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Robinson instability
Robinson instability (1964) is one of the most basic instability mechanisms.

It is a longitudinal instability that occurs in circular accelerators. The main
contributor to this instability is the longitudinal impedance due to the rf accel-
erating cavities. These cavities are tuned to have a resonant frequency ωR for
its fundamental accelerating mode. This mode is where the klystrons feed into,
but at the same time, it is also a big source of impedance. Since we must have
this rf mode to accelerate the beam, we must accept its big impedance and live
with it.

The real part of this impedance narrowly peaks at ωR, the width ∆ω/ωR ≈
±1/Q. Typically, Q ∼ 104 (or 109 for superconducting cavities).

By design, ωR is very close to an integer multiple of the revolution frequency
ω0. This necessarily means that the wakefield excited by the beam in the cavities
contains a major frequency component near ωR ≈ hω0, and the impedance

Z
‖
0 (ω) has sharp peaks at ±hω0, where h is an integer called the harmonic

number.
As we will soon show, the exact value of ωR relative to hω0 is of critical

importance for the stability of the beam. Above transition, the beam will be
unstable if ωR is slightly above hω0 and stable if slightly below. Below transition,
it is the other way around.

Kenneth Robinson (1925-1979)

Consider a one-particle model. The beam is just a big point charge Ne, with-
out internal structures, and consider its longitudinal motion under the influence
of its own longitudinal wakefield. Let zn be the longitudinal displacement of the
beam at the accelerating rf cavity in the n-th revolution. The rate of change
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of zn is related to the relative energy error δn of the beam in the same n-th
revolution by

d

dn
zn = −ηCδn

The storage ring is above transition if η > 0 and below transition if η < 0.
The energy error also changes with time. In the absence of wakefields, its

equation of motion is
d

dn
δn =

(2πνs)
2

ηC
zn

where νs is the unperturbed synchrotron tune. If we combine these two equa-
tions, we get a simple harmonic oscillation for both zn and δn, i.e the normal
synchrotron oscillation.

But for an intense beam, we have to add the wakefield term,

d

dn
δn =

(2πνs)
2

ηC
zn +

eV (zn)

E

=
(2πνs)

2

ηC
zn −

Nr0

γ

n∑
k=−∞

W ′0(kC − nC + zn − zk)

where W ′0 is the longitudinal wake function accumulated over one turn of the
accelerator. The summation over k is over the wakefields left behind by the beam
from all revolutions prior to the n-th. The equation of motion now becomes

d2zn
dn2

+ (2πνs)
2zn =

Nr0ηC

γ

n∑
k=−∞

W ′0(kC − nC + zn − zk)

In case the beam bunch has an oscillation amplitude much shorter than the
wavelength of the fundamental cavity mode, one can expand the wake function,

W ′0(kC − nC + zn − zk) ≈W ′0(kC − nC) + (zn − zk)W ′′0 (kC − nC)

The first term is a static term independent of the motion of the beam. It
describes the parasitic loss effect discussed earlier and can be taken care of by a
constant shift in zn. We will drop this term altogether because we are interested
here only the dynamical effects. The second term does involve the dynamics of
the beam. The quantity zn − zk is the difference of z’s and – although we will
not make such an approximation – resembles a time derivative dz/dn, which in
turn suggests an instability since a dz/dn term in a d2z/dn2 equation indicates
a possible exponential growth (or damping) of z.

We need now to solve this equation for zn as a function of n. To do so, let

zn ∝ e−inΩT0

where Ω is the mode frequency of the beam oscillation and is a key quantity yet
to be determined.
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Substituting into the equation of motion, we find an algebraic equation for
Ω,

Ω2 − ω2
s = −Nr0ηc

γT0

∞∑
k=−∞

(1− e−ikΩT0)W ′′0 (kC)

where ωs = νsω0 is the unperturbed synchrotron ocillation frequency. Now
the wake function can be expressed in terms of the impedance by a Fourier
transform,

Ω2 − ω2
s = −i Nr0η

γT 2
0

∞∑
p=−∞

[
pω0Z

‖
0 (pω0)− (pω0 + Ω)Z

‖
0 (pω0 + Ω)

]
Given the impedance, this equation can in principle be solved for Ω. Note

that Ω appears on both sides of the equation. Here, however, we take a pertur-
bative approach and assume Ω does not deviate much from ωs for modest beam
intensities. We thus replace Ω by ωs on the right hand side of the equation.
Quantity Ω is then easily solved.

In general, Ω is complex. The real part of Ω is the perturbed synchrotron
oscillation frequency of the collective beam motion, and the imaginary part gives
the growth rate (or damping rate if negative) of the motion. We then obtain a
mode frequency shift,

∆Ω = Re(Ω− ωs)

=
Nr0η

2γT 2
0 ωs

∞∑
p=−∞

[
pω0ImZ

‖
0 (pω0)− (pω0 + ωs)ImZ

‖
0 (pω0 + ωs)

and an instability growth rate,

τ−1 = Im(Ω− ωs) =
Nr0η

2γT 2
0 ωs

∞∑
p=−∞

(pω0 + ωs)ReZ
‖
0 (pω0 + ωs)

Imaginary part of the impedance contributes to the collective frequency shift.
Real part contributes to the instability growth rate. Note that when we measure
the synchrotron frequency in an actual operation, what shows up in the beam
spectrum is not ωs, but Ω.

