+ E)?— (p1+ p2)?
=m; + mj; +2(Ey E; — p1 - p2)

\/s is the total available energy in the system where p; = —p>.
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Two standard cases: P P
1 2

a) like particles collider mode
p1 = —pz2and my =mp, E; = E, = E:

\/g=E1+E2=2E

b) fixed target mode
p1 # 0, p2 =0:

Vs = (m}+ m3+2E m)3
~(2E mg)% @if E > my, mp)

For LHC, with 6.5 TeV proton beams:
p + p collider: Vs =13 TeV
p+'H beam-gas: /s =
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For example, cross section of p + p (total and elastic) from [4]
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Next, we give some approximate formulas for estimating rates of
beam-gas interactions.

If looking at beam-gas losses and beam life times, we are mostly
interested in total cross sections (assuming, to first order, any interaction
will disturb the beam particle).

In what follows, A and B denote nucleon numbers, as well as particle
species.
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Introduction: beam-gas interaction cross sections (do'p)

1.a proton beam

A is a nucleus at rest
e Hadronic interactions. Elastic or inelastic.
» short range ~ 1 fm ~ size of a nucleon
e For a proton beam and proton target (B = A =1): p+'H is known

from p 4 p experiments which gives the cross section o, usually in
center of mass frame. = find the corresponding piap.

e For other gases: inelastic cross section p + A is [§]

~ 0.7
OptA R Opyp- A

at the equivalent /s, !
(each nucleon carries a fraction A~! of the nuclear momentum)



Introduction: beam-gas interaction cross sections (do'p)

1.b ion beam

e For ion beam B (like B = 208): B+'H is same as p + A but
boosted to rest frame of p.

e For nuclei other than H, the inelastic cross section is often seen as
1 1.0
Oa+B = Optp - (A3 + B3)

This is approximate, but good for guesstimates.
There are other formulae depending on energy regime and size of A
and B... See e.g. [7] which gives

Oars =54 mb - (A5 + B3 — 4.45/(A3 + B3))?

at 1.88 GeV/nucleon.



Introduction: beam-gas interaction cross sections (do'p)
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2. electron beams

only electromagnetic interactions
elastic e + p: see next slide.
inelastic e + A, see [9]

inelastic e + (A+ Ze™), see [12]
NB: screening of nuclear charge by atomic
electrons can be important
» Bremsstrahlung
e~ + Coulombfield — e~ +
» Pair production
e~ + Coulombfield — e~ +e" + e~
» Mgller scattering
e +e —e +e
» Bhabha scattering NB: nucleus is not at all to scale!
et +e” et +e”
> Annihilation
et +e” =2y




Introduction: beam-gas interaction cross sections (do'p)

Example: e + p — e + p cross section

Work in the Proton Rest Frame [10]

2
1 do [2ahcEcos§|” B GE,+7(1+2(1+7)tg’F) Gy,
27 dcosf Q? E 147

0 = polar electron angle after scattering

q = p — p' = momentum transfer with p/p’ and E/E’ the electron mo-
menta and energies beforen /after scattering in the PRF.

Q? = g% — 12 = 4EE' sin? 2 = 4-momentum transfer squared.

v = E — E' = energy transfer.

T = @Q?/4M?, M is the proton mass.

a ~ 1/137 = 0.0073 (fine structure constant), fic ~ 0.1973 GeV fm.

Ge p(Q?%), Gum p(Q?) = electric and magnetic proton form factors ...
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Introduction: beam-gas interaction cross sections (do'p)

The CERN Accelerator School

Example: e 4+ p — e + p cross section
Ge,p and Gy p are the electric and magnetic proton form factors.
Describe the charge and magnetic distribution in the proton.

Approximately given by dipole formula [10]
Q? )—2

Gep~ G :(1 S S
B T 071 Gev/e2

GM,p ~ 2.79 GE,P

More accurate fits of exp. data can be found in literature.



Introduction: beam-gas interaction cross sections

Example: e + p — e + p cross section continued ...

1.6
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Introduction: beam-gas losses and beam life time

Losses due to beam-gas collisions, via some process oppys, in a cyclical
accelerator, with constant static pressure.

Bunch with population N(t). Decay rate is

dN N(t)
_E:R:N(t)'gphysf -0 = T

where we defined

-1
T " = Ophys f ©

The solution is simply
N(t) = N(0) - e~/7

And 7 is the life time of the bunch population N(t).
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Introduction: beam-gas losses and beam life time (do'p)

Example:

Residual pressure p = 10~° mbar, hydrogen (H), at T =5 K, over
20 km

p
ke T

pV=nkg T = p= ~15-10° Hy/cm?®

This is the concentration of molecules.
Atoms: multiply by 2.

