Plasma wake generation (non linear) + blowout regime

Luís O. Silva, Jorge Vieira

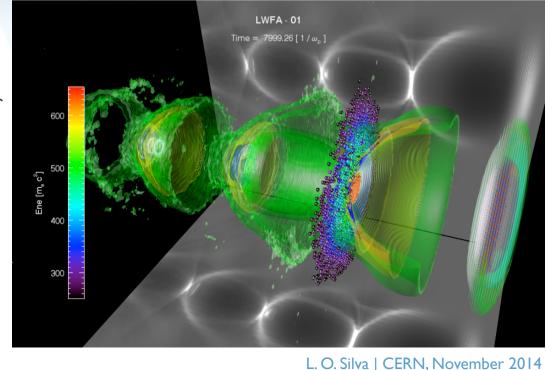
GoLP

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon

Portugal

http://web.ist.utl.pt/luis.silva/ http://epp.ist.utl.pt/

Accelerates ERC-2010-AdG 267841



Plasma wake generation (non linear)

Luís O. Silva, Jorge Vieira

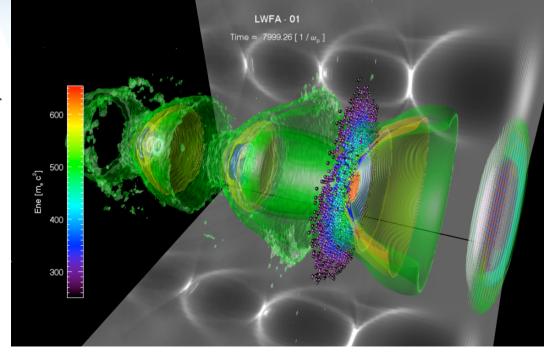
GoLP

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon

Portugal

http://web.ist.utl.pt/luis.silva/ http://epp.ist.utl.pt/

Accelerates ERC-2010-AdG 267841



Acknowledgments

- F. Fiúza, J. Martins, S. F. Martins, R. A. Fonseca
- Work in collaboration with:
 - W. B. Mori, C. Joshi (UCLA), W. Lu (Tsinghua) R. Bingham (RAL)
- Simulation results obtained at epp and IST Clusters (IST), Hoffman (UCLA), Franklin (NERSC), Jaguar (ORNL), Intrepid (Argonne), and Jugene (FZ Jülich)

Contents

Motivation

Plasmas waves always demonstrate nonlinear behavior

General formalism

Master equation: relativistic fluid + Maxwell's equations

"Short" pulses

Quasi-static equations, Wakefield generation

Summary

Pioneering work in 70s - 80s opened a brand new field

Plasma based accelerators

Volume 43, Number 4

PHYSICAL REVIEW LETTERS

23 July 1979

VOLUME 54, NUMBER 7

PHYSICAL REVIEW LETTERS

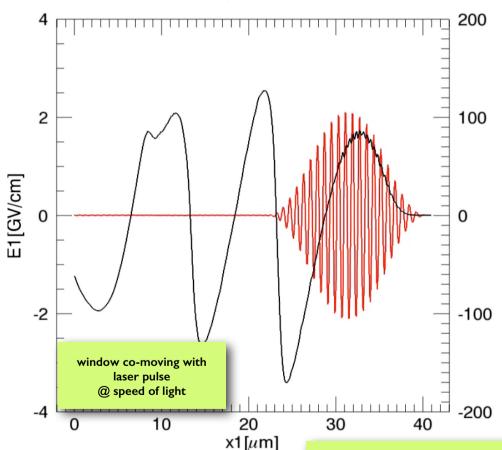
18 FEBRUARY 1985

Laser Electron Accelerator

T. Tajima and J. M. Dawson

Department of Physics, University of California, Los Angeles, California 90024

(Received 9 March 1979)



Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma

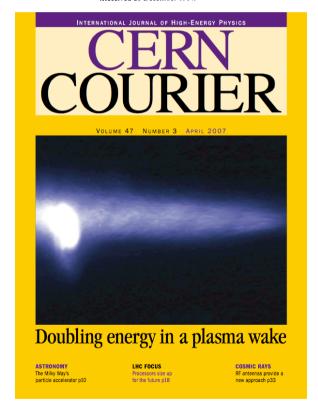
Pisin Chen(a)

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

J. M. Dawson, Robert W. Huff, and T. Katsouleas

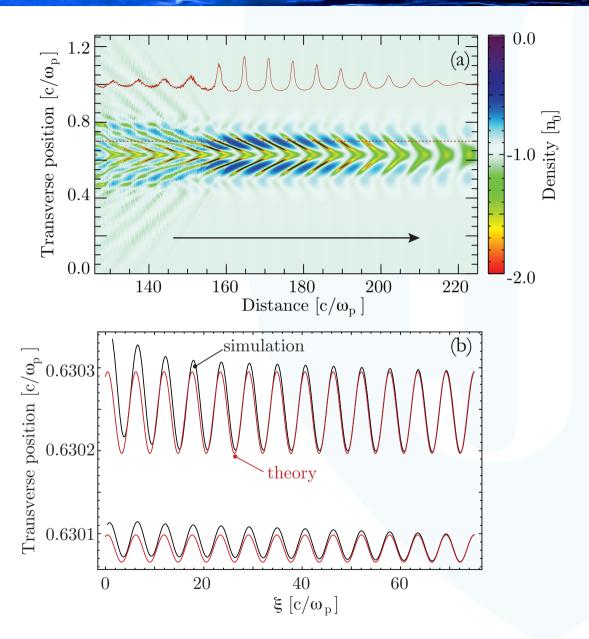
Department of Physics, University of California, Los Angeles, California 90024
(Received 20 December 1984)



 $E_0[V/cm] \approx 0.96 n_0^{1/2} [cm^{-3}]$

 $n_0 = 10^{18} \text{ cm}^{-3} \rightarrow E_0 \approx 1 \text{ GV/cm}$

Multidimensional plasma waves are nonlinear

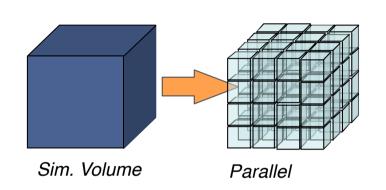


J. M. Dawson, PR 113 383 (1959); J. Vieira et al, PRL 106 225001 (2011); J. Vieira et al, PoP 21 056705 (2014)

Lasers and intense beams drive large waves

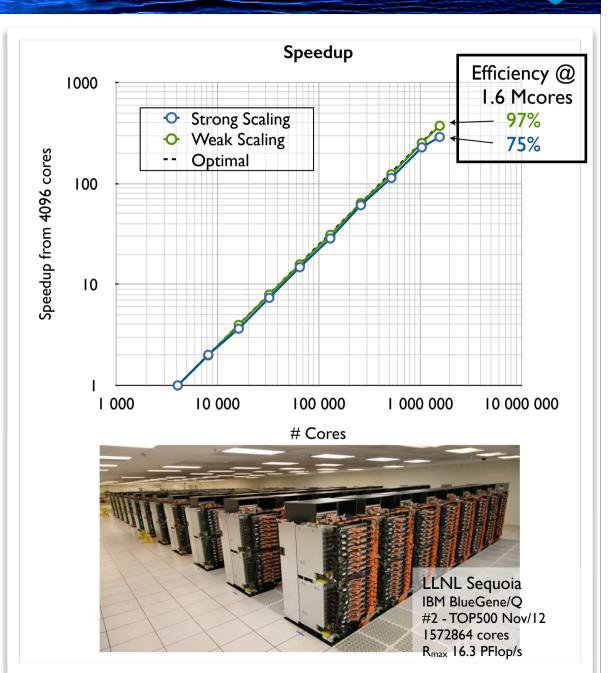
Simulations play an important role

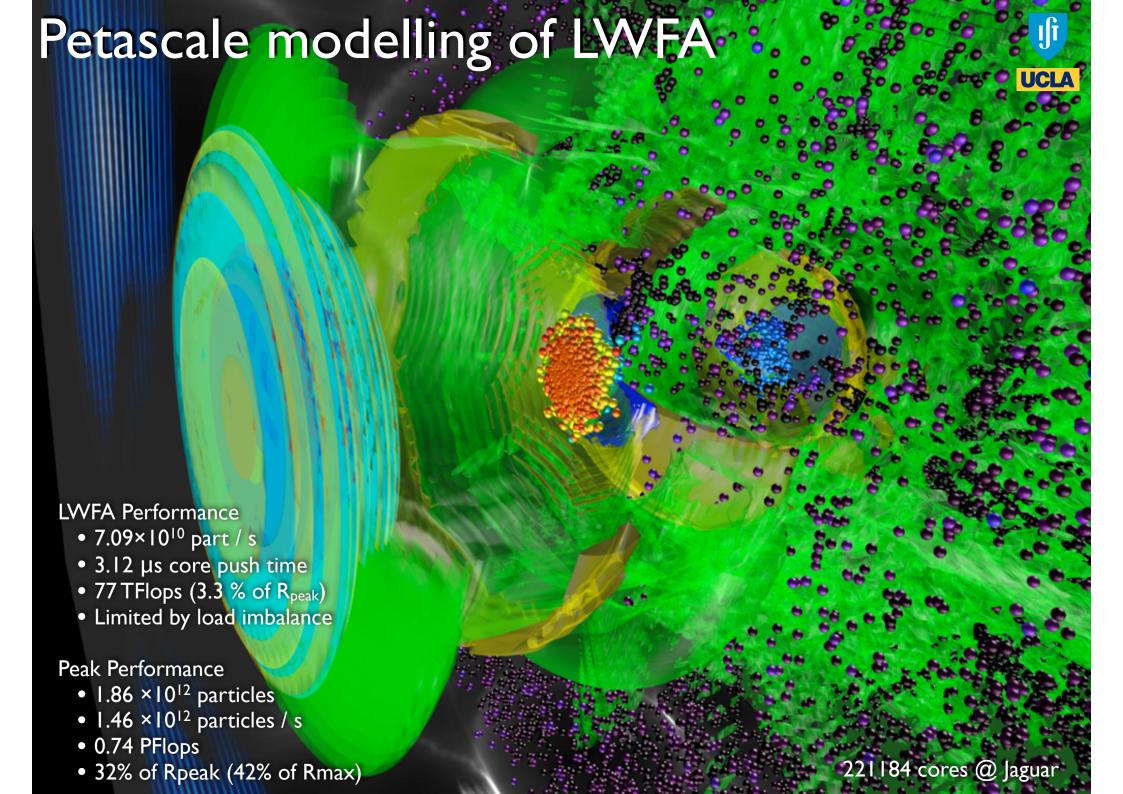
Scaling Tests



- Scaling tests on LLNL Sequoia
 4096 → 1572864 cores (full system)
- Warm plasma tests

 Quadratic interpolation $u_{th} = 0.1 \text{ c}$
- Weak scaling
 Grow problem size
 cells = 256³ × (N_{cores} / 4096)
 2³ particles/cell
- Strong scaling
 Fixed problem size
 cells = 2048³
 16 particles / cell





Contents

Motivation

Plasmas waves always demonstrate nonlinear behavior

General formalism

Master equation: relativistic fluid + Maxwell's equations

"Short" pulses

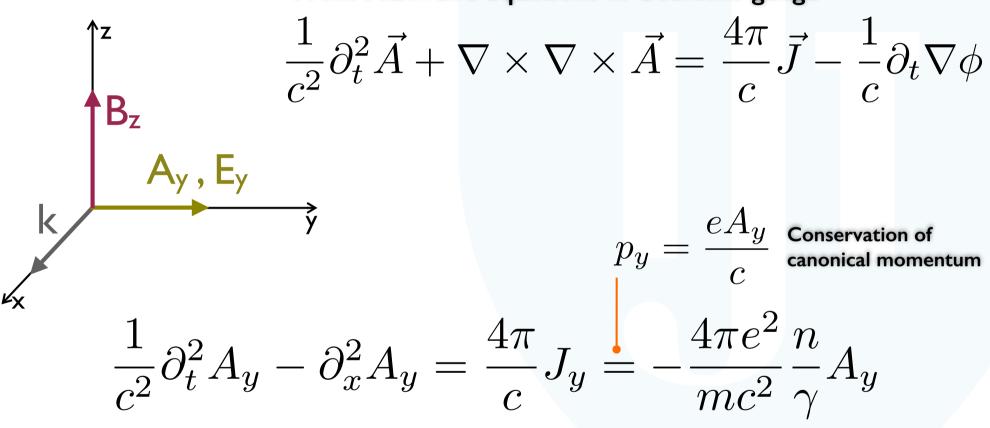
Quasi-static equations, Wakefield generation

Summary

The wave equation for e.m. waves

The more standard approach

From Maxwell's equations in Coulomb gauge



$$\gamma = \sqrt{1 + \frac{p_x^2}{m^2 c^2} + \frac{e^2 A_y^2}{m^2 c^4}}$$

Linearized wave equation for e.m. waves

Ordering

$$\frac{p_x}{mc} \quad \frac{e^2A_y^2}{m^2c^4} \quad \frac{\delta n}{n_0} = \frac{n}{n_0} - 1 \qquad \text{All the same order, and << I}$$

$$\frac{1}{\gamma} \simeq 1 - \frac{1}{2} \frac{e^2 A_y^2}{m^2 c^4} - \frac{1}{2} \frac{p_x^2}{m^2 c^2}$$

Wave equation for vector potential of e.m. wave

$$\frac{1}{c^2}\partial_t^2 A_y - \partial_x^2 A_y \simeq -\frac{\omega_{p0}^2}{c^2} \left(1 + \frac{\delta n}{n_0} - \frac{1}{2} \frac{e^2 A_y^2}{m^2 c^4} \right) A_y$$