So far our results holds for arbitrary impedance. We now consider the res-
onator impedance for the fundamental cavity mode. The only significant con-
tributions to the growth rate come from two terms in the summation, namely
p = ±h, assuming ωR/Q� ω0,

τ−1 ≈ Nr0ηhω0

2γT 2
0 ωs

[
ReZ

‖
0 (hω0 + ωs)− ReZ

‖
0 (hω0 − ωs)

]
Beam stability requires τ−1 ≤ 0. That is, the real part of the impedance

must be lower at frequency hω0+ωs than at frequency hω0−ωs if η > 0, and the
other way around if η < 0. This condition gives the Robinson stability criterion
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that, above transition, the resonant frequency ωR of the fundamental cavity
mode should be slightly detuned downwards from an exact integral multiple of
ω0. Below transition, the other way around, as sketched below.

Physically, Robinson instability comes from the fact that the revolution fre-
quency of an off-momentum beam is not given by ω0 but by ω0(1 − ηδ). To
illustrate the physical origin, consider a beam executing synchrotron oscillation
above transition. Due to the energy error of the beam, the impedance samples
the beam signal at a frequency slightly below hω0 if δ > 0, and slightly above
hω0 if δ < 0. In order to damp this synchrotron oscillation, we need to let
the beam lose energy when δ > 0 and gain energy when δ < 0. This can be
achieved by having an impedance that decreases with increasing frequency in
the neighborhood of hω0. The Robinson stability criterion then follows.

When τ−1 > 0, the beam is unstable because any accidental small syn-
chrotron oscillation would grow exponentially. When τ−1 < 0, the Robinson
mechanism leads to exponential damping of any synchrotron oscillations of the
beam. Robinson damping (or antidamping) can be rather strong. When the
Robinson criterion is met, the synchrotron oscillation of the beam is “Robin-
son damped” and this damping will help stabilizing the beam against similar
instabilities due to other impedance sources.

Strong head-tail instability
We next introduce another instability mechanism, the strong head-tail in-

stability, to be discussed using a two-macroparticle model. It was first observed
and analyzed at PEP. When intensity exceeds a threshold, the beam becomes
unstable. Below it, the beam motion is perturbed but remains stable. A com-
parison between Robinson and strong head-tail instabilities:
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Robinson instability Strong head-tail instability
Dimension longitudinal transverse
Mode m = 0 m = 1
Wakefield long-range short-range
Impedance sharply peaked broad-band
Model one-particle two-particle
Threshold no yes

The physical mechanism of the strong head-tail instability is closely related
to the beam break up in linacs. Consider an idealized beam with two macropar-
ticles, each with charge Ne/2 and each executing synchrotron oscillation. We
assume their synchrotron oscillations have equal amplitude but opposite phases.
During time 0 < s/c < Ts/2, where Ts = 2π/ωs is the synchrotron oscillation
period, particle 1 leads particle 2; the equations of motion are

y′′1 +
(ωβ
c

)2

y1 = 0

y′′2 +
(ωβ
c

)2

y2 =
Nr0W0

2γC
y1 (7)

where ωβ is the unperturbed betatron oscillation frequency, whether horizontal
or vertical. During Ts/2 < s/c < Ts, we have the same equations with indices
1 and 2 switched. Then during Ts < s/c < 3Ts/2, Eq.(7) applies again, etc.

In writing down Eq.(7), we have assumed for simplicity that the wake func-
tion (integrated over the accelerator circumference), W1(z), is a constant, and
yet it vanishes before the beam completes one revolution,

W1(z) =
{−W0 if 0 > z > −(bunch length)

0 otherwise
(8)

The property of wake functions requires that W0 > 0. This short range wake
function corresponds to a broad-band impedance.

Solution for y1 in Eq.(7) is simply a free betatron oscillation,

ỹ1(s) = ỹ1(0)e−iωβs/c

where
ỹ1 = y1 + i

c

ωβ
y′1

Both the real and imaginary parts are meaningful in the representation.
Substituting this ỹ1(s) into the equation for y2 yields the solution

ỹ2(s) = ỹ2(0)e−iωβs/c + i
Nr0W0c

4γCωβ

[
c

ωβ
ỹ∗1(0) sin

ωβs

c
+ ỹ1(0)se−iωβs/c

]
(9)

The first two terms describe free betatron oscillation. The third term, propor-
tional to s, is a resonantly driven response. This analysis is similar to the beam
break up instability.
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Equation (9) can be simplified if ωβTs/2� 1, or equivalently, ωβ � ωs. The
second term can then be dropped. The solution during the period 0 < s/c <
Ts/2 can be written in a matrix form,[

ỹ1

ỹ2

]
s=cTs/2

= e−iωβTs/2
[

1 0
iΥ 1

] [
ỹ1

ỹ2

]
s=0

with a positive, dimensionless parameter

Υ =
πNr0W0c

2

4γCωβωs

The time evolution during Ts/2 < s/c < Ts can be obtained by exchanging
indices 1 and 2. The total transformation for one full synchrotron period is[

