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Modern accelerators require high quality beams:
== High Luminosity & High Brightness

-N of particles per pulse => 10°
—-High rep. rate f.,=> bunch trains

-Small spot size => low emittance
-Low energy spread

—Short pulse (ps to fs)
-High peak current

—-Little spread in transverse
momentum and angle => low emittance

-Low energy spread
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Trace space of an ideal laminar beam
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Trace space laminar beam




Trace space of non laminar beam




Geometric emittance (Liouville): €q

Ellipse equation:  yx° + 200x’' + Bx'° = ¢

g
Twiss parameters: By -o’=1 B =-2a
Ellipse area: A = TE,
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Fig. 17: Filamentation of mismatched beam in non-linear force



Phase space evolution

With space charge => no cross over
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rms emittance €5 L.
A

fff(X,X')dxdx'=1 f'(x,x’)=0

—00 —00

rms beam envelope:

+00 400

Oi =<x2>= ffxzf(x,x’)dxdx’

—00 —00

Define rms emittance:

2 2
yx© + 20xx’+ Bx’C =€

rms

such that: Oy = <x2> =\ BE s

Since: o ==

it follows:  a=——" i<x2>=_<xx>_ o




o, = <x'2> = \JVE, .
Oxx' = <xx,> = _agrms
It holds also the relation: Yp — a’ =1

2
2 2
. ol o (o,
Substituting ¢, 8,7 we get r 2 —( = ) =1

rms rms

We end up with the definition of rms emittance in terms of the
second moments of the distribution:

g = \/ ool -0 = \/(< x2> < x12> ~ <xx’>2) o n




What does rms emittance tell us about phase space distributions
under linear or non-linear forces acting on the beam?

2 2 2 2
x4 srms=<x ><x' >—<xx'> o

7

Assuming a generic X, X' correlation of the type: X '=Cx"

Whenn=1 ==> ¢__.=0

Whenn#1 ==> ¢_ 40



Constant under linear transformation only

d
d_z(xz)(xlz) — (') = 20y (%) 4+ 2(x) () () — 2(xx”) (xx') = 0
For linear transformations, x” = —k2x, and the right-hand side of the

equation is
2k2(x?) (xx’) — 2(x?) (xx/)k2 = 0,

X
SO

— (XA (x?) — ()2 =0
dz

And without acceleration: X =—




Normalized rms emittance: &€, .ms

. !/ /
Canonical transverse momentum: P, =P, X = mOC/?)Vx p,=Dp

€, ms = \/aiaix -0,,= mioc (<x2><P§>_<xPx>2)

Liouville theorem: the density of particles n, or the volume V
occupied by a given number of particles in phase space
(X,Px,¥,Py»2Z,p,) T€mains invariant.

dn

—y
dt

It hold also in the projected phase spaces (x,p,).(y.p,)(:z,p,)
provided that there are no couplings
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WARNING
Energy spread contribution to rms emittance

e2 =< 2? >< B2y%"? > — < wfBvya’ >?

If the correlation between the energy and transverse position 1s negligible:
e2 =< B2y >< a? ><a? > — < By >*< aa’ >?

< 242 > — < By >2

Using the definition of relative energy spread: .
<7v>

of =

Substituting in the previous equations and assuming relativistic electrons, yields to:

en = (Y (opoios + €%).

Migliorati et al., Phys. Rev. STAB 16, 011302 (2013)



g2 = <7>2((T2E(f§(f§, + &%)

N

Geometric emittance

v
At the plasma-vacuum interface 1s of the same order of magnitude as for

conventional accelerators at low energies; however, due to the rapid increase of the
bunch size, it becomes predominant compared to the second term.

Considering the transverse beam size increase due to free diffraction, assuming as a
starting condition a beam waist and a sufficiently long drift, we find that the bunch
size becomes:

o.(s) = ous

and the emittance:

= (y)*(s? O'E0'4, + &2)



Norm E [mm mrad]
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e2 = () (s2o%0? + &2)

Simulation
Formula

Energy 350 MeV

Energy spread 1%
Beam spot-size 1 pm

Beam divergence 1 mrad

—

6 Z[cm]8



Beam transport line simulated with TSTEP

0.35

—X Beam transport line based on a
| triplet-lattice.

Beam parameters are:

 Energy 350 MeV

« Beam divergence 1 mrad

* Energy spread 1%

« Beam spot-size 1 ym
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Keeping the beam size under
control is possible, but normalized
emittance grows throughout the
beamline.
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Geometric emittance measurement =» Quad Scan

k
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Beam —» NS S = s pill &
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Quadrupole screen

0, = C*(k)o,, +2C(k)S(k)oy, + S°(k)o,,

* Changing the strength of a magnetic lens is possible to
measure the beam size

 With a least 3 different measurements is possible to retrieve
the elements of the sigma matrix that are related with the
emittance
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Envelope Equation without Acceleration

Now take the derivatives:

ddix — ;ZZ <x2> =Li<x2>=L2<xX/>= O,

doc. do. 1do, o. 1 ., N 0L on+(xx")y ol
d7?  dz o, o ds o) o (<x >—<xx >)_

2 2 2 " 2 "
. . G G I_O xx g -xx

And simplify: |0 =——_——= _< ) = s .|.< )
Ox OX OX OX

We obtain the rms envelope equation in which the rms emittance
enters as defocusing pressure like term.

