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Non-linear quasistatic 1D wakefield equation.  
Can be simplified by noting γp ➝ 1 in most cases.

Taking �p � 1, �p = (1� 1
�p

2 )
1/2 ⇡ (1� 1

2
1

�p
2 )

and expanding the square bracket gives:

1

kp
2

@2�

@⇣2
=

1

2


(1 + a2)

(1 + �)2
� 1

�

beam laser



Wakefield generation
1

kp
2

@2�

@⇣2
=

1

2


(1 + a2)

(1 + �)2
� 1

�

Take � ⌧ 1,
✓

@2

@⇣2
+ kp

2

◆
� =

1

2
kp

2a2

A simple force oscillator. Take for example a laser intensity 
profile that goes as:

a2 = a02 sin
2(⇡⇣/L)



Wakefield generation
Solving (in 1D):

where � = v/c, n1 = �n/n0, and E = Ewf/E0

(or alternatively me, c, ✏0, c all normalised to 1).
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Wakefield generation
Solving (in 1D):

So ne = n0(1 + �)

Have coupled equations in E and β to solve

Assuming 𝛽 ≪ 1, n1 ≪ n0
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Wakefield generation
Now including plasma wave non-linearity

Rearranging Continuity equation:

ne = n0 + n1 =

n0

1� �

This implies that nmin =

1
2 in 1D, though complete cavita-

tion is possible in 3D.
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Wakefield generation
Include relativity (and convection):
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Wakefield Generation Summary
Wake amplitude maximised for Lfwhm ~ λp/2 

Continuity forces steepening of plasma waves, and 
sawtoothing of E-field 

Non-linearities cause lengthening of plasma wave 
amplitude (and shortening of growing phase) 

Relativity cause flattening of wakes but broadening of 
peaks. 

      Emax/E0 ~ a02/(1+a02)1/2



Focussing conditions?

Plasma wave amplitude grows with increasing 
intensity, so is it best to aim for as high an 

intensity as possible?
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Starting from the wave equation:

For a solution of the form (fast oscillations only in z):

Leads to paraxial wave equation:
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Gaussian envelope solution
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Gaussian Focussing
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At z = zR, I = ½ I0, so zR is effective interaction length
For w0 ~ 30 µm, λ0~1 µm, zR ~ 3 mm 

But for ne ~ 1018 cm-3, (λp ~ 30 µm), Ldeph ~ 3 cm
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Plasma Propagation
r2E� ⌘2

c2
@2E

@t2
= 0

d2R

dz2
=

1

zR2R3

✓
1� P

Pc

◆
.

� =
p
1 + a02where we used

For a gaussian pulse of beam width R

defocusing focusing

density
relativity

Pcr ' 17 (ne/ncr)GW

P. Sprangle et al,” PRL, 59, 202 (1987)
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Plasma Propagation
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Thomas et al., PRL 98, 095004 (2007)



Plasma Propagation

Thomas et al., PRL 98, 095004 (2007)

Focal spots after 3 vacuum Rayleigh lengths



Plasma Propagation
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Focussing in a guiding channel can be modelled with:

where the critical channel depth is defined by:

here re is the classical radius of an electron re = e2/me2c2

defocusing focusing
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Pulse compression

Schreiber et al., PRL 105, 235003 (2010)
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Photon Acceleration
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Photon Acceleration

Murphy et al., POP 13, 033108 (2006)



Etching and Power

red  
shifting →

compression
etching

Streeter et al., In preparation (2014)



Focussing Summary
Laser pulses in vacuum only have high intensity over a 
Rayleigh range 

Interaction can be extended for laser power P > Pcr or by 
using a guiding profile δn > δnc 

Laser pulses lose energy to wakefield, in extreme case being 
etched from the front. 

Compression can help maintain laser power even as laser 
pulse depletes.



Formula Summary
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