Evolution of the electron density

Equation for the evolution of the electron density in the presence of Ay

Linearizing the continuity equation + time derivative

$$\partial_t \delta n + n_0 \nabla \delta \vec{v} = 0$$

$$\partial_t \delta n + n_0 \nabla \delta \vec{v} = 0$$
 $\partial_t^2 \delta n + n_0 \nabla \partial_t \delta \vec{v} = 0$

Linearized Euler's equation

$$\partial \delta \vec{v} = -\frac{e}{m} \delta \vec{E} - c^2 \nabla \left(1 + \frac{1}{2} \frac{e^2 A_y^2}{m^2 c^4} \right)$$

Equation for driven electron plasma waves

$$\partial_t^2 \frac{\delta n}{n_0} + \frac{4\pi e^2 n_0}{m_e} \frac{\delta n}{n_0} = c^2 \nabla^2 \frac{1}{2} \frac{e^2 A_y^2}{m^2 c^4}$$

Coupling of light with plasma electrons

Driven electron plasma waves

$$\left(\partial_t^2 + \omega_{p0}^2\right) \frac{\delta n}{n_0} = \frac{c^2}{2} \nabla^2 \frac{e^2 A_y^2}{m^2 c^4}$$

E.m. waves coupled with plasma + relativistic mass correction

$$\frac{1}{c^2}\partial_t^2 A_y - \partial_x^2 A_y = -\frac{\omega_{p0}^2}{c^2} \left(1 + \frac{\delta n}{n_0} - \frac{1}{2} \frac{e^2 A_y^2}{m^2 c^4} \right) A_y$$

Contents

Motivation

Plasmas waves always demonstrate nonlinear behavior

General formalism

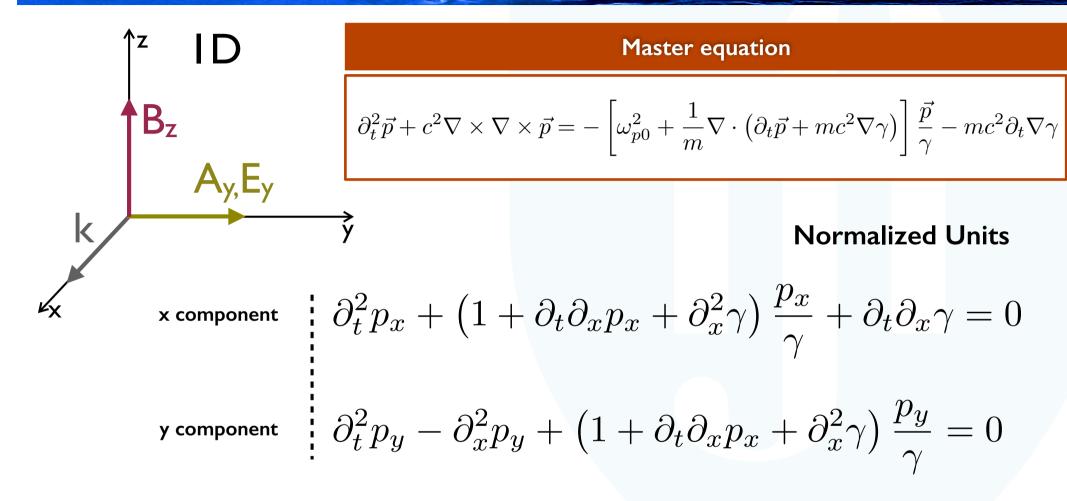
Master equation: relativistic fluid + Maxwell's equations

"Short" pulses

Quasi-static equations, Wakefield generation

Summary

Starting point: the master equation



Remember: from canonical momentum conservation $p_y = a_y$

Electric field normalised to the cold wave breaking limit

$$E \simeq \frac{m_e c \omega_p}{e} \simeq 0.96 \sqrt{n_0 [\mathrm{cm}^{-3}]} \mathrm{V/cm}$$

Magnetic field normalised to the cold wave breaking limit multiplied by c

$$B \simeq \frac{m_e c^2 \omega_p}{e} \simeq 32 \sqrt{n_0 [10^{16} \text{cm}^{-3}]} \text{T}$$

Scalar and vector potentials normalised to electron rest energy divided by the elementary charge

$$\phi \simeq A \simeq \frac{m_e c^2}{e} \simeq \frac{0.511 \text{MeV}}{e}$$

Space and time normalised to the plasma skin depth and inverse of plasma frequency

$$d \simeq \frac{1}{k_p} \simeq \frac{5.32 \ \mu \text{m}}{\sqrt{n_0 [10^{18} \text{cm}^{-3}]}} \qquad t \simeq \frac{1}{\omega_p} \simeq \frac{17 \text{ fs}}{\sqrt{10^{18} \text{ cm}^{-3}}}$$

Charge, mass and velocity normalised to the elementary charge, electron mass and speed of light. Momenta normalised to $m_{\rm e}$ c

Everything at c: Speed of light variables

and the envelope approximation

Waves driven by short laser pulses with $v_{ph} \sim c$

$$\psi = t - x \quad \tau = x$$

$$p_x \propto e^{-\omega_{p0}\psi}$$
 $p_y \propto e^{-\omega_0\psi}$

In speed of light variables

$$\partial_t = \partial_{\psi}$$

$$\partial_x = \partial_\tau - \partial_\psi$$

One further approximation: the envelope approximation

$$\partial_{\tau} \ll \partial_{\psi}$$

$$\partial_{\tau} \ll \partial_{\psi} \qquad \partial_{\tau} \sim \left(\omega_{p0}/\omega_0\right)^2$$

$$\partial_{\psi}^{2} p_{x} + \left(1 - \partial_{\psi}^{2} p_{x} + \partial_{\psi}^{2} \gamma\right) \frac{p_{x}}{\gamma} - \partial_{\psi}^{2} \gamma \simeq 0$$

$$2\partial_{\tau} \partial_{\psi} p_{y} + \left(1 - \partial_{\psi}^{2} p_{x} + \partial_{\psi}^{2} \gamma\right) \frac{p_{y}}{\gamma} \simeq 0$$

ID Quasi Static equations

Using the definition

$$\gamma - p_x \equiv \chi$$

$$\left(\frac{p_x}{\gamma} - 1\right) \partial_{\psi}^2 \chi = -\frac{p_x}{\gamma}$$

$$2\partial_{\tau}\partial_{\psi}p_y + \left(1 + \partial_{\psi}^2\right)\frac{p_y}{\gamma} = 0$$

ID quasi-static equations

$$\partial_{\psi}^2 \chi = -\frac{1}{2} \left(1 - \frac{1 + p_y^2}{\chi^2} \right)$$

$$2\partial_{\tau}\partial_{\psi}p_y + \frac{p_y}{\chi} = 0$$

- $\geqslant 1/\chi$ is the plasma susceptibility
- Physically, quasi-static means the laser pulse envelope changes in a much longer time scale than the phase or laser pulse envelope does not evolve in the time it takes for an electron to go across the laser pulse (~ pulse duration)
- The basis for reduced numerical models (WAKE & QuickPIC)

Physical interpretation

Plasma susceptibility

$$\frac{1}{\chi} \equiv \frac{n}{\gamma}$$

With
$$\chi = 1 + \phi$$

Also written as:

$$\partial_{\psi}^{2} \phi + \frac{1}{2} \left[1 - \frac{1 + p_{y}^{2}}{(1 + \phi)^{2}} \right] = 0$$

$$2\partial_{ au}\partial_{\psi}p_y+rac{p_y}{1+\phi}=0$$
 py = ay !

Simplified Euler's equation

$$\partial_t p_x = -E_x - \partial_x \gamma$$

$$E_x = -\partial_x \phi$$

$$E_x = -\partial_x \phi$$
 $\partial_t p_x = \partial_x (\phi - \gamma)$

In speed of light variables

$$-\partial_{\psi}\left(\gamma - p_x - \phi\right) = \partial_{\tau}\left(\phi - \gamma\right) \simeq 0$$

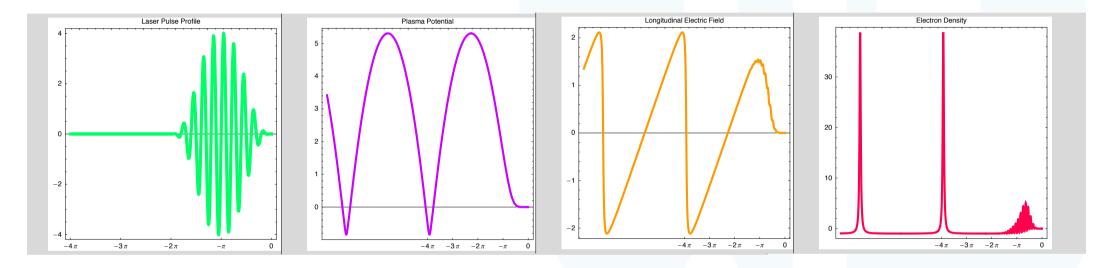
Plasma Potential

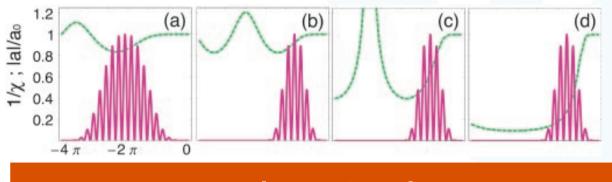
$$\chi = \gamma - p_x = \phi + \text{const.} = 1 + \phi$$

Wakefield generation

Quasi-static equations at the basis of many theoretical developments on laser wakefield

a0=4, L =
$$\lambda_p/2$$





Increasing a0

Wakefield structure and wavebreaking

Analytical results can be obtained for specific laser pulse shapes (e.g. square pulse Berezhiani & Muruzidze, 90)

$$\gamma_{\perp} = \sqrt{1 + a_{y0}^2}$$

$$\phi_{\rm max} \sim \gamma_{\perp}^2 - 1$$

$$\phi_{
m max} \sim \gamma_{\perp}^2 - 1$$
 $E_{
m max} \sim \frac{\gamma_{\perp}^2 - 1}{\gamma_{\perp}}$

$$p_{
m max} \sim rac{\gamma_{\perp}^4 - 1}{2\gamma_{\perp}^2}$$

Peak electric field ~ ay0

Optimal pulse length for wakefield excitation

$$\lambda_p/2$$

Depends on pulse shape

Quasi-static approximation breaks down when plasma wave breaks

plasma sheaths cross

Wavebreaking limit (cold)

Non relativistic
$$\frac{eE_{pw}}{mv_{\phi}\omega_{p0}}=1$$

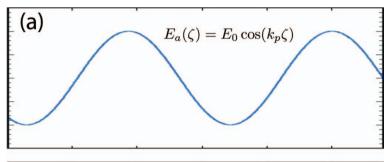
$$v_{\mathrm{fluid}} \sim v_{\phi} \quad \frac{\delta n}{n_0} \to \infty \quad \partial_x E_x \to \infty$$

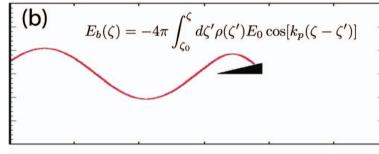
$$\frac{eE_{pw}}{mc\omega_{n0}} = \sqrt{2}\sqrt{\gamma_{\phi} - 1}$$

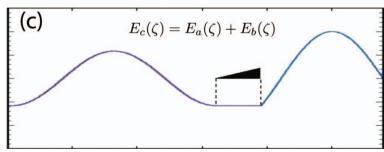
$$\frac{eE_{pw}}{mc\omega_{p0}} = \sqrt{2}\sqrt{\gamma_{\phi}-1} \ \ \begin{array}{l} \text{Na\"{ive ID estimate}} \\ \text{for breakdown of} \\ \text{quasi-static (square pulse)} \end{array} \\ \sim \frac{4.6}{\lambda[1\mu\mathrm{m}]n[10^{19}\mathrm{cm}^{-3}]} \\ \frac{1}{\lambda[1\mu\mathrm{m}]n[10^{19}\mathrm{cm}^{-3}]} \\ \frac{1}{\lambda[1\mu\mathrm$$

Beam loading in the linear regime

Beam loading concept







Properly tailored witness electron bunch flattens accelerating wakefield: no energy spread growth!