" )
" <X.x > _ 8rms
O M = 3
Ox Gx




Lets now consider for example the simple case with ~ (xx")=0
describing a beam drifting in the free space.

The envelope equation reduces to:

R 2
Ux Ox — grms

With initial conditions o,,0/ at z_ , depending on the upstream
transport channel, the equation has a hyperbolic solution:




Considering the case o, =0 (beam at waist)
and using the definition o, =./p¢,,,

the solution is often written in terms of the [3’ function as:

)

o(z)=0,,[1+ <" %o

This relation indicates that without any external focusing element the

beam envelope increases from the beam waist by a factor \/5 with

f)

—_

0

a characteristic length 3 =

“rms



For an effective transport of a beam with finite emittance 1s mandatory
to make use of some external force providing beam confinement in the
transport or accelerating line.



rms
o, - =

Assuming that each particle is subject only to a linear focusing

. . " 2
force, without acceleration: X +k,x=0

take the average over the entire particle ensemble (xx") = —k; <x2>

2 e

" _ Srms

o.+k. 0o, = E
o

X

We obtain the rms envelope equation with a linear focusing force
in which the rms emittance enters as defocusing pressure like
term.



Space Charge: What does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be
classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects



Continuous Uniform Cylindrical Beam Model

Gauss’ s law

[e,E-dS= [ pav

Ampere’ s law

[B-di=p,[J-ds

1
E = r for r=a
" 2mea’v J
[ 1
E = — for r>a
2mey r
Ir
Bﬂ=u02m2 Jor r=a
I
By =u,—— for r>a
27tr

o |



Bunched Uniform Cylindrical Beam Model

E (0,s,7)=

Il

2mtye,R? e

h(s,y) E.(r,sy)=

R (V)

Ir

8
2meyR? e

(5.7)

Esc [tV /m] Y - 5

005

r

ek, elr g(s }/)
y? 2.7'[)/280R2[J’C ’

L(t)

uuA:t>




[)’ Er(l",S,)/) = Ir g(S’}/)
B, = - E, Lorentz Force 27€oR” B
E
F = e(Er —[J’cBﬁ) = e(l—/g’z)Er =€ -
)4

1s a linear function of the transverse coordinate

dp, _ oo ek elr

dt Ty _ZJT)/ZSORZﬁC

r

g(s.7)

The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect.

_ elx g(s )/)
Y 2myte,0lfe”




Envelope Equation with Space Charge

: . . d , ,
Single particle transverse motion: ch)t L =F p.=p X' = Pym cx
d d
—(px")=Pc—(p x')=F
dt(p )=P dz(p )=F.
n_ Fx
pcp
xrr — ksc (S9)/) X
2
(O L

S

Space Charge de-focusing force

Generalized perveance \
21 dme
ke (5:7) = s g(57) 1, = 3EME 1k
1, (ﬁ)’) e




Now we can calculate the term (xx")that enters in the envelope equation

P | S

2
X

Including all the other terms the envelope equation reads:

Space Charge De-focusing Force

" 2 _ n sC
o +ko, = +

” (ﬁy) Oi O,

Emittance Pressure

External Focusing Forces

Laminarity Parameter: o =




The beam undergoes two regimes along the accelerator

KRR

Fig. 11: Particle trajectories in non-zero emittance beam



E,..=25MV/m

I=4 kA
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Surface charge density Surface electric field
E, = —0/co = —endx/cs

Sx Restoring force

m w pz OX

Plasma oscillations

Ox = (dx)p cos (wy t)




Neutral Plasma

e Oscillations
e Instabilities

« EM Wayve propagation
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Single Component
Cold Relativistic Plasma




koo (5,7) Single Component
o' +k’o =17 e i
s o Relativistic Plasma

Equilibrium solution:

Small perturbation:

o(8)=0,,(s)+d0(s)

80"(s)+ 2k d0(s) =0

(5(7( ) = (SGO(S) COS(’\/EICSZ)

Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:

0(s) = 0., (5)+ 60, (s) cos(V2kz)



Envelope oscillations drive Emittance oscillations

O(Z) .on|

€(z) .

€. \/O’ 0. -0, =\/(<x2><x’2>—<xx’>2) ~

sin(\/gksz)




Emittance Oscillations are driven by space charge differential
defocusing in core and tails of the beam
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energy spread induces decoherence
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Envelope Equation with Longitudinal Acceleration

pO = )/OmO/))OC
P, <<Dp,
p=p,+D7%

p'=(By) mc

<xx”> =

by

dp. d , d ,
X _ _ o ~0 ’
dt dt(px) pe dz(px) . (Br)
x” n EX, -0 /3)/
P
’ ' 2 " do. , Gxx|
LT T s
Y X X x

Space Charge De-focusing Force

’ 2
aj:+(ﬁy) o +k’o = 8”2 3+k“‘
b ") By o e
Adiabatic Damping Emittance Pressure

Other External Focusing Forces e, = Pye,,.