ỹ1

ỹ2

]
cTs

= e−iωβTs
[

1 iΥ
0 1

] [
1 0
iΥ 1

] [
ỹ1

ỹ2

]
0

= e−iωβTs
[

1−Υ2 iΥ
iΥ 1

] [
ỹ1

ỹ2

]
0

As time evolves, the phasors ỹ1 and ỹ2 are repeatedly transformed by the
2×2 matrix of this map. Stability of the system is determined by the eigenvalues
of this matrix. The two eigenvalues (a + mode and a − mode) are

λ± = e±iφ , sin
φ

2
=

Υ

2
(10)

with eigenvectors

V± =

[
±e±iφ/2

1

]
Stability requires φ = real, or

Υ ≤ 2

For weak beams, Υ � 1, we have φ ≈ Υ. Near the instability, φ approaches π
as Υ approaches 2.

A moment of reflection indicates that the instability when Υ > 2 causes a
rather severe disruption of the beam, as seen by the fact that, during half a
synchrotron period, the motion of the trailing particle has grown by an amount
more than twice the amplitude of the free-oscillating leading particle. For Υ ≤
2, the growths made during the half synchrotron periods when the particle
is trailing do not accumulate and the beam is stable. As the beam intensity
increases so that Υ > 2, the growths of the particles then do accumulate and
bootstrap into an instability. This threshold behavior is very different from the
linac case in which the beam head is always stable and the beam tail is always
unstable. One can imagine that, by periodically exchanging the roles of leading
and trailing particles, the two-particle beam is made more stable. The more
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frequently they are exchanged, the more stable is the beam, as evidenced by
Υ ∝ 1/ωs. Synchrotron oscillation is thus an effective stabilizing mechanism
in circular accelerators. Strong betatron focusing and a high beam energy also
help stabilize the beam, as indicated by Υ ∝ 1/(γωβ).

In an accelerator, the beam signal comes from the beam position monitors
that detect the center of charge y1 + y2 of the beam, and it would be useful to
examine its frequency spectrum. To do that, consider a two-particle beam in a
pure eigenstate V± at time s/c = 0. In the stable region, the subsequent motion
of the beam center of charge is

(ỹ1 + ỹ2)(s) = exp

[
−i(ωβ ∓

φωs
2π

)
s

c

] ∞∑
`=−∞

C`e
−i`ωss/c

C` = 2iΥ
1± (−1)`

(2π`∓ φ)2
(1∓ e±iφ/2)

The ± modes as observed by a beam position monitor therefore contain the
following frequencies:

+ mode : ωβ + `ωs −
φ

2π
ωs , ` = even

− mode : ωβ + `ωs +
φ

2π
ωs , ` = odd

Note that each mode contains a multiplicity of frequencies when observed con-
tinuously in time.

For weak beams, the two macroparticles oscillate in phase in the + mode and
out of phase in the − mode. As Υ increases, the mode frequencies shift and the
particle motions become more complicated; each mode contains a combination of
in-phase and out-of-phase motions. At the stability limit Υ = 2, the frequencies
of the two modes merge into each other and become imaginary, which means
instability.
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Solid curves are the spectrum of the + mode; dashed curves are that of the
- mode. Instability occurs at the point where the mode frequencies merge.

To detect internal beam motion in addition to the center of charge motion,
one applies a streak camera. One such observation, made on the electron storage
ring LEP at CERN, is shown below. It shows the turn-by-turn pictures of a
beam executing a transverse head-tail oscillation. The bunch is seen from the
side and one observes a vertical head-tail oscillation (` = 1). The horizontal
scale is 500 ps for the total image. The vertical scale is uncalibrated. The figure
shows the same bunch each turn from top to bottom.
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(Courtesy Albert Hofmann and Edouard Rossa, 1992)

The strong head-tail instability is one of the cleanest instabilities to observe
in electron storage rings. One may measure the threshold beam intensity when
the beam becomes unstable transversely and associate the observation with
Υ = 2. Another approach is to measure the “betatron frequency” (what is
measured is the frequency of the ` = 0 spectral line) as the beam intensity is
varied. From our two-particle analysis, the initial slope of this frequency shift
is (

dωβ
dN

)
N=0

= −ωs
2π

(
dφ

dN

)
N=0

= −r0W0c
2

8γCωβ

By measuring the instability threshold or the initial slope of the betatron fre-
quency, information on the short-range wakefield or broad-band impedance can
be obtained.

At the instability threshold, the measured betatron frequency has shifted by
ωs/2, according to the two-particle model. The measured value of (dωβ/dN)N=0

can be used to predict the instability threshold Nth by

Nth = −ωs
π

1

(dωβ/dN)N=0

By measuring ωβ at low beam intensities, the eventual instability threshold can
be estimated.

The two-particle model also predicts that the ` = 0 frequency always shifts
down as the beam intensity is increased. Physically, this is because, for short
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bunches, the sign of the wake force is such that the bunch tail is always de-
flected further away from the vacuum chamber axis if the beam is transversely
displaced. With the head and the tail moving together in the ` = 0 mode, the
wake force acts as a defocusing effect and the mode frequency shifts down.