Optimal scenario: wakefield due to beam cancels plasma wave field exactly

$$N_0 = 5 \times 10^5 \left(\frac{n_1}{n_0}\right) \sqrt{n_0} A$$

Energy spread: as particle energy spread becomes 100% number (N) approaches N₀:

$$\frac{\Delta \gamma_{\text{max}} - \Delta \gamma_{\text{min}}}{\Delta \gamma_{\text{max}}} = \frac{E_i - E_f}{E_i} = \frac{N}{N_0}$$

Efficiency: tends to 100% when N approaches N₀.

$$\eta_b = rac{N}{N_0} \left(2 - rac{N}{N_0}
ight)$$
 Key trade off

The energy gain is less than twice the energy per particle of the driving bunch (transformer ratio)

$$R = \frac{\Delta E_b}{E_d} = 2 - \frac{N}{N_d}$$

Blow out regime (or the bubble regime)

Luís O. Silva, Jorge Vieira

GoLP

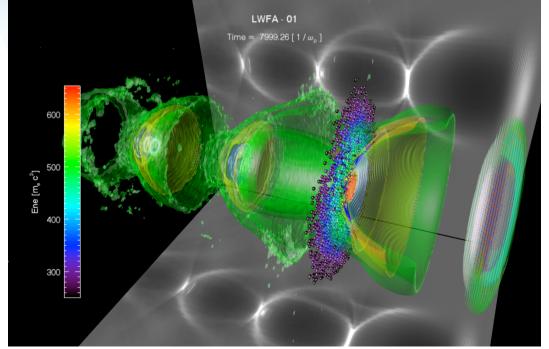
Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico

Lisbon

Portugal

http://web.ist.utl.pt/luis.silva/ http://epp.ist.utl.pt/

Accelerates ERC-2010-AdG 267841



L. O. Silva | CERN, November 2014

Contents

Motivation

Plasmas waves are multidimensional

Blowout regime

Phenomenological model

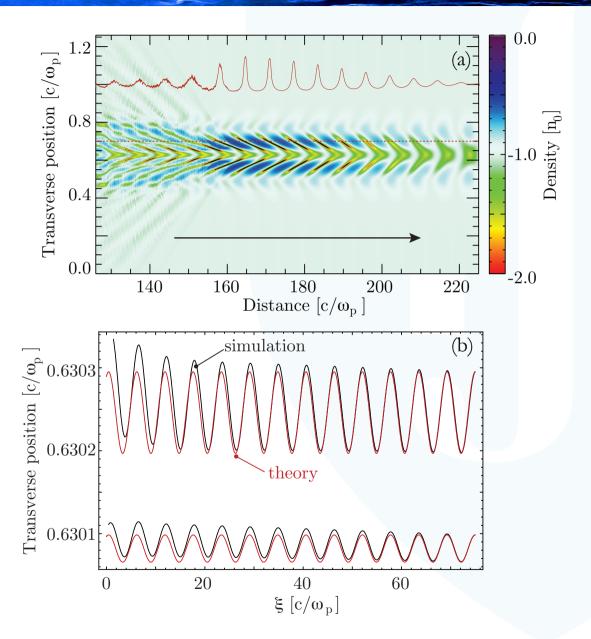
Theory for blowout

Field structure and beam loading

Challenges

Positron acceleration, long beams, polarized beams

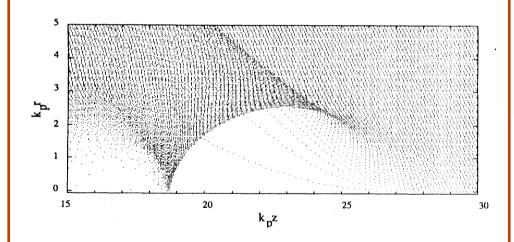
Summary



J. M. Dawson, PR 113 383 (1959); J. Vieira et al, PRL 106 225001 (2011); J. Vieira et al, PoP 21 056705 (2014)

Beam driven

Non-linear plasma wave generation by an electron bunch with $n_b/n_0>1$. Electron cavitation is a distinctive signature of the blowout regime.



J.B. Rosenzweig et al, Phys. Rev. A 44, R6189 (1991)

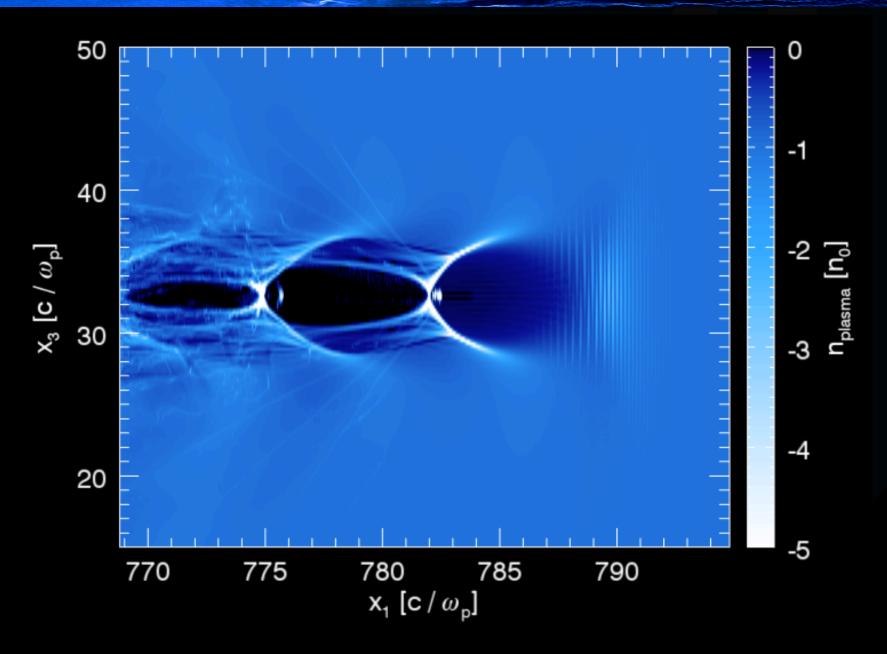
Laser driven

Plasma wave generation and electron acceleration driven by ultra-high intensity laser with a₀>> l

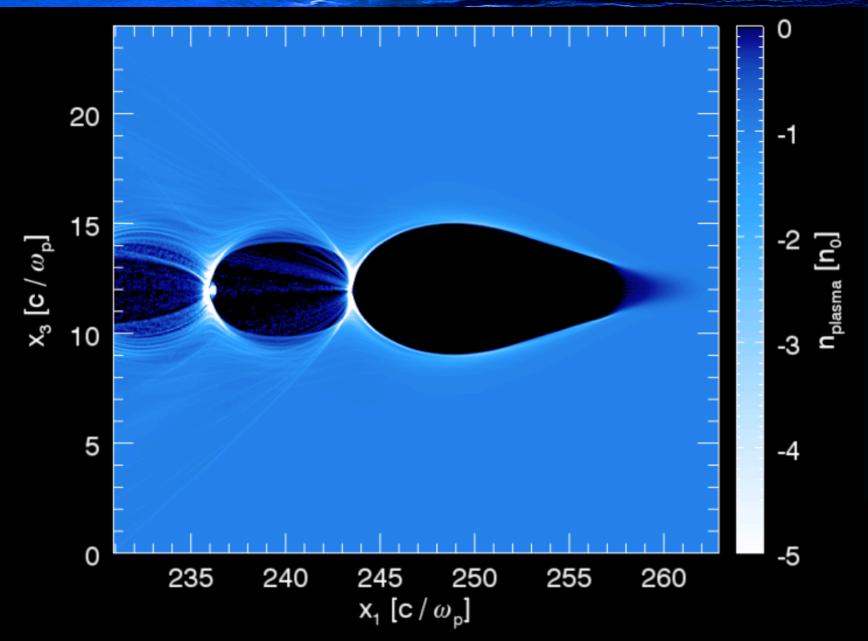


A. Pukhov, J.Meyer-Ter-Vehn, Appl. Phys. B 74, 355 (2002)

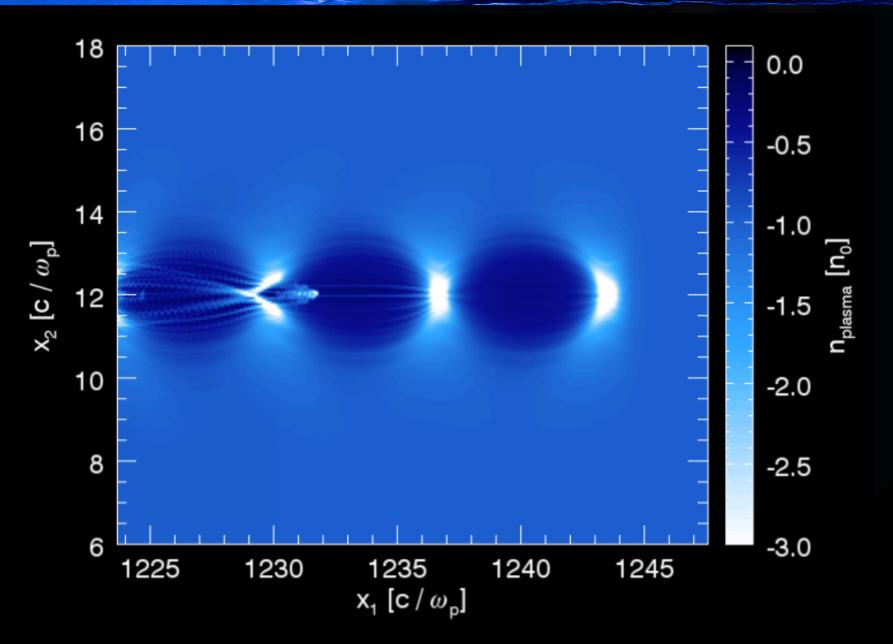
Laser blowout



Electron beam blowout



And for positron drivers?



Contents

Motivation

Plasmas waves are multidimensional

Blowout regime

Phenomenological model

Theory for blowout

Field structure and beam loading

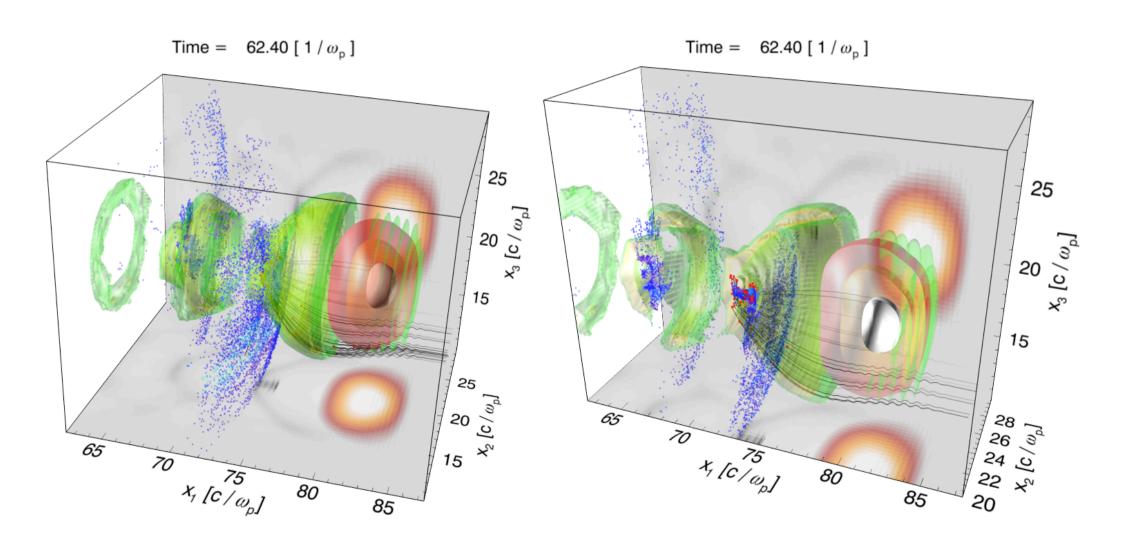
Challenges

Positron acceleration, long beams, polarized beams

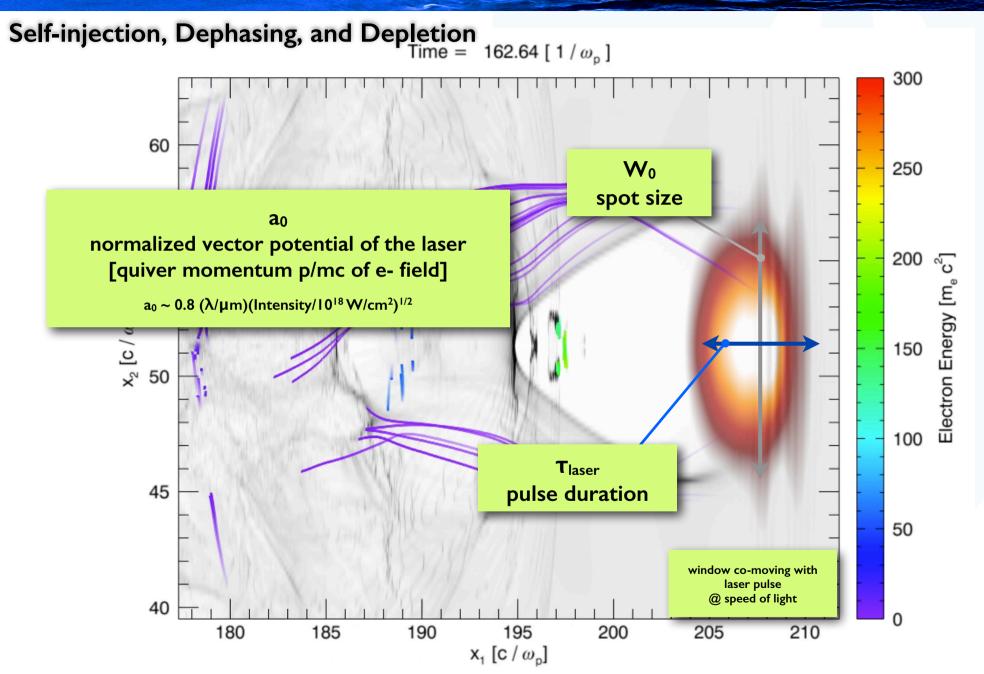
Summary

Structure of laser driven wakefield

Self-injection provides electrons for acceleration

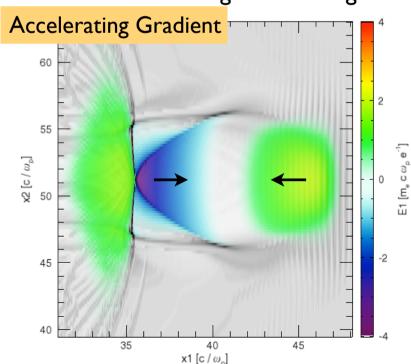


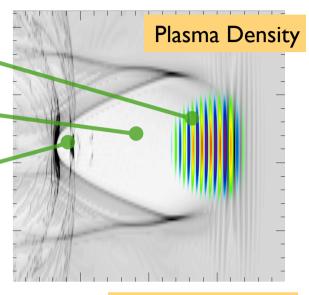
Blow-out regime of laser wakefield acceleration