Take ophys = 55 mb and f = 11245 Hz

7 =(55-10"2° ¢cm?- 11 kHz-3-10° cm™3-2-10% cm)~!
=28-10°s=77h
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Are there other ways to lose beam particles ?

Yes, sure! Ideally we want to lose them all at the experiment (the
Interaction Point)

Let's compare to beam-gas losses.

Consuming particle bunches by collisions is called “burn off":

dN, dN,
——— =——==R=CNy(t) N(t

dt dt 1(8) Na(t)
with C = opnys - f/(4mo0y)
This can be solved by wrestling with hyperbolic functions...
It is more digestable when Ny(t =0) = Np(t =0) = Np :

dN
e —~CN3(t) = N(t)

No
=0 1
CthNy+1 (1)

The value 73 = (C No) ™" is the half life of N(t).
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Example of burn off:
Take some collider with

® Ophys = 105 mb

e f =11245 Hz

e Ny =1.2-10" protons

oo'Xzo'y:11um

2 equally eager experiments
= T = 15 h.
Compare to previous 7 = 77 h.

Usually, one wants 7(beam-gas) > 71 (burnoff)

1
2
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Detector background: what's the problem ? (do'p)
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In some cases, it can happen that the beam-gas interactions in the
neighborhood of an experiment become a problem.

A notable example: ALICE at LHC.
But why ALICE ?

Long story short: ALICE is designed for low luminosity compared to
ATLAS, CMS and LHCb :-), and the LHC in p + p mode runs primarily
for the latter experiments

There is a factor 10* mismatch in luminosity requirement !!



Detector background: meet ALICE

EMCal
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Detector background: meet ALICE (do'p)
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ALICE = huge Time Projection Chamber (TPC) [5]

e inner/outer diameter of 1.2/5 m, length 2 x 2.5 m

e Drift time up to 90 us (one LHC revolution !)

e Huge high voltage in field cage, 100 kV

e Current trip limit: 7 pA, i.e. about 500 kHz, 7 - 103°cm—2s!

Two running modes (trigger configurations):
e “Minimum bias” acquisition, 2 - 10¥cm 2571, rate & 150 kHz

e “Rare events" acquisition, 8-10%%cm 25!, rate ~ 600 kHz



Detector background: TPC cartoon

Tim

segmented detectors

e projection chamber principle
— Field cage
£ ~ electric field
- R
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beam 1

00
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‘beam 2




Detector background: TPC cartoon

Charged particle ionizes, liberates electrons
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Detector background: TPC cartoon

Electrons drift ~ 0.7 mm per bunch crossing of 25 ns

00
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Detector background: TPC cartoon (Q’)
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Bad luck! Overlapping track from new interaction...




Detector background: TPC cartoon

Confusing result

00
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Detector background: ALICE in 2011 (do'p)
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ALICE had two main problems:
1. Minium bias trigger accepts beam-gas events

2. Beam-gas rates precluded turning on the high voltage of the TPC

But how does one find out it is due to beam-gas interactions 7

What are the signatures 7
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Detector background: ALICE pinning down beam-gas (Q’)
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Detector background: pinning beam-gas (A’)
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[y

. Use (two) timing detectors to discriminate from beam-beam collisions

Time sum versus time difference will discriminate from bb collisions

N

. Plot background rate versus beam_intensity x pressure

If proportional, it’s likely to be beam-gas

3. Use forwardness of tracks
If tracks flying fwd and bwd, it's likely not a beam-gas.
4. Use vertexing to distinguish beam-gas from halo

If all tracks point to a vertex inside beam pipe, it's a beam-gas



Detector background: ALICE modeling beam-gas
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Detector background: modeling beam-gas (A')
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There are powerful simulation tools around

e FLUKA simulation tool [16]

GEANT simulation tool [17]

Pythia - The Lund Monte Carlo! [18] Hello Lund ;-)
EPOS generator [19]

HIJING Monte Carlo Model, [20]

SixTrack - 6D Tracking Code [21] etc...
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Detector background: ALICE modeling beam-gas 00

The CERN Accelerator School

10 A. Alici, A. Di Mauro, W. Riegler, A.Tauro

-1500  -1000

Fig. 6: Map of the charged particles fluence (in cm™2) inside UX25 per beam—gas interaction in LSS2. Schematic
of the ALICE geometry in R-Z coordinates is overimposed.

From ref. [15]
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Detector background: pressures around P2 (do'p)

Exercise: ALICE pressure requirement

Assume:

e beam-gas interactions originating from up to L = 100 m away leave
tracks in TPC and induce a triggered event.

e flat profile of hydrogen residual pressure P(Hs) at T =293 K.

e nominal LHC conditions (N = 1.1- 10! p/bunch, n, = 2800
bunches at 7 TeV).