The center of charge signal of the beam as a function of time after the beam
receives an initial transverse kick can be analyzed for a two-particle model. The
figure below shows a result compared with experimental observation at PEP.
The agreement indicates that the highly idealized two-particle model describes
this instability mechanism remarkably well. The fact that the signal exhibits
damping is due to radiation damping.

The beam-position-monitor signal as a function of time after
the beam is kicked. Left: PEP data with (a) N/Nth = 0.86,
(b) N/Nth = 0.93, and (c) N/Nth = 0.988. Right: two-particle
model with (a) Υ/2 = 0.77, (b) Υ/2 = 0.96, and (c) Υ/2 = 0.99.

The instability threshold observed at PEP was Nth = 6.4 × 1011 with
ωβ/ω0 = 18.19, ωs/ω0 = 0.044, E = 14.5 GeV, and ω0 = 0.86 × 106 s−1.
By relating these parameters to Υ = 2, one obtains W0 = 58 cm−2. This trans-
lates into an effective angular kick at the bunch tail of 18 µrad per millimeter
of bunch head displacement per revolution. As mentioned, W0 can also be
obtained by measuring the betatron frequency as a function of beam intensity.

These data can be used to estimate the impedances. Using the property
of impedance, we have Z⊥1 ≈ (R/βZνβ)bW0/c, where R/βZνβ is the weighting
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factor due to βZ , the β-function at the location of the impedance. Taking a beam
pipe radius b = 5 cm and R/βZνβ = 0.5 for PEP, we find Z⊥1 = 0.44 MΩ/m.

Using the approximate connection between Z⊥1 and Z
‖
0 then gives Z

‖
0/n ≈ 1.6 Ω.

This value of Z
‖
0/n indicates that about 0.8% of the accelerator circumference

is effectively occupied by cavities or their equivalents.

Head-tail instability
In our analysis of the strong head-tail instability, we assumed that the beta-

tron and the synchrotron motions are decoupled. In doing so, we have ignored
an important source of instability known as the head-tail instability, to which
we now turn.

The head-tail instability is one of the cleanest to be observed experimentally.
Although it involves a mechanism more subtle than that of the strong head-tail
instability, this instability can occur at a much lower beam intensities. This
may explain the fact that it was actually observed and explained earlier than
the strong head-tail instability.5

The betatron oscillation frequency of a particle in a circular accelerator
depends on the energy error δ = ∆E/E of the particle. If we denote that
betatron frequency of an on-momentum particle as ωβ , the betatron frequency
for an off-momentum particle can be written as

ωβ(δ) = ωβ(1 + ξδ)

where ξ is the chromaticity parameter determined by the accelerator design. To
assure that the beam has a small betatron frequency spread due to a spread in
δ, the absolute value of ξ must not be too large. A consequence of the head-tail
consideration, as we will soon see, is that in addition to this requirement, ξ must
also have a definite sign. The main reason for introducing sextupoles in circular
accelerators is, in fact, to control ξ.

So far we have used s, the longitudinal coordinate along the accelerator, as
the independent variable and time t is related to s simply by s = ct. It is no
longer so simple here because now we have to consider synchrotron motions and
the varying time-of-arrival confounds the connection between s and t, and it
turns out to be simpler to use s as the independent variable, as will be done
below.

Let us first examine the free betatron oscillation in the absence of wake fields.
The accumulated betatron phase is given by an integration of the betatron
frequency, i.e.,

φβ(s) =

∫
ωβ(δ)

ds

c
= ωβ

(
s

c
+ ξ

∫
δ
ds

c

)
= ωβ

[
s

c
− ξ

cη
z(s)

]
5It may also explain the fact that this instability has preempted the name of “head-tail

instability” although almost any other collective instability could justify the same name.
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where η is the slippage factor, and we have used z′ = −ηδ.
This is already a remarkable result. It says that the deviation of the be-

tatron phase of a particle from the nominal value ωβs/c is determined by its
longitudinal position. In other words, the chromatic modulation of the betatron
phase depends only on z and not on other dynamic variables, such as δ. In fact,
one observation to be made is that modulation of the betatron phase by z or
the betatron frequency by δ leads to an instability. Modulation of the betatron
phase by δ or the betatron frequency by z does not lead to an instability. The
modulation, of course, is slow and weak.

We now consider two macroparticles whose synchrotron oscillations are given
by

z1 = ẑ sin
ωss

c
and z2 = −z1

where ωs is the synchrotron oscillation frequency. Particle 1 leads particle 2
during 0 < s/c < π/ωs and trails it during π/ωs < s/c < 2π/ωs. The free
betatron oscillations of the two particles are described by

y1(s) = ỹ1e
−iφβ1(s) = ỹ1 exp

(
−iωβ

s

c
+ i

ξωβ
cη

ẑ sin
ωss

c

)
,

y2(s) = ỹ2e
−iφβ2(s) = ỹ2 exp

(
−iωβ

s

c
− i ξωβ

cη
ẑ sin

ωss

c

)
(11)

As the particles exchange the roles of leading particle and trailing particle, the
betatron phases are such that the leading particle always lags in phase relative
to the trailing particle if ξ/η > 0 and the situation reverses if ξ/η < 0, as
illustrated in the following figure.