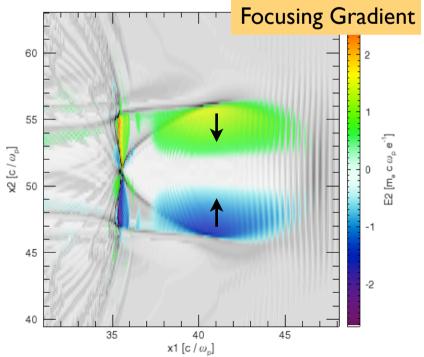


Blow-out regime of laser wakefield acceleration

- Intense laser pulse pushes electrons away from axis
- Electron void is formed behind laser
 - Blowout-regime/ bubble regime
- Electrons return to axis due to ion channel force
- Trajectory crossing leads to self injection when outer sheet near spot-size reaches axis
- Ion column creates strong accelerating and focusing gradients



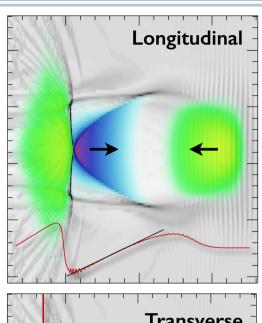




Phenomenological theory based on physical picture

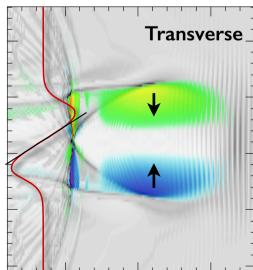
Dynamics of the laser and e- define key parameters

Electric fields created by laser pulse



Linear accelerating gradient

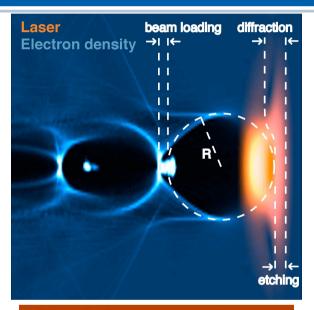
$$E_{z \max} \approx \sqrt{a_0}$$



Linear focusing force

$$k_p R \simeq 2\sqrt{a_0}$$

Matched laser parameters



Match laser spot size to bubble radius

$$k_p R \simeq k_p W_0 = 2\sqrt{a_0}$$

For maximum energy gain: trapped e- dephasing before pump depletion

$$L_{\rm etch} \simeq c\omega_0^2/\omega_p^2 \tau_{\rm FWHM}$$
 $L_{\rm etch} > L_d$ $L_d \simeq \frac{2}{3} \frac{\omega_0^2}{\omega_p^2} R$ $c\tau_{\rm FWHM} > 2R/3$

Different regimes for LWFA

		Maximum electron energy		
	Self-guiding		External-guiding	
	Self Injection I*	Self Injection II**	Self Injection**	External Injection**
Main goal	Maximize Charge	←	_ Maximize _ electron energy	>
Efficiency	19%	←	$- \sim 0.52/a_0$ -	
Typical a ₀	$\gtrsim \sqrt{2n_c/n_p}$	PW range $\sim (n_c/n_p)^{1/5}$	$\gtrsim 3$	~ 2

Laser pulse

$$au_{\mathrm{FWHM}}[\mathrm{fs}] \simeq 53.22 \left(\frac{\lambda_0[\mu\mathrm{m}]}{0.8}\right)^{2/3} \left(\frac{\epsilon[\mathrm{J}]}{a_0^2}\right)^{1/3}$$

$$W_0 = \frac{3}{2}c\tau_{\mathrm{FWHM}}$$

Plasma

$$n_p[10^{18} \text{ cm}^{-3}] \simeq 3.71 \frac{a_0^3}{P[\text{TW}]} \left(\frac{\lambda_0[\mu\text{m}]}{0.8}\right)^{-2}$$

$$L_{\text{acc}}[\text{cm}] \simeq 14.09 \frac{\epsilon[\text{J}]}{a_0^3}$$

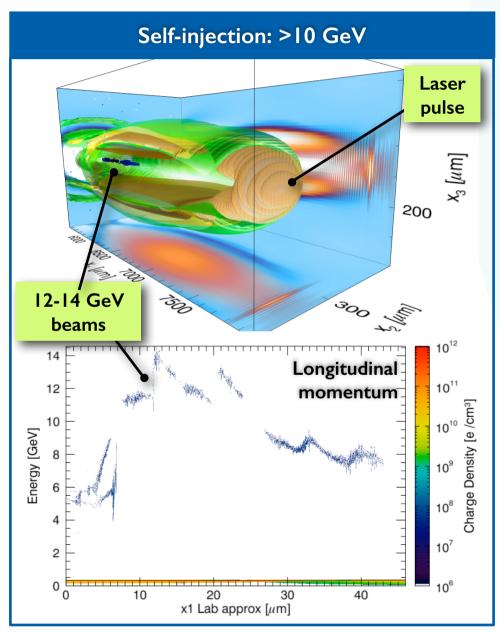
Injected bunch

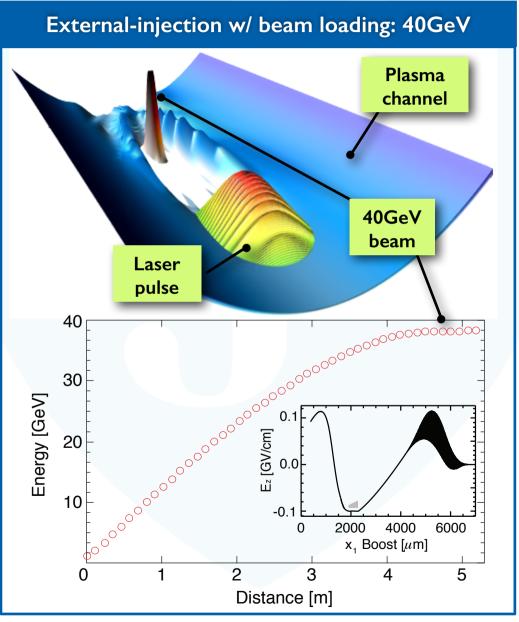
$$\Delta E[\text{GeV}] \simeq 3 \left(\frac{\epsilon[\text{J}]}{a_0^2} \frac{0.8}{\lambda_0[\mu\text{m}]}\right)^{2/3}$$
$$q[\text{nC}] \simeq 0.17 \left(\frac{\lambda_0[\mu\text{m}]}{0.8}\right)^{2/3} (\epsilon[\text{J}] \ a_0)^{1/3}$$

^{*} S. Gordienko and A. Pukhov PoP (2005)

^{**} W. Lu et al. PR-STAB (2007)

Acceleration distances can be reduced by orders of magnitude





S.F. Martins et al Nat. Physics 6 311 (2010)

Parameter range for 300J laser system

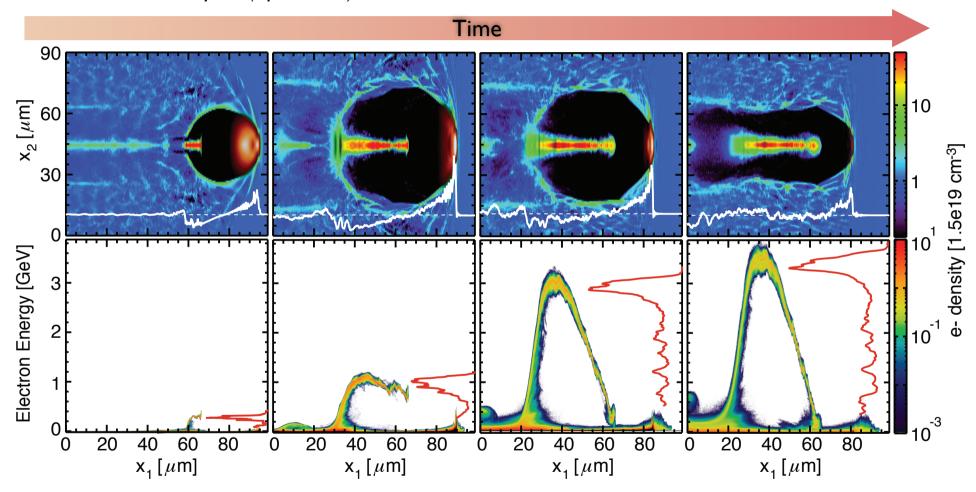
		Self-guiding		External-guiding
Laser		Self Injection I*	Self Injection II**	External Injection**
	a0	53	5.8	2
	Spot [µm]	10	50	101
	Duration [fs]	33	110	224
Pl	asma	4		
	Density [cm ⁻³]	1.5×10 ¹⁹	2.7×10 ¹⁷	2.2×10 ¹⁶
	Length [cm]	0.25	22	500
e-	Bunch			
	Energy [GeV]	3	13	53
	Charge [nC]	14	2	1.5

^{*} S. Gordienko and A. Pukhov PoP (2005)

^{**} W. Lu et al. PR-STAB (2007)

+3GeV self-injection in strongly nonlinear regime Extreme blowout a₀=53

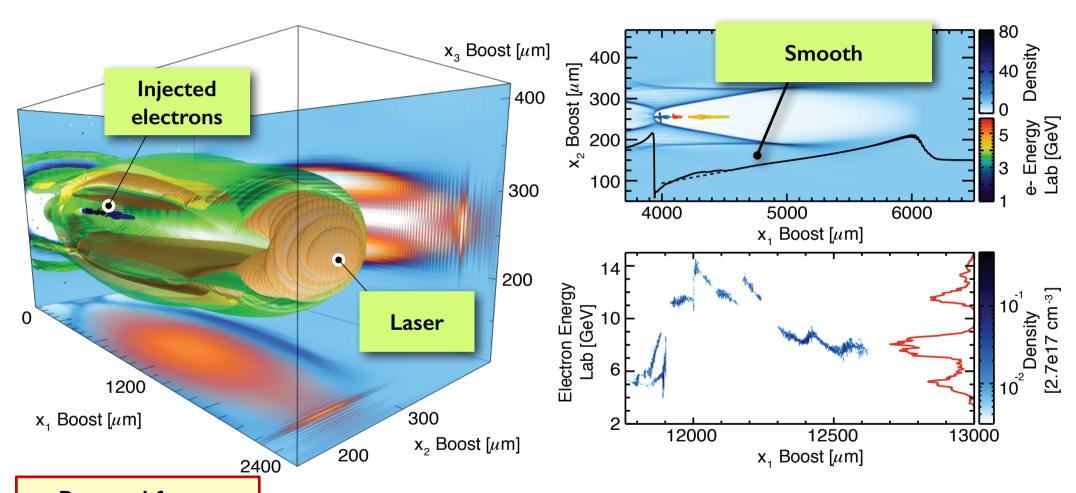
S.F. Martins et al, Nature Physics (April 2010)



Laboratory frame 3000×256×256 cells ~10⁹ particles 10⁵ timesteps

+10GeV self-injection in nonlinear regime

Controlled self-guided a₀=5.8



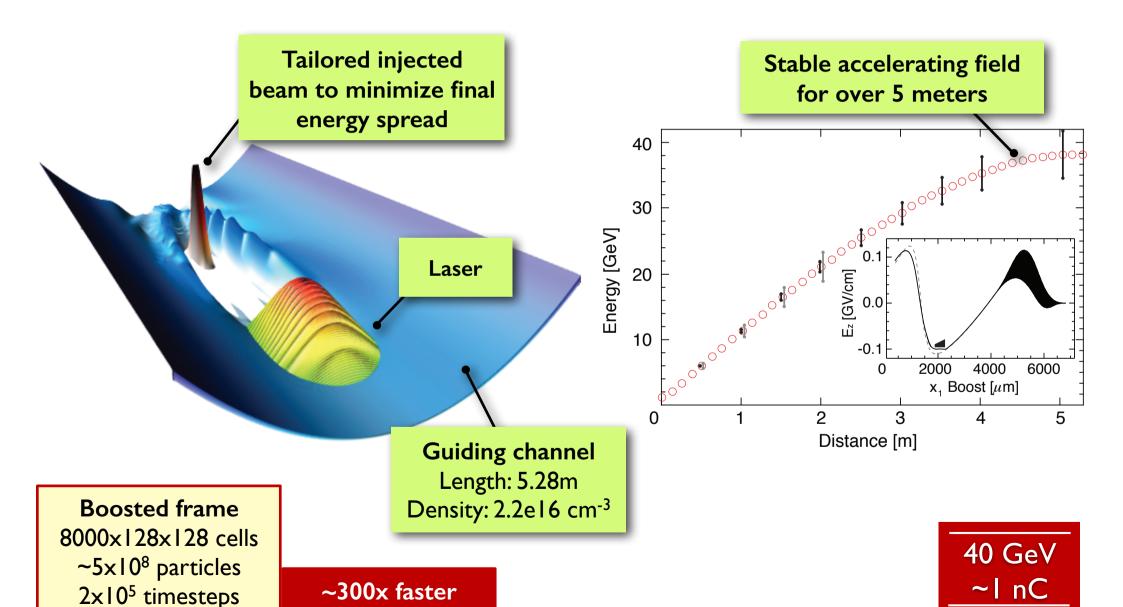
Boosted frame 7000x256x256 cells ~109 particles 3x104 timesteps

~300x faster than lab simulation

+40GeV with externally injected beams

than lab simulation

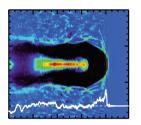
 $\Upsilon=10$



L. O. Silva | CERN, November 2014

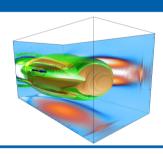
Energy frontier LWFA modeling

Extreme blowout :: a₀=53



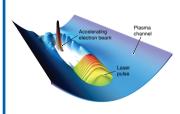
- Very nonlinear and complex physics
- ▶ Bubble radius varies with laser propagation
- ▶ Electron injection is continuous ⇒ very strong beam loading
- ▶ Wakefield is noisy and the bubble sheath is not well defined

Controlled self-guided :: a₀=5.8



- ▶ Lower laser intensity ⇒ cleaner wakefield and sheath
- ▶ Loaded wakefield is relatively flat
- ▶ Blowout radius remains nearly constant
- \blacktriangleright Three distinct bunches \Rightarrow room for tuning the laser parameters