Envelope equation in a plasma accelerator

Rsphere ~ 71) Bubble radius
Ny =N Bubble density
E = e Radial field
r
3¢,
F =e¢(E, -M) = ¢E,
2 k2 ’ k2
xll_ Fx _ e nXx _ px kz_ €I’l12 <xx”>=_p<_x2>
Ppcp  3eymct 3y £,mc y
/ 2 2 0
" y / kp _ gn kSC
O'x+—()'x+—()'x— > 3+ 3
Y 3y y' o, vo,




/ 2 2 0
" SR k p _ €, ksc
Ox+_0x+_0x_ > 3+ 3
y =~ 3 vo. vo,
An equilibrium solution of the previous equation is difficult to find, nevertheless
some simplification is possible and an approximated matching condition exists.

As one can see there are two focusing terms, the adiabatic damping and the ion
focusing, and two defocusing terms, the emittance pressure and the space charge
effects.

To compare the relative importance of the first two terms is more convenient to
rewrite the previous equation with the new variable: | ~ \/;O'
X

leading to the equation: O, =
2 2

/ 2 sc

G +l| L]+l |e, < Ery K




2 2
/ k 2 SC
N - E k
o’ + LA O, =2 +—=%
2y 3y o. YO,

The beam 1s space charge dominated, as already discussed, when:

2
— . X s> ] Space charge
EY EY dominated

sc =2 sC
,0=k0 O =k00

and 1on focusing dominated when:

4yk2

n= S | Plasma focussing

3),' 2 dominated
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With the typical beam parameters: 1 kA peak current, 2 um
normalized emittance, injection energy y,=300 and spot size about 3
um, we have p <1 and n >1.

It follows that the envelope equation can be well approximated by the
reduced expression:

k2 82 ”=
o;+3—pax= n_ y' =0
O
y y X y’¢0
4k2 0 __2
When 7= )/,; >>1 p=k“’—02x<<l
3y Vo€,



k> e’
o, +Lo, ="
3y y o,
Looking for an “equilibrium” solution: o.=0,=0)"

==> all terms must have the same dependence on y

1 s 3e

2
4 k)




We get the matching condition with acceleration:

ii\

40+

35¢

30+

1x1016  2x1010  3x1010  4x1016  5x10!16
n [cm—3]




Perturbation around the equilibrium solution: 3 ¢

O=0,+00
" k;
O . +—0 =
3y

E ’)/ kp
2
z 4
, ==> 807 +--L80, =0
y’o; 3y

60 (z)= o0, cos(\/%kpz)

(7=4E g—”+(5OOCOS ikpz
Y\ k, 3y




Energy sprea.d (" 1%) drives Emittance degradation
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PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 111303 (2012)

Transverse emittance growth in staged laser-wakefield acceleration

T. Mehrling,' J. Grebenyuk,”? F. S. Tsung,® K. Floettmann,” and J. Osterhoff'*
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FIG. 3. Evolution of the normalized emittance €, in PIC
simulations for the three considered cases. Arrows show the
analytic predictions of the emittance growth. The betatron-
decoherence length for the injection phase in the simulations
k,&o = 1.00 relative to position zq is indicated by the dash-

dotted line
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It 1s an interesting exercise to see the effect of a plasma density vanishing as

n(z)= o p , gIving k“ = e_z_ =2k, . In this case the envelope equation
) eme’y y

Z 2
v,k £
a+ya+°"”a ="

y 3y’ y o,

3 | €

. —— . n,
admits a constant equilibrium solution: O,=4
Vo ko,p
n(z) [cm-3| sigma_x [um]
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A laser-plasma lens for laser-wakefield accelerators

R. Lehe,* C. Thaury,’ E.
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FIG. 2. Upper panel: density profile (blue), laser waist (red),
and trajectories of a few injected electrons (black) in the PIC
simulation. Lower panel: RMS divergence of the bunch in the
x and y directions. (The laser is polarized along z.)
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FIG. 4. Upper panel: density profile (blue), waists of the
first (red, solid) and second (orange, dashed) laser pulse, and
trajectories of a few injected electrons (black) in the PIC sim-

ulation. Lower panel: divergence of the bunch.
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Coherent phase space matching for staging plasma and traditional accelerator using
longitudinally tailored plasma structure

X. L. Xu! Y. P. Wu,! C. J. Zhang,! F. Li,! Y. Wan,! J. F. Hua,! C.-H.
Pai,! W. Lu,b»* P. Yu,?2 W. An,22 W. B. Mori,? C. Joshi,2 and M. J. Hogan?

(a) (b)
High density injector RF-based Traditonal
Accelerator Beam Transport
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