The synchrotron oscillations of a two-particle beam observed in the
longitudinal phase space. The quantity ∆φβ = φβ1 − φβ2 is the
difference of the betatron phases of the two particles; it is modu-
lated by the synchrotron motion as shown. The sense of rotation of
particle motion in the phase space is for the case above transition,
i.e. η > 0.

The factor ξωβ ẑ/cη is called the head-tail phase. It is the physical origin
of the head-tail instability. As a numerical example, one may have an electron
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accelerator with η = 0.003, ξ = 0.2, ẑ = 3 cm, and ωβ = 1.4 × 107 s−1, which
gives a head-tail phase of 2π × 0.016.

Recalling the strong head-tail instability studied previously, the trailing par-
ticle is always unstable due to the resonant driving by the wake field of the
leading particle; the growths of the trailing particle during the half synchrotron
periods are strong, but below a certain threshold the synchrotron oscillation
washes away the growths and the net result is that the beam becomes stable.
The additional chromatic term that we are considering now does not have this
fortunate property. As we will see, the weak growths associated with chromatic-
ity do accumulate persistently from one half synchrotron period to the next, and
thus slowly build up an instability without a threshold.

Let us look at the motion of particle 2 during 0 < s/c < π/ωs in the presence
of the wake field. The wake function, we assume, is that given by Eq.(8). The
equation of motion is

y′′2 +

[
ωβ(δ2)

c

]2

y2 =
Nr0W0

2γC
y1

ωβ(δ2) = ωβ

(
1 +

ξẑωs
cη

cos
ωss

c

)
The y1 on the right hand side is given by the free oscillation result. If we let y2

also be given by Eq.(11), but allow ỹ2 to be slowly varying in time, we obtain
an equation for ỹ2,

ỹ′2(s) ≈ iNr0W0c

4γCωβ
ỹ1(0) exp

(
2i
ξωβ ẑ

cη
sin

ωss

c

)
For most practical cases, the head-tail phase ξωβ ẑ/cη is much less than unity,

the exponential factor in the expression can be Taylor expanded and y2 can be
integrated to yield

ỹ2(s) = ỹ2(0) +
iNr0W0c

4γCωβ
ỹ1(0)

[
s+ i

2ξωβ ẑ

ηωs

(
1− cos

ωss

c

)]
The first term in the brackets is the resonant response already studied before
and is responsible for the strong head-tail instability. The second, chromatic
term is small, because it is proportional to the head-tail phase and also because
it is not a resonant response. On the other hand, the important fact here is that
the chromatic term is 90◦ out of phase from the resonant term.

The transformation from s = 0 to s = πc/ωs is thus described by[
ỹ1

ỹ2

]
πc/ωs

=

[
1 0
iΥ 1

] [
ỹ1

ỹ2

]
0

where

Υ =
πNr0W0c

2

4γCωβωs

(
1 + i

4ξωβ ẑ

πcη

)
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This Υ, of course, reduces to the strong head-tail Upsilon if ξ = 0, but now it
has acquired an imaginary part if ξ 6= 0. A similar procedure applied to the
period πc/ωs < s < 2πc/ωs leads to the transformation[

ỹ1

ỹ2

]
2πc/ωs

=

[
1 iΥ
0 1

] [
ỹ1

ỹ2

]
πc/ωs

Stability of the system is determined by the total transformation matrix[
1 iΥ
0 1

] [
1 0
iΥ 1

]
=

[
1−Υ2 iΥ
iΥ 1

]
The eigenvalues of this matrix have been obtained before in Eq.(10). For a weak
beam intensity, |Υ| � 1, the two eigenvalues are

λ± ≈ e±iΥ

The + mode (− mode) is the mode when the two macroparticles oscillate in
phase (out of phase) in the limit of weak beam intensity. The imaginary part
of Υ thus gives a growth rate of the betatron oscillations,

τ−1
± = ∓Nr0W0cξẑ

2πγCη

When the + mode is unstable, the − mode is stable; the transverse displace-
ment of the beam center of charge grows with time but the transverse size of the
beam essentially remains constant. When the − mode is unstable, the + mode
becomes stable; the beam center of charge does not oscillate, but the beam size
grows exponentially.

The + mode is damped if ξ/η > 0 and antidamped if ξ/η < 0. The − mode
is damped if ξ/η < 0 and antidamped if ξ/η > 0. We conclude from this
that the only value of ξ that assures a stable beam is ξ = 0. However, it can
be shown by using a Vlasov equation technique, the two-particle model has
overestimated the growth rate of the − mode. This consideration, together
with the presence of some stabilizing mechanisms (such as Landau damping,
or radiation damping in the case of circular electron accelerators) leads us to
choose slightly positive values for ξ for operation above transition, and slightly
negative ξ below transition.

The growth rate is proportional to N and ξ, and inversely proportional to
γ as one would expect. The linear dependence on the bunch length ẑ, however,
is a consequence of the constant wake model. Had we assumed a different wake
model, the dependence of τ−1 on ẑ would change.

Note that the same transverse wakefield is responsible for both the strong
head-tail instability and the head-tail instability. Continuing the PEP example
mentioned earlier, and further taking ẑ = 3 cm and ξ = 0.2, we find the head-
tail growth rate ∓0.6 ms at the threshold for strong head-tail instability, N =
6.4× 1011.6 The head-tail damping or antidamping can be rather fast.