Channel guided :: a₀=2



- ▶ Lowest laser intensity ⇒ highest beam energies (less charge)
- \blacktriangleright External guiding of the laser \Rightarrow stable wakefield
- ▶ Tailored electron beam that initially flattens the wake
- ▶ Controlled acceleration of an externally injected beam to very high energies

Contents

Motivation

Plasmas waves are multidimensional

Blowout regime

Phenomenological model

Theory for blowout

Field structure and beam loading

Challenges

Positron acceleration, long beams, polarized beams

Summary

Contents

Motivation

Plasmas waves are multidimensional

Blowout regime

Phenomenological model

Theory for blowout

Field structure and beam loading

Challenges

Positron acceleration, long beams, polarized beams

Summary

The plan for a theoretical model for the blowout regime

Determine the equation of motion for a fluid element in the quasi-static approximation and assuming no sheath crossing

Determine the structure of the fields (cylindrically symmetric) for a model of the current/charge system in the bubble/blowout

Determine the equation of motion for the inner surface of the blowout region $(r = r_b)$

Generic particle Hamiltonian in 3D

Hamiltonian for a charged particle:

$$H = \sqrt{m_e^2 c^4 + (\mathbf{P} + e\mathbf{A}/c)^2} - e\phi$$
 Canonical momentum Vector potential (P=p-eA/c) scalar potential

New co-moving frame variables:

$$\xi = v_{\phi}t - x$$

Distance to the head of a beam moving at v_{Φ}

$$au = x$$

Propagation distance

Hamiltonian in the co-moving frame

$$\mathcal{H} = H - v_{\phi} P_{\parallel}$$

Hamilton's equations in the co-moving frame variables

Chain rule for co-moving frame variables

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi} - \frac{\partial}{\partial \tau}$$

$$\frac{\partial}{\partial t} = v_{\phi} \frac{\partial}{\partial x}$$

$$\frac{\mathrm{d}\xi}{\mathrm{d}t} = (v_{\phi} - v_{\parallel})$$

Hamilton's equations in co-moving frame

$$\frac{\mathrm{d}P_{\parallel}}{\mathrm{d}t} = -\frac{\partial H}{\partial x} = \frac{\partial H}{\partial \xi} - \frac{\partial H}{\partial \tau}$$

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\partial H}{\partial t} = v_{\phi} \frac{\partial H}{\partial \xi}$$

Evolution of the Hamiltonian in the co-moving frame

General evolution of the co-moving frame Hamiltonean

$\Delta \mathcal{H} = \mathcal{H}(t_f) - \mathcal{H}(t_i)$ depends on initial and final positions only:

$$\Delta\mathcal{H} = \int \frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} \mathrm{d}t = \int \frac{\mathrm{d}\xi}{v_\phi - v_\parallel} \frac{\mathrm{d}\mathcal{H}}{\mathrm{d}\xi}$$
 Integration over the particle's trajectory -0 for a non-evolving wake/driver (quasi-static approximation)

Constants of motion under quasi-static approximation

General constant of motion under quasi-static approximation

$$\begin{split} \Delta H &= \Delta \gamma - v_\phi \Delta p_\parallel - \left(\Delta \phi - v_\phi \Delta A_\parallel \right) \\ &= \Delta \gamma - v_\phi \Delta p_\parallel - \Delta \psi & \xrightarrow{\qquad \qquad \text{pseudo potential} \\ &= \Psi - v_\phi \Delta p_\parallel - \Delta \psi \end{split}$$

Constant of motion for a particle initially at rest in region of vanishing fields

$$\gamma \left(1 - \beta_{\parallel} \right) = 1 + \psi$$

For
$$\beta_{||} \rightarrow I \Rightarrow \Psi \rightarrow -I$$

For
$$\beta_{\parallel} \rightarrow -1 \Rightarrow \Psi \rightarrow \infty$$

$$-1 < \psi < +\infty$$

Lorentz force equation for the radial motion of a plasma electron under the quasi-static approximation

Goal: write Lorentz force in the co-moving frame $(v_{\phi}=c=1)$

Use constant of motion to write total time derivative:

$$\frac{\mathrm{d}}{\mathrm{d}t} = (1 - v_{\parallel}) \frac{\mathrm{d}}{\mathrm{d}\xi} = \frac{1 + \psi}{\gamma} \frac{\mathrm{d}}{\mathrm{d}\xi}$$

velocity normalised to c

Use constant of motion to write total time derivative:

$$p_{\perp} = \gamma v_{\perp} = (1 + \psi) \frac{\mathrm{d}r_{\perp}}{\mathrm{d}\xi} \longrightarrow \frac{\mathrm{d}p_{\perp}}{\mathrm{d}t} = \frac{1 + \psi}{\gamma} \frac{\mathrm{d}}{\mathrm{d}\xi} \left[(1 + \psi) \frac{\mathrm{d}}{\mathrm{d}\xi} \right]$$

Recast y using constant of motion

$$\gamma = \frac{1 + p_{\perp}^2 + (1 + \psi)^2}{2(1 + \psi)}$$

Lorentz force equation for the radial motion of a plasma electron under the quasi-static approximation

$$\begin{split} \frac{2\left(1+\psi\right)^2}{1+\left(1+\psi\right)^2\left(\frac{\mathrm{d}r}{\mathrm{d}\xi}\right)^2+\left(1+\psi\right)^2} \frac{\mathrm{d}}{\mathrm{d}\xi} \left[\left(1+\psi\right) \frac{\mathrm{d}r}{\mathrm{d}\xi} \right] = F_\perp \\ F_\perp = -\left(E_r - v_\parallel B_\theta\right) \end{split} \qquad \begin{array}{l} \text{particles do not move} \\ \text{in } \xi \text{ under the q.s.a.} \end{split}$$

$$F_{\perp} = -\left(E_r - v_{\parallel} B_{\theta}\right)$$

in ξ under the q.s.a.

Potentials associated with electromagnetic fields under q.s.a.:

All other fields vanish for a cylindrically symmetric configuration

$$E_z = \frac{\partial \psi}{\partial \xi}$$

$$E_r = -\frac{\partial \phi}{\partial r} - \frac{\partial A_r}{\partial \xi}$$

$$B_{\theta} = -\frac{\partial A_z}{\partial r} - \frac{\partial A_r}{\partial \xi}$$

accelerating field

radial electric field

azimuthal magnetic field

The plan for a theoretical model for the blowout regime

Determine the equation of motion for a fluid element in the quasi-static approximation and assuming no sheath crossing

Determine the structure of the fields (cylindrically symmetric) for a model of the current/charge system in the bubble/blowout

Determine the equation of motion for the inner surface of the blowout region $(r = r_b)$

Electromagnetic field equations for cylindrically symmetric plasma waves

Equations for potentials under q.s.a.:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial A_r}{\partial r}\right) - \frac{A_r}{r^2} = n_e v_\perp$$

plasma density normalised to background density (n₀)

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial A_{\parallel}}{\partial r}\right) = n_b + n_e v_{\parallel}$$

particle beam driver density normalised to n₀

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = n_e + n_e v_{\parallel} - 1$$

immobile ion density normalised to n₀

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\phi}{\partial r}\right) = n_b + n_e - 1$$

$$\frac{1}{r}\frac{\partial}{\partial r}rA_r = -\frac{\partial\psi}{\partial\xi}$$

Gauge condition

General solutions to wakefield potentials

Right hand side of Lorentz force:

$$F_{\perp} = -\left(E_r - v_{\parallel} B_{\theta}\right) = \left(\frac{\partial \phi}{\partial r} - v_{\parallel} \frac{\partial A_{\parallel}}{\partial r}\right) + \left(1 - v_{\parallel}\right) \frac{\partial A_r}{\partial \xi} - \frac{1}{\gamma} \nabla_{\perp} \left|\frac{a_L}{2}\right|^2$$

General solutions for potentials:

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) = n_1 + n_2 - 1 \qquad \Longrightarrow \qquad \phi - \phi_0(\xi) - \frac{r^2}{r} + \lambda(\xi) \ln(r)$$

 $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\phi}{\partial r}\right) = n_b + n_e - 1 \qquad \longrightarrow \qquad \phi = \phi_0\left(\xi\right) - \frac{r^2}{4} + \lambda\left(\xi\right)\ln\left(r\right)$ $\xi \text{ dependence: blowout shape}$ $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial A_{\parallel}}{\partial r}\right) = n_b + n_e v_{\parallel} \qquad \longrightarrow \qquad A_{\parallel} = A_{\parallel 0}\left(\xi\right) + \lambda\left(\xi\right)\ln r$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial A_{\parallel}}{\partial r}\right) = n_b + n_e v_{\parallel}$$
 \longrightarrow $A_{\parallel} = A_{\parallel 0}\left(\xi\right) + \lambda\left(\xi\right) \ln r$

ion contribution (no electrons in blowout)

beam shape

$$\lambda\left(\xi\right) = \int_0^\infty r n_b \mathrm{d}r$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = n_e + n_e v_{\parallel} - 1 \quad \longrightarrow \quad A_r = A_{r0}\left(\xi\right)r \quad \stackrel{\text{From gauge condition:}}{\longrightarrow} \quad A_{r0}\left(\xi\right) = -\frac{1}{2}\frac{\mathrm{d}\psi_0}{\mathrm{d}\xi}$$

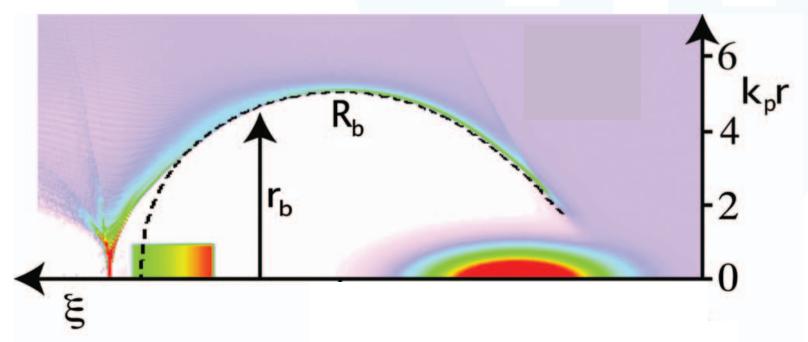
$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = n_e + n_e v_{\parallel} - 1 \quad \longrightarrow \quad \psi = \psi_0\left(\xi\right) - \frac{r^2}{4}$$

Find equation of motion for the electron layer defining the blowout region

Right hand side of Lorentz force re-written

$$F_{\perp} = -\frac{r}{2} + (1 - v_{\parallel}) \frac{\lambda(\xi)}{r} + (1 - v_{\parallel}) \frac{dA_{r0}}{d\xi} r - \frac{1}{\gamma} \nabla_{\perp} |\frac{a_L}{2}|^2$$

Goal: write the Lorentz force for the motion of the thin electron sheath that defines the blowout:



Equation of motion for the blowout radius

$$F_{\perp} = -\frac{r}{2} + \left(1 - v_{\parallel}\right) \frac{\lambda\left(\xi\right)}{r} + \left(1 - v_{\parallel}\right) \frac{\mathrm{d}A_{r0}}{\mathrm{d}\xi} r - \frac{1}{\gamma} \nabla_{\perp} |\frac{a_L}{2}|^2$$
 Recall:
$$(1 - v_{\parallel}) = \frac{1 + \psi}{\gamma} \qquad \qquad \gamma = \frac{1 + p_{\perp}^2 + (1 + \psi)^2}{2\left(1 + \psi\right)}$$

The pseudo potential Ψ (see how important it is!) fully determines the motion of the blowout region

$$\frac{\mathrm{d}}{\mathrm{d}\xi} \left[(1+\psi) \frac{\mathrm{d}r_b}{\mathrm{d}\xi} \right] = r_b \left\{ -\frac{1}{4} \left[1 + \frac{1}{(1+\psi)^2} - \left(\frac{\mathrm{d}r_b}{\mathrm{d}\xi} \right)^2 \right] \right\} - \frac{1}{2} \frac{\mathrm{d}^2\psi_0}{\mathrm{d}\xi^2} + \frac{\lambda(\xi)}{r_b^2} - \frac{1}{\left(\psi_0 - \frac{r_b^2}{4}\right)} \nabla_{\perp} |\frac{a_L}{2}|^2 \right]$$

General expressions to calculate the pseudo-potential Ψ

Recall differential equation for Ψ

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = n_e + n_e v_{\parallel} - 1$$

Use Green's function method to find an integral solution

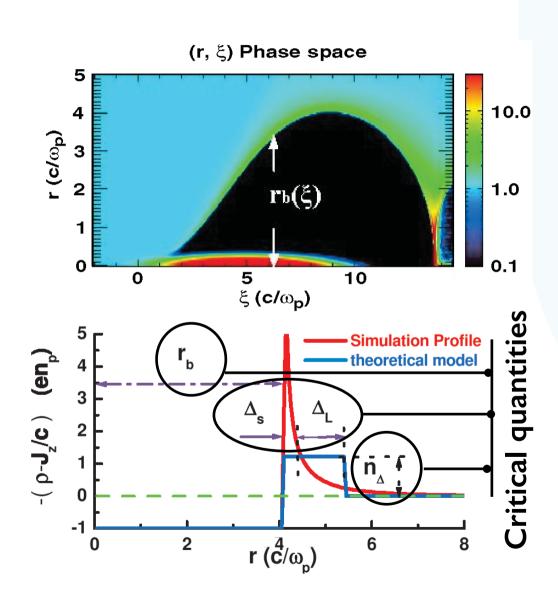
$$\psi(r,\xi) = \ln r \int_{0}^{r} r' \left[n_{e}(r',\xi) \left(1 - v_{\parallel}(r',\xi) \right) - 1 \right] dr'$$
$$+ \int_{r}^{\infty} r' \ln r' \left[n_{e}(r',\xi) \left(1 - v_{\parallel}(r',\xi) \right) - 1 \right] dr'$$

