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Modern accelerators require high quality beams:   
==>     High Luminosity & High Brightness  

– Small spot size => low emittance

– Low energy spread


– N of particles per pulse => 109


– High rep. rate fr=>  bunch trains


– Little spread in transverse 
momentum and angle => low emittance

– Low energy spread


– Short pulse (ps to fs)

– High peak current




•  The rms emittance concept

•  Energy spread contribution

•  rms enevelope equation

•  Beam emittance escillations and decoherence

•  Beam/plasma matching conditions

•  Adiabatic matching

•  Living with energy spread


OUTLINE




X 

X’ 

Trace space of an ideal laminar beam 
x

!x = dx
dz

=
px
pz

"

#
$

%
$

       px << pz



X 

X’ 

Trace space laminar beam 
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Trace space of non laminar beam 



Twiss parameters:
 12 =−αβγ

Ellipse equation:

Geometric emittance (Liouville):
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εg
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γx2 + 2αx $ x + β $ x 2 = εg

Ellipse area:
 A = πεg

x
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!β = −2α





Phase space evolution	



With space charge => no cross over





No space charge => cross over




rms emittance 
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rms beam envelope: 
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γx2 + 2αx $ x + β $ x 2 = εrms

€ 
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Define rms emittance: 
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It holds also the relation: 

Substituting             we get 
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α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

!σ x = x '2 = γεrms

σ xx ' = x !x = −αεrms
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2 = x2 # x 2 − x # x 2
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2 =C2 x2 x2n − xn+1

2( )
When n = 1   ==>   εrms = 0	



When n = 1    ==>   εrms = 0	
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What does rms emittance tell us about phase space distributions 
under linear or non-linear forces acting on the beam? 

Assuming a generic            correlation of the type: 
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x, " x 



Constant under linear transformation only


And without acceleration:
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εn,rms = σ x
2σ px

2 −σ xpx
2 =

1
moc

x2 px
2 − xpx

2( ) ≈ βγ εrms

Normalized rms emittance:


px = pz !x =mocβγ !xCanonical transverse momentum: 

Liouville theorem: the density of particles n, or the volume V 
occupied by a given number of particles in phase space 
(x,px,y,py,z,pz) remains invariant. 

It hold also in the projected phase spaces (x,px),(y,py)(,z,pz) 
provided that there are no couplings 
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WARNING

Energy spread contribution to rms emittance


If the correlation between the energy and transverse position is negligible: 

Using the definition of relative energy spread: 

Substituting in the previous equations and assuming relativistic electrons, yields to: 

Migliorati et al., Phys. Rev. STAB 16, 011302 (2013) 



At the plasma-vacuum interface is of the same order of magnitude as for 
conventional accelerators at low energies; however, due to the rapid increase of the 
bunch size, it becomes predominant compared to the second term. 

Geometric emittance 

Considering the transverse beam size increase due to free diffraction, assuming as a 
starting condition a beam waist and a sufficiently long drift, we find that the bunch 
size becomes: 

and the emittance: 



 
•   Energy  350 MeV 
•   Beam divergence  1 mrad 
•   Energy spread  1% 
•   Beam spot-size 1 µm 

Z

<γ>ε	



Simulation 
Formula 



Beam transport line simulated with TSTEP 

Beam transport line based on a  
triplet-lattice. 
Beam parameters are: 
•   Energy  350 MeV 
•   Beam divergence  1 mrad 
•   Energy spread  1% 
•   Beam spot-size 1 µm 
 
 

Keeping the beam size under  
control is possible, but normalized  
emittance grows throughout the  
beamline.   

G=265 T/m 
L=5cm 

G=-295 T/m 
L=5cm 

G=142 T/m 
L=5cm 

Δεn,rms = γ σγkqlq + "σ o( )σ o
2 +σ o "σ o



Geometric emittance measurement è Quad Scan 
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Envelope Equation without Acceleration
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Now take the derivatives: 

And simplify: 

We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term. 



Lets now consider for example the simple case with   
describing a beam drifting in the free space.  
 