6Strictly speaking, Eq.(4.99) applies only when |Υ| � 1. We apply it here, even though
ReΥ=2, to obtain an order of magnitude estimate.
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In addition to the methods mentioned earlier, the head-tail growth rate pro-
vides another way to measure the transverse wake function and the impedance
of an accelerator. To do so, ξ is made slightly positive (above transition), a beam
center-of-charge motion (in a + mode) is excited by a kicker, and its subsequent
damped motion is observed. The linear dependence of the damping rate on ξ
allows the extraction of the wake function information. The various methods of
measuring the wake function are not expected to give identical values for the
transverse impedance Z⊥1 , but the results should at least be comparable.

Landau damping
There are many collective instability mechanisms acting on a high intensity

beam in an accelerator, demanding a wide range of sometimes conflicting stabil-
ity conditions. Yet the beam as a whole seems basically stable, as evidenced by
the existence of a wide variety of working accelerators. One of the reasons for
this fortunate outcome is Landau damping, which provides a natural stabilizing
mechanism against collective instabilities if particles in the beam have a small
spread in their natural (synchrotron or betatron) frequencies.

The spread in ωβ has several sources. A dependence of ωβ on the energy
of the particle, together with an energy spread in the beam, leads to a spread
in ωβ . Nolinearities in the focusing system cause a dependence of ωβ on the
particle’s betatron amplitude. A spread in betatron amplitudes then leads also
to a spread in ωβ .

The source of spread in ωs depends on whether the beam is bunched or
unbunched. For bunched beams, a spread can result from nonlinearity in the rf
focusing voltage. For unbunched beams, dependence of the revolution frequency
on the particle energy plays a similar role.

Consider a simple harmonic oscillator with natural frequency ω driven by a
sinusoidal force of frequency Ω,

ẍ+ ω2x = A cos Ωt

with initial conditions x(0) = 0 and ẋ(0) = 0. The solution is

x(t > 0) = − A

Ω2 − ω2
(cos Ωt− cosωt) (12)

The cos Ωt term gives the main term responding to the driving force; the cosωt
term comes from matching the initial conditions.

The explicit inclusion of the initial conditions plays an important role. Oth-
erwise, one could have carelessly written the solution

x(t) = − A

Ω2 − ω2
cos Ωt, or x(t) = − A

Ω2 − ω2
e−iΩt (13)

Eq.(13) contains a singularity at Ω = ω while (12) is well behaved there. This
singularity is the source of subtleties and at this point is to be avoided. As we
will see later, by applying some mathematical tricks, it is possible to bypass the

43



explicit inclusion of the initial conditions and go straight to (13), but at this
point, we stay with (12).

Consider now an ensemble of oscillators (each oscillator represents a single
particle in the beam) which have a spectrum ρ(ω) satisfying

∫∞
−∞ dωρ(ω) = 1.

Now subject this ensemble of particles to the driving force A cos Ωt with all
particles starting with initial conditions x(0) = 0 and ẋ(0) = 0. The ensemble
average response is

〈x〉(t > 0) = −
∫ ∞
−∞

dωρ(ω)
A

Ω2 − ω2
(cos Ωt− cosωt)

For simplicity, let us consider a narrow beam spectrum around a frequency
ωx and a driving frequency near the spectrum, i.e. Ω ≈ ωx. The beam response
is then

〈x〉(t) = − A

2ωx

∫ ∞
−∞

dωρ(ω)
1

Ω− ω
(cos Ωt− cosωt)

Changing variable from ω to u = ω − Ω leads to

〈x〉(t) =
A

2ωx

∫ ∞
−∞

du
ρ(u+ Ω)

u
[cos Ωt− cos(Ωt+ ut)]

=
A

2ωx

[
cos Ωt

∫ ∞
−∞

duρ(u+ Ω)
1− cosut

u
+ sin Ωt

∫ ∞
−∞

duρ(u+ Ω)
sinut

u

]
All integrals are well behaved at u = 0.

The beam response contains a cos Ωt term and a sin Ωt term, but their
coefficients are time dependent. The next step is to show that those coefficients
approach well behaved limits. To do so, one first observes

lim t→∞
sinut

u
= πδ(u)

lim t→∞
1− cosut

u
= P.V.

(
1

u

)
The proof is illustrated in figure below.
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The functions sin(ut)/u, (1 − cosut)/u are shown in (a), (b) for
two values t = 3 and 10. The dashed curves in (b) are for the
function 1/u. The sole function of (1− cosu) in (b) is to suppress
the singularity at u = 0.

If we are not interested in the transient effects immediately following the
onset of the driving force, we obtain

〈x〉(t) =
A

2ωx

[
cos Ωt P.V.

∫
dω

ρ(ω)

ω − Ω
+ πρ(Ω) sin Ωt

]
This expression contains explicitly a cos Ωt term and a mysterious sin Ωt term.

The sign of the cos Ωt term relative to the driving force depends on the sign
of P.V.

∫
dωρ(ω)/(ω−Ω). A system is referred to as “capacitive” or “inductive”

based on whether its sign is positive or negative.
The sin Ωt term has a definite sign relative to the driving force because ρ(Ω)

is always positive. In particular, d〈x〉/dt is always in phase with the force,
indicating work is being done on the system. The system always reacts to the
force “resistively.”