Boundary condition: Ψ vanishes away from the blowout region

$$\int_{0}^{r} r' \left[n_{e} (r', \xi) \left(1 - v_{\parallel} (r', \xi) \right) - 1 \right] dr' = 0$$

Need model for n_e(I-v_{||})

Source term model for Ψ in the blowout regime



Boundary condition:

$$\int_{0}^{r} r' \left[n_{e} \left(r', \xi \right) \left(1 - v_{\parallel} \left(r', \xi \right) \right) - 1 \right] dr' = 0$$

leads to:

height of the blowout sheath

$$n_{\Delta}\left(\xi\right) = \frac{r_b^2}{\left(r_b + \Delta\right)^2 - r_b^2}$$

width of the blowout sheath

$$\Delta = \Delta_s + \Delta_L$$

Non-relativistic blowout

$$\alpha(\xi) = \frac{\Delta}{r_b} \gg 1$$

Relativistic blowout

$$\alpha(\xi) = \frac{\Delta}{r_b} \ll 1$$

Pseudo-potential in the blowout regime: from non-relativistic to ultra-relativistic plasma responses

General expression for **Y**

$$\psi\left[r_b\left(\xi\right)\right] = \frac{r_b^2}{4} \left(\frac{\left(1+\alpha\right)^2 \ln\left(1+\alpha\right)^2}{\left(1+\alpha\right)^2} - 1\right)$$

$$\equiv \beta$$

Non-relativistic blowout regime

$$\psi\left(r,\xi\right) \simeq \frac{r_b^2}{4} \ln \frac{1}{r_b} - \frac{r^2}{4}$$

Ultra-relativistic blowout regime

$$\psi(r,\xi) \simeq (1+\alpha)\frac{r_b^2}{4} - \frac{r^2}{4}$$

The plan for a theoretical model for the blowout regime

Determine the equation of motion for a fluid element in the quasi-static approximation and assuming no sheath crossing

Determine the structure of the fields (cylindrically symmetric) for a model of the current/charge system in the bubble/blowout

Determine the equation of motion for the inner surface of the blowout region $(r = r_b)$

Full equation of motion for the blowout radius

Equation describing the motion of the blowout region

$$A(r_b)\frac{d^2r_b}{d\xi^2} + B(r_b)r_b \left(\frac{dr_b}{d\xi}\right)^2 + C(r_b)r_b = \frac{\lambda(\xi)}{r_b} - \frac{1}{4}\frac{d|a|^2}{dr} \frac{1}{(1+\beta r_b^2/4)^2}$$

$$A(r_b) = 1 + \left(\frac{1}{4} + \frac{\beta}{2} + \frac{1}{8}r_b\frac{d\beta}{dr_b}\right)r_b^2$$

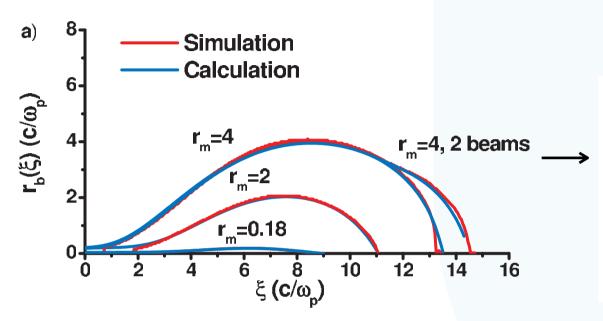
$$B(r_b) = \frac{1}{2} + \frac{3}{4}\beta + \frac{3}{4}r_b \frac{d\beta}{dr_b} + \frac{1}{8}r_b^2 \frac{d^2\beta}{dr_b^2}$$

$$C(r_b) = \frac{1}{4} \left(1 + \frac{1 + |a|^2/2}{1 + \beta r_b^2/4} \right)$$

Assume that Δ does not depend on ξ .

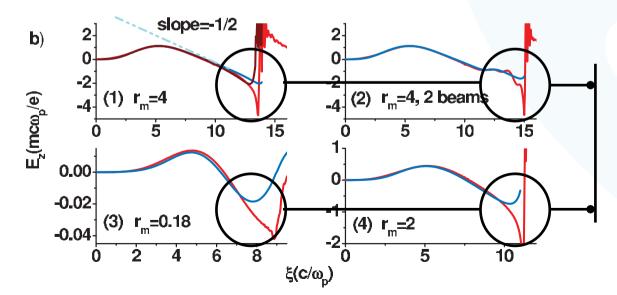
Does not hold at the back of the bubble where $\Delta \sim r_b$

Theory compares very well with computer simulations



Very good agreement for a wide range of conditions

From weakly-relativistic to strongly relativistic blowouts



Perfect match except at the back of the bubble where $\Delta \sim r_b$

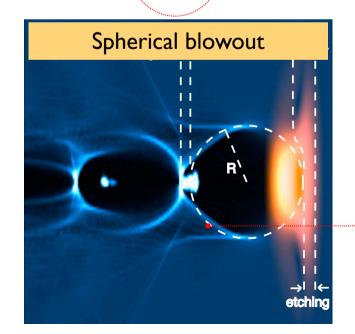
The blowout is close to a sphere regardless of the nature of the driver (laser or particle bunch)

Ultra-relativistic blowout:

$$r_b \frac{\mathrm{d}^2 r_b}{\mathrm{d}\xi^2} + 2\left(\frac{\mathrm{d}r_b}{\mathrm{d}\xi}\right)^2 + 1 = \frac{4\lambda(\xi)}{r_b} - \frac{\mathrm{d}|a|^2}{\mathrm{d}r} \frac{1}{\left(1 + \beta r_b^2/4\right)^2}$$
=0 right after the driver

Equation for surface of a sphere:

$$r_b \frac{\mathrm{d}^2 r_b}{\mathrm{d}\xi^2} + \left(\left(\frac{\mathrm{d}r_b}{\mathrm{d}\xi}\right)^2 + 1 = 0$$



The factor '2' leads to stronger bending of r_b at the back of the bubble

W. Lu et al, PRL 96 165002 (2006)

Accelerating field in the blowout regime

Recall field expressions

$$E_z = \frac{\partial \psi}{\partial \xi}$$

Ultra-relativitic blowout ($\alpha \ll I$):

$$\psi(r,\xi) \simeq (1+\alpha) \frac{r_b^2}{4} - \frac{r^2}{4}$$

Ultra-relativitic blowout ($\alpha \ll I$):

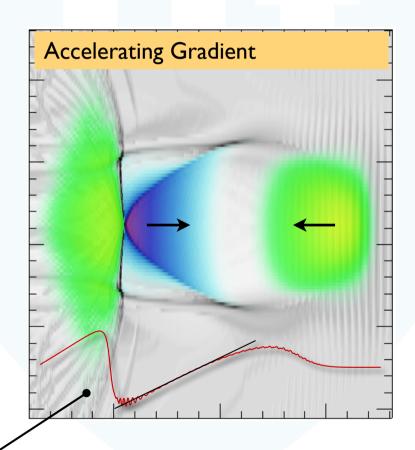
$$E_z \simeq \frac{1}{2} \frac{\mathrm{d}r_b}{\mathrm{d}\xi}$$

Integration of the equation for $r_b(\xi)$ yields at the center of the bubble:

$$E_z \simeq \frac{\xi}{2}$$

$$E_z^{\max} \simeq \frac{R_b}{2}$$

W. Lu et al, PRL 96 165002 (2006)



Focusing force in the blowout regime

Recall field expressions

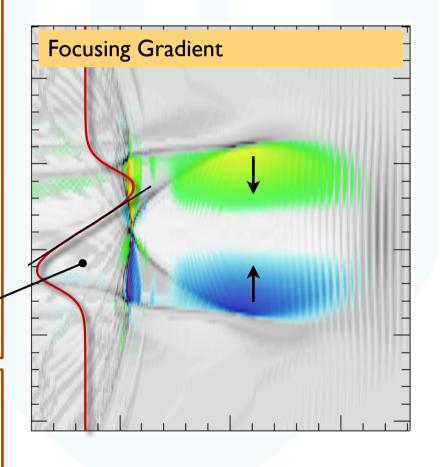
Focusing for relativistic particle

$$E_r - B_\theta = -\frac{\partial \left(\phi - A_{\parallel}\right)}{\partial r} = -\frac{\partial \psi}{\partial r}$$

$$\mathbf{v} = \mathbf{c} = \mathbf{I}$$

Linear focusing force:

$$E_r - B_\theta = \frac{r}{2}$$



Contents

Motivation

Plasmas waves are multidimensional

Blowout regime

Phenomenological model

Theory for blowout

Field structure and beam loading

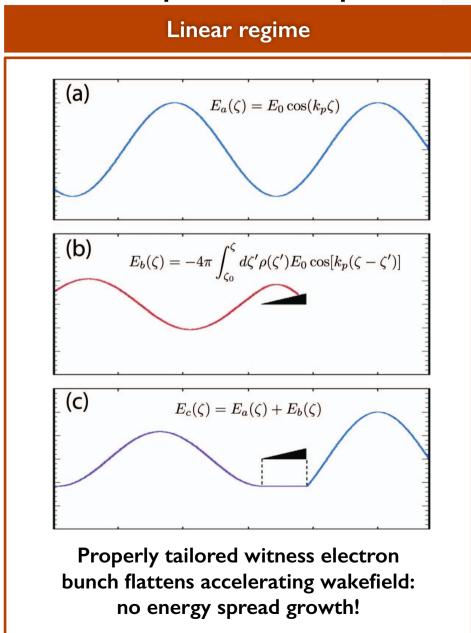
Challenges

Positron acceleration, long beams, polarized beams

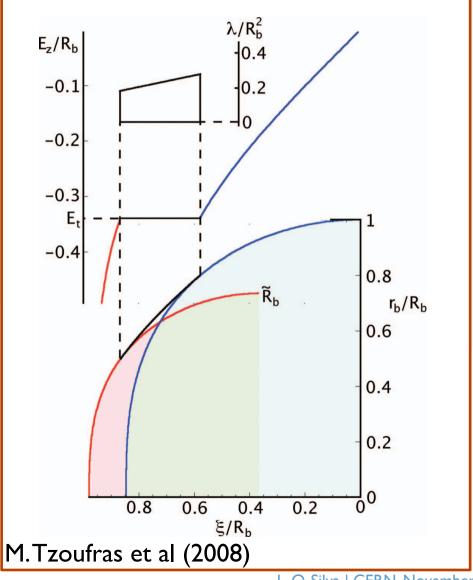
Summary

Beam loading: achieving high quality bunches with low energy spreads

Goal: find the optimal beam profile that flattens accelerating fields



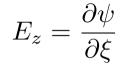
Blowout regime



Optimal shape for witness electron bunch

Goal: find an exact solution for E_z at any position after the driver

Beam loading in the blowout



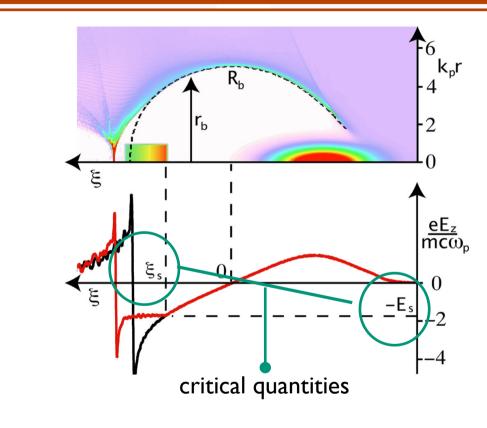
$$r_b \frac{d^2 r_b}{d\xi^2} + 2\left(\frac{dr_b}{d\xi}\right)^2 + 1 = \frac{4\lambda(\xi)}{r_b^2}$$

$$E_z = \frac{1}{2} r_b \frac{dr_b}{d\xi} = -\frac{r_b}{2\sqrt{2}} \sqrt{\frac{16 \int l(\xi) \xi d\xi + C}{r_b^4} - 1}$$

l is the current density of the witness beam

M.Tzoufras et al, PRL 101 145002 (2008); M.Tzoufras et al, PoP 16 056705 (2009);

Trapezoidal bunches lead to ideal beam-loading



$$l(\xi_s) = \sqrt{E_s^4 + \frac{R_b^4}{16}}$$

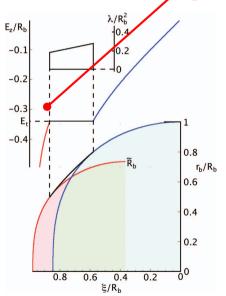
$$l(\xi) = \sqrt{E_s^4 + \frac{R_b^4}{16}} - E_s\left(\xi - \xi_s\right)$$
 trapezoidal bunch

Total charge and efficiency in the blowout regime

Maximum charge in the blowout

Witness goes all the way until the bubble closes $(r_b=0)$

$$Q_{tr} = \frac{\pi}{16} \underbrace{\frac{R_b^4}{E_t}}_{}^{4}$$



Smaller E_t: increases but final energy gain lowers

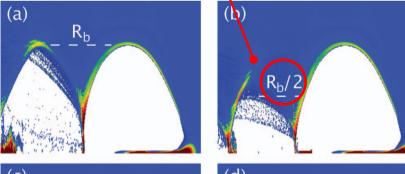
M.Tzoufras et al, PRL **101** 145002 (2008); M.Tzoufras et al, PoP **16** 056705 (2009);

Efficiency

Efficiency: ratio between absorbed energy and total wakefield energy

$$\eta = 1 - \left(\frac{\tilde{R}_b}{R_b}\right)^4 = \frac{Q_F}{Q_{tr}}$$

actual beam charge





Engineering formulas for the maximum injected charge

Scaling for maximum number of particles

Energy in longitudinal $(\epsilon_{||})$ and focusing (ϵ_{\perp}) wakefields:

$$\epsilon_{\parallel} \simeq \epsilon_{\perp} \simeq \frac{1}{120} \left(k_p R_b^5 \right) \left(\frac{m_e^2 c^5}{e^2 \omega_p} \right)$$

Energy absorbed by N particles (average accelerating field $E_{z} \sim R_b/2$:

$$\epsilon_{e^-} \simeq \frac{m_e c^2 N R_b}{4}$$

Estimate for total particle number (r_e is the classical electron radius):

$$N \simeq \frac{1}{30} \left(k_p R_b \right)^3 \frac{1}{k_p r_e}$$

Formulas

Number of particles as a function of laser parameters:

$$N \simeq 2.5 \times 10^9 \frac{\lambda_0 [\mu \text{m}]}{0.8} \sqrt{\frac{P[\text{TW}]}{100}}$$

Efficiency is $N \times \Delta E$ / Laser energy:

$$\Gamma \simeq 1/a_0$$

Higher efficiencies using more moderate laser intensities but still in the blowout.