The envelope equation reduces to: 
 

x !!x = 0

σ x
3 !!σ x = εrms

2

With initial conditions               at zo, depending on the upstream 
transport channel, the  equation has a hyperbolic solution:  
 

σ o, !σ o



Considering the case              (beam at waist) 
  
and using the definition  
 
the solution is often written in terms of the       function as:  
 

!σ o = 0

σ x = βεrms

This relation indicates that without any external focusing element the 
 
 beam envelope increases from the beam waist by a factor          with 
 
 a characteristic length  



βo

β z( )
2βo

βw

For an effective transport of a beam with finite emittance is mandatory 
to make use of some external force providing beam confinement in the 
transport or accelerating line.  



Assuming that each particle is subject only to a linear focusing  

force, without acceleration: 
 
take the average over the entire particle ensemble  

!!x + kx
2x = 0
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3
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2 x2

We obtain the rms envelope equation with a linear focusing force 
in which the rms emittance enters as defocusing pressure like 
term. 
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Space Charge: What does it mean?	


The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:	



1)   Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects	



	



	



	



2) 	

Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects	





Continuous Uniform Cylindrical Beam Model	
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εoE ⋅ dS = ρdV∫∫
Gauss’s law	
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Ampere’s law	
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γ= 1	

 γ = 5	

 γ = 10	



L(t)	


Rs(t)	

 Δt	
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Bunched Uniform Cylindrical Beam Model	





Lorentz Force	



Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high velocities, tends to 
compensate for the repulsive electric force. Therefore space charge defocusing is 
primarily a non-relativistic effect.	



is a linear function of the transverse coordinate	
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Envelope Equation with Space Charge	



!!x =
ksc s,γ( )
σ x
2 x

Space Charge de-focusing force	



Single particle transverse motion: dpx
dt
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External Focusing Forces	



Space Charge De-focusing Force	



Emittance Pressure	



Now we can calculate the term        that enters in the envelope equation	
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Including all the other terms the envelope equation reads:	
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Laminar Beam	



Thermal Beam	



The beam undergoes two regimes  along the accelerator 
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Laminarity parameter 

Transition Energy (ρ=1) 

I=100 A	



I=1 kA	



I=4 kA	



ρ

Potential space charge emittance growth 

ρ = 1 

εth = 0.6 µm	



Eacc = 25 MV/m	
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Surface charge density 	

 Surface electric field	



Restoring force	



Plasma frequency	



Plasma oscillations	





Neutral Plasma


Magnetic focusing


Magnetic focusing


Single Component       
Cold Relativistic Plasma


• Oscillations


• Instabilities


• EM Wave propagation




Single Component 
Relativistic Plasma
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Equilibrium solution:	
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σ ζ( ) =σ eq s( ) +δσ s( )

Small perturbation:	
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Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:	
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ε(z)	



Envelope oscillations drive Emittance oscillations
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Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam 
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Projected Phase Space	

 Slice Phase 
Spaces	
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Perturbed trajectories oscillate around the 
equilibrium with the  

same frequency but with different amplitudes 



σ(z)	



ε(z)	



energy spread induces decoherence
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Envelope Equation with Longitudinal Acceleration	
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Other External Focusing Forces	



Space Charge De-focusing Force	



Adiabatic Damping	

 Emittance Pressure	
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An equilibrium solution of the previous equation is difficult to find, nevertheless 
some simplification is possible and an approximated matching condition exists. 
 
 As one can see there are two focusing terms, the adiabatic damping and the ion 
focusing, and two defocusing terms, the emittance pressure and the space charge 
effects.  
 
To compare the relative importance of the first two terms is more convenient to 
rewrite the previous equation with the new variable:  
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The beam is space charge dominated, as already discussed, when: 

and ion focusing dominated when: 



Laminarity Parameter:	
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With the typical beam parameters: 1 kA peak current, 2 µm 
normalized emittance, injection energy γo=300 and spot size about 3 
µm, we have ρ <1 and η >1. 
  
It follows that the envelope equation can be well approximated by the 
reduced expression: 
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Looking for an “equilibrium” solution: 
 
==> all terms must have the same dependence on γ 
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We get the matching condition with acceleration: 
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Perturbation around the equilibrium solution: 
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Energy spread (~ 1%) drives Emittance degradation
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