To proceed, write the beam response in a complex notation,

driving force = Ae−iΩt
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〈x〉 =
A

2ωx∆ω
e−iΩt [f(u) + ig(u)]

where u = (ωx − Ω)/∆ω with ∆ω the width of the spectral spread, and

f(u) = ∆ω P.V.

∫
dω

ρ(ω)

ω − Ω

g(u) = π∆ω ρ(ωx − u∆ω)

The dimensionless complex quantity f + ig is the beam transfer function.
For the δ-function spectrum, there is no frequency spread, Landau damping

is lost,

f(u) =
1

u
, and g(u) = πδ(u)

For the Lorentz spectrum,

f(u) =
u

1 + u2
, and g(u) =

1

1 + u2
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The functions f(u) (solid curves) and g(u) (dashed curves)
for various spectral distributions.

We now introduce a mathematical trick. It turns out that one can “derive”

47



the same result by venturing with (13). In complex notation, Eq.(13) gives

〈x〉 =
A

2ωx
e−iΩt

∫
dω

ρ(ω)

ω − Ω

Our detailed examinations provides a well-defined way to deal with the otherwise
undefined integral, i.e.∫

dω
ρ(ω)

ω − Ω
→ P.V.

∫
dω

ρ(ω)

ω − Ω
+ iπρ(Ω) (14)

or more symbolically

1

ω − Ω
→ P.V.

(
1

ω − Ω

)
+ iπδ(ω − Ω)

Again, it is necessary to include an out-of-phase term—with a definite sign—as
evidenced by the imaginary term iπρ(Ω), even though the expression on the left
hand side seems to be for a real quantity.

The right hand side of Eq.(14) in fact is equal to the left hand side provided
one takes the integration to be executed in the complex ω-plane and the contour
of integration, C, is as illustrated in the figure (a) below. The connection (14)
now reads ∫

dω
ρ(ω)

ω − Ω
→

∫
C

dω
ρ(ω)

ω − Ω

The straight line portion of C gives the principal value term in 〈x〉 and the
semicircular portion gives the pole contribution iπρ(Ω).

Equivalently one could consider the integration along the real axis of the
ω-plane, but move the pole at ω = Ω up by an infinitesimal amount,∫

dω
ρ(ω)

ω − Ω
→

∫ ∞
−∞

dω
ρ(ω)

ω − Ω− iε
or

1

ω − Ω
→ 1

ω − Ω− iε
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or simply
Ω → Ω + iε (15)

It is now a matter of taste whether to regard our main conclusion (14) as
a result of a simple derivation starting with Eq.(13) and then make a profound
connection (15), or to regard it as a result of a detailed calculation which takes
into account of initial conditions.

One-particle model for bunched beams – transverse
Results obtained in the previous section applied to circular accelerators lead

to Landau damping of collective instabilities. To demonstrate this for a bunched
beam, consider a one-particle model, except now the N individual particles have
a spread in their natural frequencies. The fact that they form one macroparticle
even though they have different frequencies is a result of the bunch executing a
collective motion.

The driving force on the individual particles comes from the center-of-charge
displacement of the beam as a whole, 〈y〉, through the wakefield. For a single
particle whose betatron frequency is ω,

y′′(s) +
(ω
c

)2

y(s) = −Nr0

γC

∞∑
k=1

〈y〉(s− kC) W1(−kC)

Consider the situation when y-motion of the macroparticle is just at the edge
of exponential growth due to a collective instability. We have

〈y〉(s) = Be−iΩs/c (16)

where Ω carries an imaginary part iε, where ε is infinitesimally positive.
It is not very interesting to search for damped, stable solutions. Finding

stable solutions does not assure beam stability, but finding one unstable solution
reveals the beam to be unstable.

We now have

y′′(s) +
(ω
c

)2

y(s) = −BNr0

γC
We−iΩs/c

where

W =

∞∑
k=1

W1(−kC)eiωβkT0

or in terms of impedance,

W = − i

T0

∞∑
p=−∞

Z⊥1 (pω0 + ωβ)

We have assumed the mode frequency shift is small so that Ω ≈ ωβ , where ωβ
is the center of the beam frequency spectrum.
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The beam is driven by a sinusoidal driving force. Our analysis of Landau
damping gives the beam response,

〈y〉 = −BNr0Wc

2ωβγT0
e−iΩs/c

[
P.V.

∫
dω

ρ(ω)

ω − Ω
+ iπρ(Ω)

]
But we had already assumed that the collective beam motion is given by

Eq.(16). This means the mode frequency Ω is not arbitrary. In order for the
beam motion to be nontrivial, Ω must satisfy a self-consistency condition, the
dispersion relation,

1 = −Nr0Wc

2ωβγT0

[
P.V.

∫
dω

ρ(ω)

ω − Ω
+ iπρ(Ω)

]
or

− Nr0Wc

2ωβγT0∆ω
=

1

f(u) + ig(u)

In case the beam does not have a natural frequency spread, we have f(u) =
1/u, g(u) = 0. The complex mode frequency shift is found to be

(Ω− ωβ)no Landau damping =
Nr0cW
2ωβγT0

We shall designate this quantity as ξ1; it contains essentially the beam intensity,
multiplied by the impedance, divided by the focusing strength and the magnetic
rigidity.