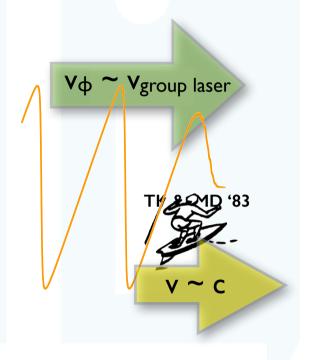
Limits to energy gain in LWFA

Dephasing, Diffraction, Depletion

$$\Delta E = eE_z L_{\rm acc}$$

Dephasing

electrons overtake accelerating structure in $L_{dph} \sim 10$ cm/n₀ [10¹⁶ cm⁻³]



Diffraction

laser pulse diffracts in scale of Z_r (Rayleigh length) ~ few mm

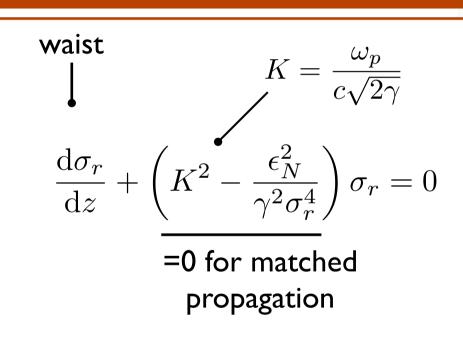
Depletion

laser pulse looses its energy to the plasma in L_{depl} for small a_0 , $L_{depl} >> L_{dph}$; for $a_0 > 1$, $L_{depl} \sim L_{dph}$

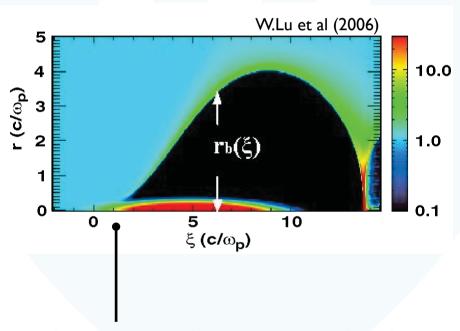
Stable propagation in a plasma wakefield accelerator

Stable wakefields are critical to provide high quality bunches with high energies

Beam waist evolution in blowout



linear focusing forces lead to extremely stable beam propagation



beam head can erode as it ionises the plasma and/or is not travelling in the blowout

Stable propagation in a laser wakefield accelerator

Laser pulse body guiding

Blowout radius:

$$F_p \sim \frac{a_0}{w_0} \sim F_{ion} \sim \frac{r_b}{2}$$

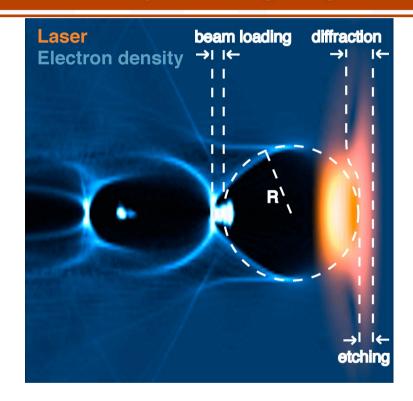
spot-size (normalised to 1/k_p)

Guiding condition:

$$k_p w_0 \sim k_p R_b \sim 2\sqrt{a_0}$$

spot-size matched to the blowout radius

Laser pulse front guiding



etching rate higher than diffraction rate

$$a_0 \sim (n_c/n_p)^{1/5}$$

Acceleration length

Pump depletion:

$$\frac{v_{\rm etch}}{c} L_{\rm etch} \simeq c \tau_{\rm FWHM}$$

$$\frac{v_{\text{etch}}}{c} = \frac{\omega_p^2}{\omega_0^2}$$

$$L_{\rm etch} \sim c \tau_{\rm FWHM} \frac{\omega_0^2}{\omega_p^2}$$

Dephasing:

$$\frac{(c - v_{\phi})}{c} L_d = R_b$$

$$v_{\phi} = v_g - v_{\text{etch}} = 1 - \frac{3}{2} \frac{\omega_p^2}{\omega_0^2}$$

$$L_d = \frac{2}{3} \frac{\omega_0^2}{\omega_p^2} R_b$$

Minimum pulse duration

De-phasing larger or equal to pump depletion:

$$\tau_{\text{FWHM}} \ge \frac{2R_b}{3}$$

Optimal condition: no energy left in the driver after dephasing:

$$\tau_{\text{FWHM}} = \frac{2R_b}{3}$$

Scalings for the maximum energy in a LWFA

Average accelerating field

$E_z \simeq \frac{\xi}{2}$ $E_z^{\max} \simeq \frac{R_b}{2}$ $R_b \simeq 2\sqrt{a_0}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \langle E_z \rangle \sim \frac{\sqrt{a_0}}{2}$

Maximum energy

$$\Delta E = m_e c^2 \langle E_z \rangle L_{\text{accel}}$$

$$\downarrow$$

$$\Delta E = \frac{2}{3} m_e c^2 \left(\frac{\omega_0}{\omega_p}\right)^2 a_0$$

Blowout regime vs linear regime

Maximum charge

The blowout regime maximizes the charge that can be accelerated. Thus the number of energetic particles can be much larger in the blowout regime.

Maximum energy

The maximum energy is larger in the linear regime than in the non-linear regime as it implies the use of lower densities where electrons take longer to dephase and the laser takes longer to deplete.

Beam quality

Focusing foces are linear in the blowout regime. Thus, particle bunches can accelerate with little emittance growth. This is generally not possible in the linear regime as the focusing force is non-linear.

Stability

In the laser case, external guiding structures are required to focus the laser pulse in the linear regime. In the blowout regime, the laser can be self-guided by the plasma wave it creates. This leads to very stable accelerating and focusing fields.

Positron acceleration for a linear collider

Recent work shows that positrons can accelerate in non-linear regimes. Until recently this was thought to be impossible.

Contents

Motivation

Plasmas waves are multidimensional

Blowout regime

Phenomenological model

Theory for blowout

Field structure and beam loading

Challenges

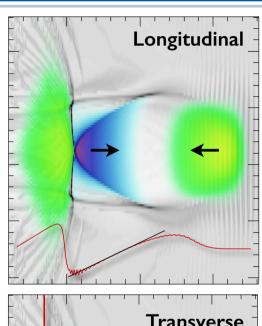
Positron acceleration, long beams, polarized beams

Summary

Acceleration + focusing for positrons is limited

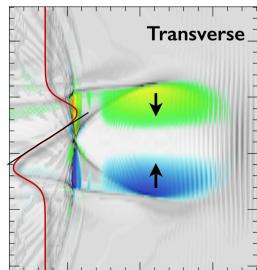
Dynamics of the laser and e- define key parameters

Electric fields created by laser pulse



Linear accelerating gradient

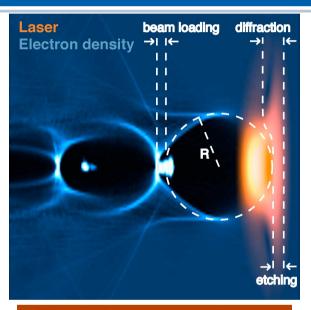
$$E_{z \max} \approx \sqrt{a_0}$$



Linear focusing force

$$k_p R \simeq 2\sqrt{a_0}$$

Matched laser parameters



Match laser spot size to bubble radius

$$k_p R \simeq k_p W_0 = 2\sqrt{a_0}$$

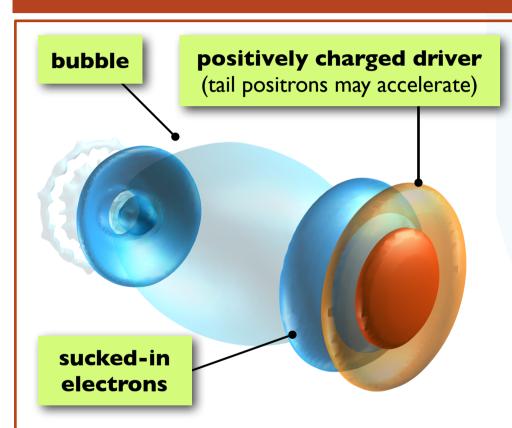
For maximum energy gain: trapped e- dephasing before pump depletion

$$L_{\rm etch} \simeq c\omega_0^2/\omega_p^2 \tau_{\rm FWHM}$$
 $L_{\rm etch} > L_d$ $L_d \simeq \frac{2}{3} \frac{\omega_0^2}{\omega_p^2} R$ $c\tau_{\rm FWHM} > 2R/3$

Positrons can not ride large amplitude plasma waves because they are quickly defocused away from the plasma wave.

Suck-in regime for positron beam and electron acceleration

Model for suck-in regime

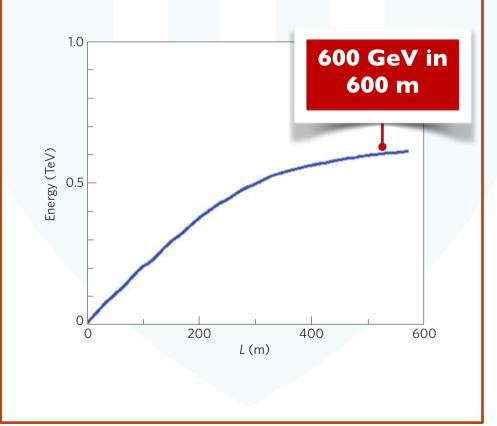


Onset of Suck-in regime - scaling determined from equation of motion for plasma electrons

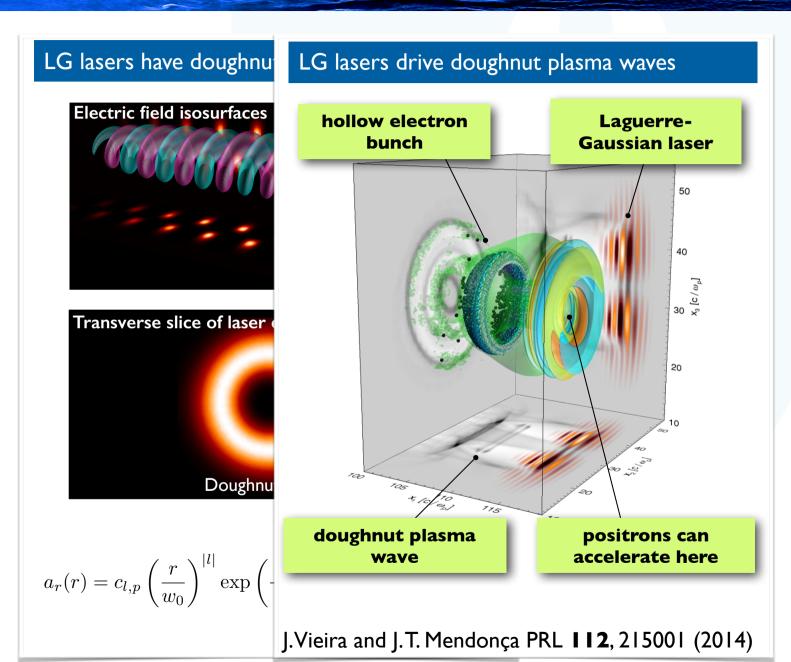
$$au_{
m col} \simeq \sqrt{\pi} \left(\frac{r_0}{\sigma_r} \sqrt{\frac{m_b}{4\pi n_b e^2}} \right) \ll \lambda_p/c$$

Proton driven plasma wakefield accelerator

- p⁺ plasma wake similar to e⁺
- beam loading is also identical
- requires p⁺ bunches shorter than c/ω_p

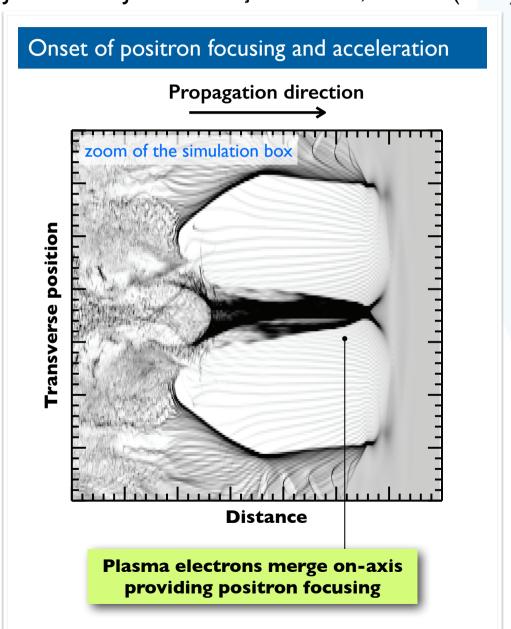


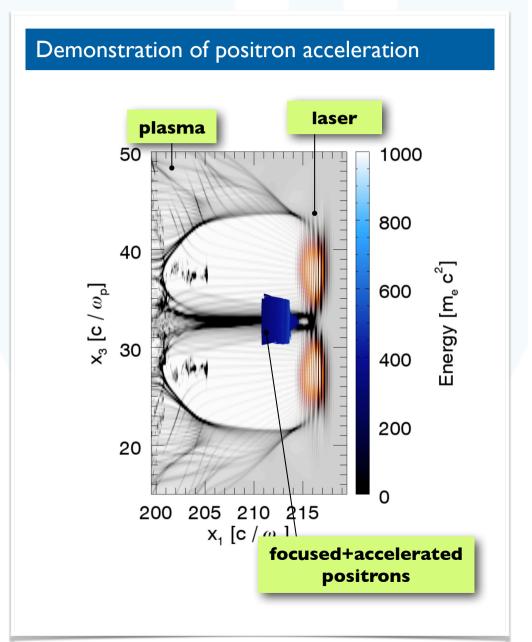
Positron acceleration using lasers with Orbital Angular Momentum