Question: How low should the pressure P(Hsz) be to contribute less than
50 kHz of triggers in ALICE 7

Answer:
Tinelastic,p+p = 45 mb (elastics do not contribute!)

R= Oinelastic,p+p Mb Nf- f PH(Z) dz

Thus ) v K50 ki
1 1.1.38.10% £.203 K-50 kHz _ ~10
P(Hz) = 5 ke T pu < 15503107 11248 Fra 5109 mz — 2 10 mbar
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Detector background: IR2 mitigations (do'p)
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Implemented:

o Added proper low SEY coatings on warm surfaces of critical vacuum
chambers

Added pumping (ion pumps and getters)

Added solenoids to reduce electron multipacting

Conditioned (scrubbed) beam-viewing surfaces

Optimized bunch patterns to reduce beam-induced vacuum
degradation

Result: pressure reduced by more than one order of magnitude



Beam-gas imaging
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Beam-gas imaging: the asset

In LHCb: beam-gas
interactions are much appreciated.
They are used for many purposes !

1. Beam profile measurements

.

Ghost charge measurements
Bunch charge measurements

Leads to precision
luminosity measurements

Fixed-target physics

Soon
... dynamic vacuum studies 77

0

The CERN Accelerator School
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Beam-gas imaging: meet LHCb (A’)
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Side View Ecar HCAL
SPD/PS
Magnet RICH2
T3

Interaction region

A key detector: VErtex LOcator
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Beam-gas imaging: meet LHCb
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key detector: VELO resolution for p + p colliding
™ . 0.045 T T T T T T T
e silicon strips I
g 000y B
e 8 mm from the beams E ook @
N L]
. & @
e vertical planes 5 0030 s:--
. 2 0.025¢ w
o excellent vertex resolution 2
= 0.020+
e good acceptance in 6 and z £ oo
>
e also for for-ward—b<.>osted & 000 S
beam-gas interactions! = 0.005F
0'0000 1‘0 2‘0 ?;0 4‘0 50 éO 7‘0 80

Vertex track multiplicity



Beam-gas imaging: vertexing
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In a p+ p interaction

=\

Event 146539692
Run 174933
Sat, 21 May 2016 05:45:41

pp
collision point




Beam-gas imaging: vertexing (QO
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In a p+ A interaction




Beam-gas imaging: SMOG

System for Measurlng the Overlap W|th Gas

Gas flow to
VELO detector

Connection to
high pressure
gas (neon, argon, *
helium) bottle

‘The CERN Accelerator School

Vacuum too good :-)

Inject tiny amount of
gas (Ne, He, Ar) in
VELO beam vacuum

Increase pressure from
1079 to 10~7 mbar



Beam-gas imaging: smogging

First SMOG in the LHC! 2012.
Adding a little bit of gas (here Neon)

The CERN Accelerator School
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Beam-gas imaging: smogging (A’)
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Exercise: LHCb rate of beam-gas events

Assume:

e the LHCb high level trigger select beam-gas events that have a
vertex in —1m < z < 0.

e flat profile of neon pressure P(Ne) = 1.6 - 10~ mbar at T =293 K.
e N =28-10% p/bunch at 4 TeV.

Question: Calculate beam-gas rate R per bunch.
Answer:
Oinelastic,p+Ne = Oinelastic,p+p * 200'7 =45 mb-8.1 =366 mb

pre = 58 = 4.109 cm 3

R = Oinelastic,p+Ne * N-f- PNe * Az =130 Hz

Not exactly what the measurement says... But do not worry about that!
The devil is in the details (acceptance, cross section, efficiency)
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Beam-gas imaging: actually! Ref. [1] (OO
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Beam-gas imaging: ghost charge
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Bunch population normalisation at LHC:

e crucial for direct luminosity Ny N
determination y—

e Direct Current Current Transformer
measures precisely the total beam
population Ghosts

e Fast Bunch Current Transformer
measures relative bunch charge, but
not if charge is below a certain
threshold.

Normalised counts

625 375 2

s s 375 @s
Time (ns)

= How to normalize the N; and N, ?
= How much charge in non-filled bunch slots ?? (ghost charge)
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Examples of LHCb ghost charge measurements by beam-gas rates [1]

T T
450 i T T T ; ; i 2.5F + beam1 1
—— ee/beaml-gas -+ beam 2
400} LHCb —— Bunches beam1 - LHCb #
ee/beam2-gas 9 +H
% 3501 —— Bunches beam2 ~ 2.0p H q
kS 5 H
o | L[] ] |3 i
c ® H
3 = 4
S 250} 1 Ty L5f H#H Nﬁ 1
> g i
2 200 {1 £ H+ wtittt
g g HH++ it
2 150f o 1.0F " ot d
°a 4 ++H it
£ < # Lttt
@ 100 | 1 © et e
50 | 0.5 ,:L ““.“,..,A. d
W VO ‘ ‘ ‘ ‘ ‘
800 850 900 950 1000 1050 1100 1150 1200 00:00 01:00 02:00 03:00 04:00