For a beam with natural frequency spread, the dispersion relation is

− ξ1
∆ω

=
1

f(u) + ig(u)
(17)

The left hand side of Eq.(17) contains information about the beam intensity
and the impedance. The right hand side contains information about the beam
frequency spectrum. For a given impedance, the LHS is obtained by calculat-
ing the complex mode frequency shift ξ1 in the absence of Landau damping.
Without Landau damping, the stability condition is simply Im ξ1 < 0.

Once its LHS is obtained, Eq.(17) can in principle be used to determine Ω
in the presence of Landau damping when the beam is at the edge of instability.
However, the exact value of Ω is not useful. The useful question to ask is under
what conditions the beam becomes unstable regardless of the exact value of Ω.
Eq.(17) can be used in a reversed manner to address this question. To do so,
consider the real parameter u = (ωβ−Ω)/∆ω and observes the lotus traced out
in the complex D1-plane as u is scanned from ∞ to −∞, where

D1 =
1

f(u) + ig(u)

This lotus defines a stability boundary diagram. The LHS of Eq.(17), a complex
quantity, is then plotted in the complex D1-plane as a single point. If this point
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lies on the lotus, it means the solution of Ω for Eq.(17) is real, and this ξ1 value
is such that the beam is just at the edge of instability. If it lies on the inside
of the lotus (the side which contains the origin of the D1-plane), the beam is
stable. If it lies on the outside of the lotus, the beam is unstable.

The stability boundary diagrams for various spectra. Shaded re-
gions are unstable. The coordinates labeled refer to (ReD1, ImD1;
u). The value of u can be used to obtain Ω. (a) δ-function spec-
trum, no Landau damping. (h) is the simplified criterion (18).
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The dispersion relation is particularly simple for the Lorentz spectrum (case
(b)),

Ω = ωβ + ξ1 − i∆ω

The stability condition ImΩ < 0 therefore becomes

Imξ1 < ∆ω

The fact that the stable region is always enlarged by the frequency spread
demonstrates the Landau damping mechanism. Its origin can be traced back
to the fact that g(u) is always positive, which in turn comes from the fact that
the beam continues to absorb energy from the driving force without having to
let 〈y〉 grow.

For a given spectral shape, the tolerable ξ1 ∝ ∆ω; the larger the frequency
spread, the stronger the Landau damping. For a given ∆ω, the effectiveness
of Landau damping is different for different spectral shapes. The Lorentz spec-
trum, having a long distribution tail, is most forgiving, while the δ-function
spectrum is not effective.

For practical accelerator operations, there may be information on the value
of the half-width-at-half-height ∆ω 1

2
, but not enough detailed information on

the shape of the frequency spectrum. For those applications, we introduce a
simplified stability criterion

|ξ1| =
Nr0c

2ωβγT 2
0

∣∣∣ ∞∑
p=−∞

Z⊥1 (pω0 + ωβ)
∣∣∣ < 1√

3
∆ω 1

2
(18)

where the factor 1/
√

3 is chosen so that it coincides with the semicircular portion
of the boundary for the elliptical spectrum. Stability diagram of this simplified
model is shown in figure (h) above.

Eq.(18) says that if the mode frequency shift or growth rate, calculated
without Landau damping, is larger than the frequency spread of the beam,
Landau damping will not rescue the beam from instability.

One-particle model for bunched beams – longitudinal
A similar analysis can also be performed for the longitudinal Robinson in-

stability using a one-particle model,

z′′(s) +
(ωs
c

)2

z(s) =
Nr0η

γC

∞∑
k=1

[〈z〉(s)− 〈z〉(s− kC)]W ′′0 (−kC)

=
Nr0η

γC
Be−iΩs/cW

where we have introduced
〈z〉(s) = Be−iΩs/c
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and

W =

∞∑
k=1

(
1− eiωskT0

)
W ′′0 (−kC)

=
i

C

∞∑
p=−∞

[
pω0Z

‖
0 (pω0)− (pω0 + ωs)Z

‖
0 (pω0 + ωs)

]
Self-consistency then gives rise to a dispersion relation

Nr0ηWc2

2ωsγC∆ω
=

1

f(u) + ig(u)

similar to the transverse case except that the frequency spectrum now refers to
synchrotron frequency, and the complex mode frequency shift in the absence of
Landau damping is

ξ1 = −Nr0ηWc2

2ωsγC

The simplified stability criterion reads

|ξ1| =
Nr0ηc

2

2ωsγC2

∣∣∣ ∞∑
p=−∞

[
pω0Z

‖
0 (pω0)− (pω0 + ωs)Z

‖
0 (pω0 + ωs)

] ∣∣∣ < 1√
3

∆ω 1
2

The conclusion that the longitudinal Landau damping behaves analogously
to the transverse case, however, is valid only for bunched beams for which ωs 6= 0.
The analyses depend on the assumption that the mode frequency shift |Ω| is
small compared with the unperturbed natural frequency ωβ , ωs. For unbunched
beams, ωs = 0, the longitudinal analysis gives results very different from its
transverse counterpart.
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