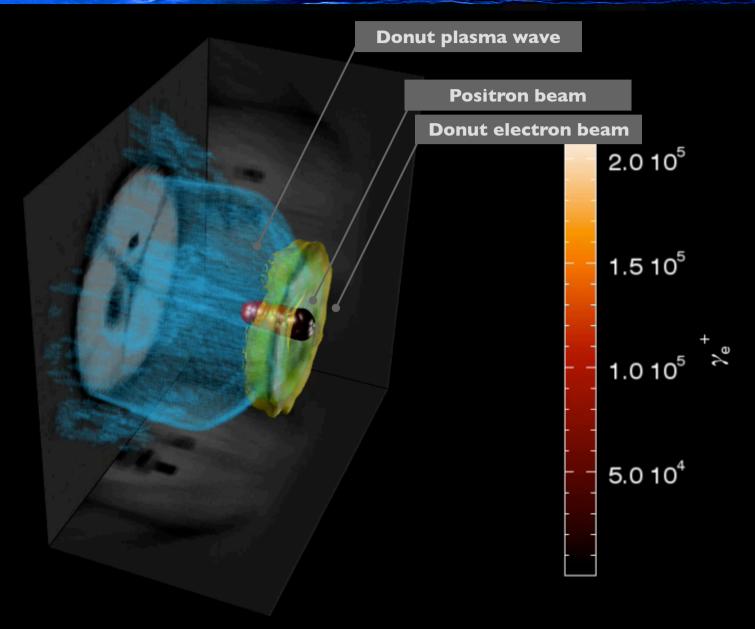
Three dimensional simulations confirm positron acceleration mechanism in strongly non-linear regimes

J. Vieira and J. T. Mendonça PRL 112, 215001 (2014)

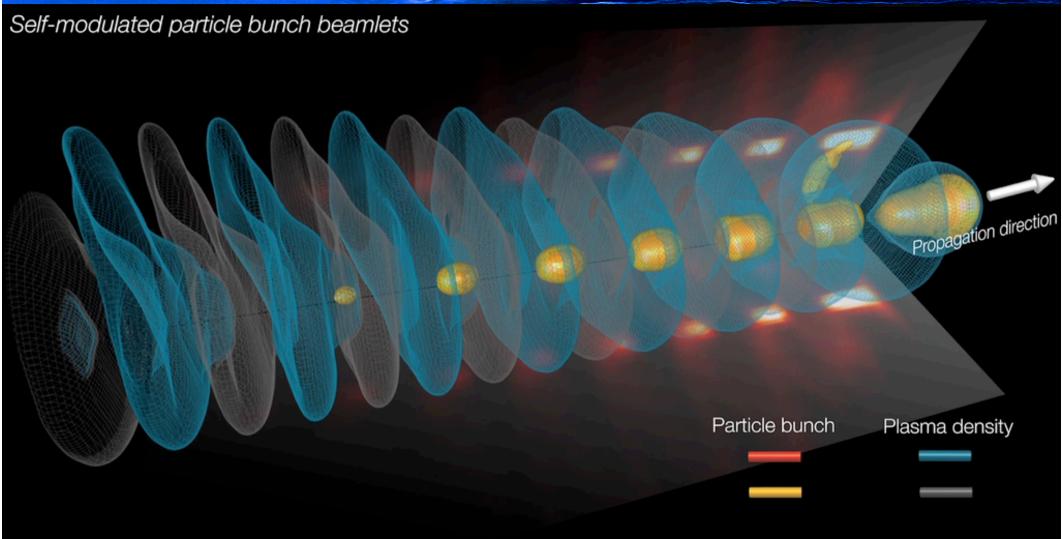


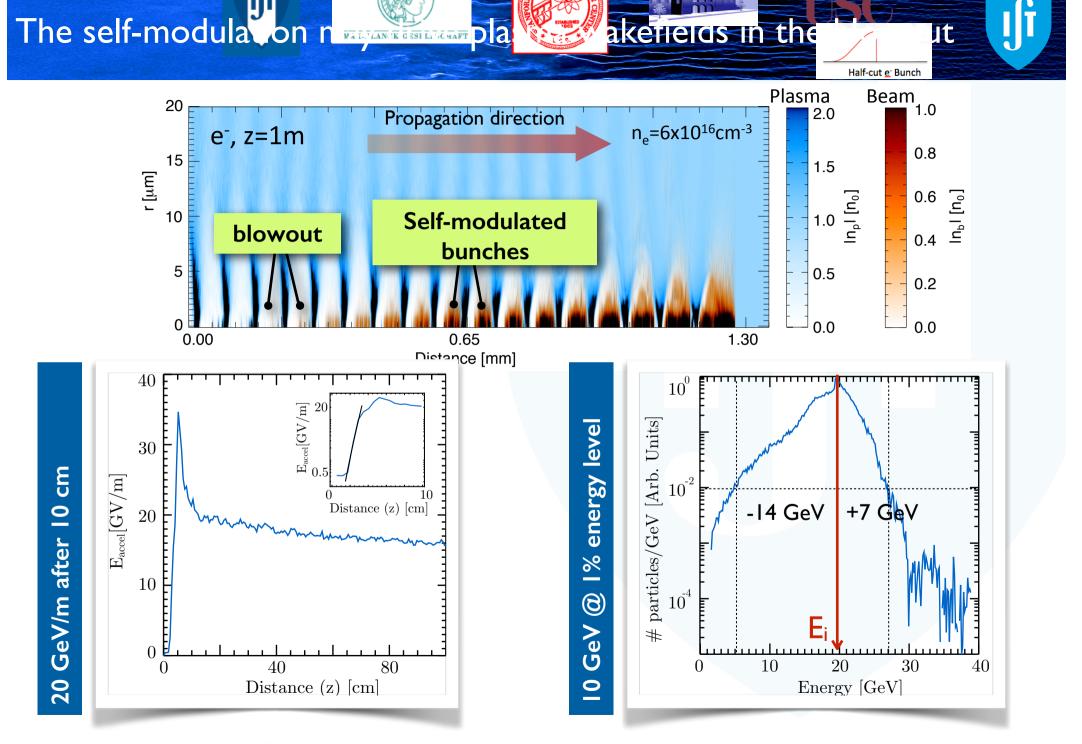


Positron acceleration using SLAC type ring electron bunches

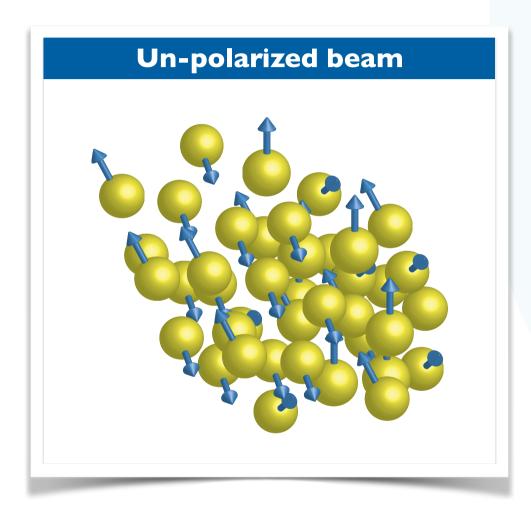


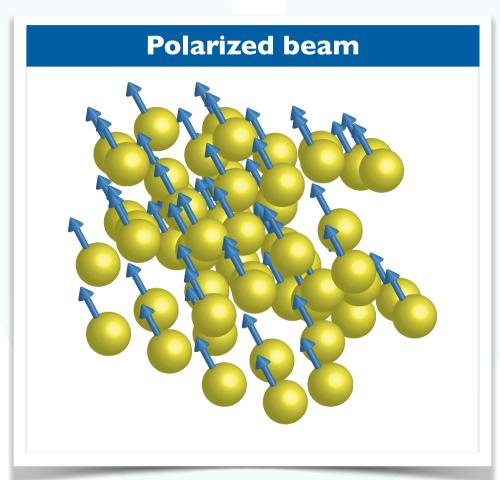
What about long beams?





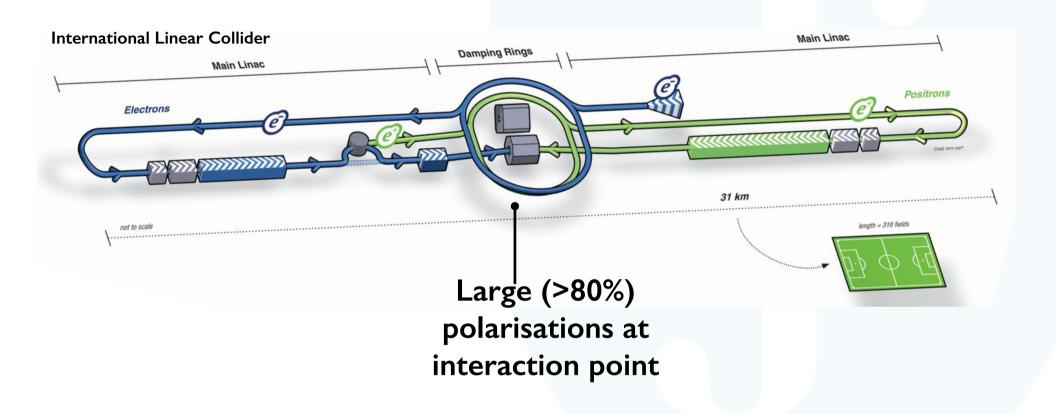
J. Vieira et al PoP 19 063105 (2012).





Beam polarization is the average spin vector including the contributions from all beam particles

T-BMT equations define the spin precession dynamics



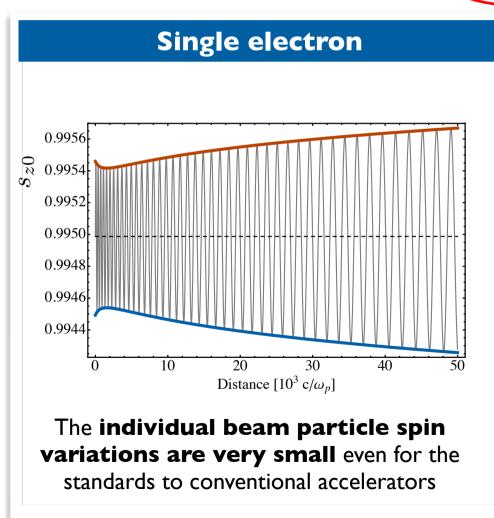
Relativistic spin-precession equation

$$\frac{d\mathbf{s}}{dt} = -\left[\left(a + \frac{1}{\gamma}\right)(\mathbf{B} - \mathbf{v} \times \mathbf{E}) - \mathbf{v}\frac{a\gamma}{\gamma + 1}\mathbf{v} \cdot \mathbf{B}\right] \times \mathbf{s} = \mathbf{\Omega} \times \mathbf{s}.$$

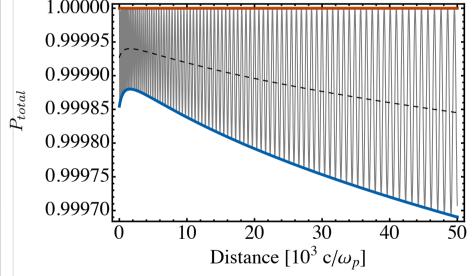
Can plasmas provide polarised beam sources?

Spin precession is very small in plasma waves in the blowout regime

$$s_z(t) = \sqrt{1 - s_{\phi 0}^2} \sin \left[\left(- \int_0^t \left(a + \frac{1}{\gamma} \right) F_r dt \right) + \arctan \left(\frac{s_{z0}}{s_{\phi 0}} \right) \right]$$



Electron beam - Polarization 1.00000



The total beam polarisation variations are also very small and are on the order 0.01 % for very high accelerations

Contents

Motivation

Plasmas waves are multidimensional

Blowout regime

Phenomenological model

Theory for blowout

Field structure and beam loading

Challenges

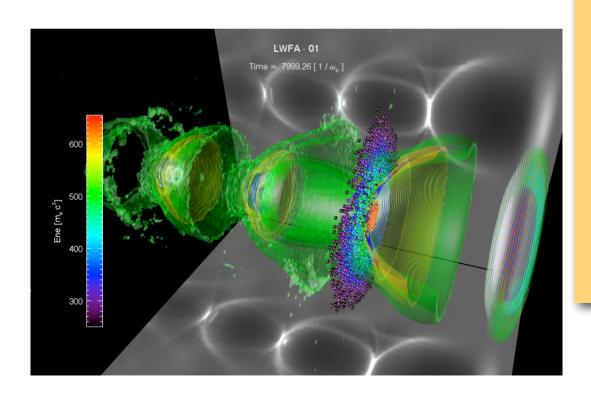
Positron acceleration, long beams, polarized beams

Summary

Summary and take home messages

Plasma waves are intrinsically nonlinear (even when driven in the linear regime!)

Blowout regime suitable for electron acceleration



Challenges

Blowout/suck-in theory for more complex drivers (e.g. positrons/protons, ring drivers)

Positron acceleration in the blowout regime

Reduced models to capture self-injection