LHC bcid Time

Left: filled-slot rates are suppressed from plot
Right: ghost population over total beam population vs time



Beam-gas imaging: relative bunch populations
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Examples of LHCb relative bunch charge measurements by beam-gas
rates [6]

Binned time fill 1658 beam1 t0=Sun Mar 27 19:22:07 2011 UTC 00 Binned time fill 1658 beam1 t0=Sun Mar 27 19:22:07 2011 UTC

0.0:
1-par fit: 1-par fit:
0020 X'/ndf Points Slope (Ny,)/10"p 0,020} X'/ndf Points Slope (Ny,)/10"p
138 56 1.015(23) 11.0 138 56 1.015(23) 11.0
5 126 56  0.994(23) 10.0 § 126 56  0.994(23) 10.0
E 0.015! 112 56 1.008(29) 9.5 § 0.015 112 56 1.008(29) 9.5
e s
s s
k] B
2 0.010 2 0.010
g g
S N, (DCCT) k] N,y (DCCT)
g 2
2 0.005 780-10""p 3 0.005] 780-10p
2 713.10p 2 713.10p
680-10""p 680-10"p
0.000 0.000
-0 0:000 0.005 0.015 0.020 0.025 70'08.000 0.005 0.015 0.020 0.025

0.01 0.01
FBCT bunch population fraction FBCT bunch population fraction

Different colors/markers are just different time periods (with an artificial
offset for clarity, except for the blue)
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Gaseous fixed targets: physics with beam-gas (do'p)
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Astrophysical flux ratio ®(p)/®(p) [13]

1073

Dark matter hint ?

Or just a background model
inaccuracy ?

¢ PAMELA 2012
¢ AMS-022015

How many p produced by
p + He collisions 7

q’ﬁ/(pp

Not so well known...

— Fiducial
® Uncertainty from: Cross-sections
Propagation
B Primary slopes

Solar modulation

1 5 10 50 100
Kinetic energy T [GeV]

10-¢

Right. Now we are talking...
We can even do physics with beam-gas interactions.



Gaseous fixed targets: physics with beam-gas (do'p)
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LHCb as a fixed-target experiment: p+ A, Pb+ A, A =He, Ne, Ar ...

Momentum for selected pbar

data

Entries  4.138578e+07
—— DATA Mean 25.66

—— MC: ALL RMS 15.03
~———— MC: pbar
—— MC: K-
—— MC: pi-

- MC: ghost

10°

Here, example
p+He—p+ X 0
(preliminary)

10

20 30 40 50 60 70 80 90 100 110

Momentum spectrum in GeV/c

But how to normalize the cross sections ?
R
N-f-©
We need the absolute gas density. Somehow.

Remember: opnys = © = [ p(z) dz = target thickness



Gaseous fixed targets: physics with beam-gas

Two ways to measure the luminosity

1. Direct: measure the absolute density of gas

2. Indirect: measure p + e elastic events (or Pb+e) [14]
Ophys,e+p has been measured by others
Use et and charge symmetry to check background

Assume  pa = pe/Z

0

The CERN Accelerator School

Ze

“From JLAB to LHC"... Exercise: calc. boost at LHC, compare to JLAB.



Gaseous fixed targets: physics with beam-gas (A’)
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Single electron event !

%

Event 82083147 g \
Run 174630

Tue, 17 May 2016 18:47:09
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Beam-gas interactions: other effects
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Sorry, no time to cover:

e radiation from beam-gas interactions (to downstream devices)

> apart from luminosity, very similar to radiation from collimation
» exercise: why is this negligible for ATLAS, CMS and LHCb ?

e exotic accelerators: muons, pions, ions, ... you dream it



tack for din uppmarksamhet
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check these lectures when available...

Lecture 1:

“Fundamentals of Vacuum Technology”, Eshrag AL DMOUR
Lecture 2:

“Materials & Properties IV: Outgassing”, Paolo CHIGGIATO
Lecture 3:

“Beam Induced Desorption”, Oleg MALYSHEV

Lecture 4:

“Beam Induced Radioactivity & Radiation Hardness”, Francesco CERUTTI
Lecture 5:

“Vacuum Gauges | & II", Karl JOUSTEN

Lecture 6:

“Getter Pumps”, Enrico MACCALLINI
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FLUKA simulation tool, http://www.fluka.org/fluka.php.
GEANT4 simulation tool, http://geant4.cern.ch/.
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HIJING Monte Carlo Model, http://ntc0.lbl.gov/ xnwang/hijing/.
SixTrack - 6D Tracking Code, http://sixtrack.web.cern.ch/SixTrack/.
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