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16.) Dispersion:    trajectories for  16.) Dispersion:    trajectories for  ΔΔp / p ≠ 0 p / p ≠ 0 
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Dispersion function D(s) 

* is that special orbit, an ideal particle would have  for Δp/p = 1

* the orbit of any particle is the sum of the well known x and the dispersion the orbit of any particle is the sum of the well known xβ and the dispersion

* as D(s) is just another orbit it will be subject to the focusing properties of the lattice 



Dispersion: Example: homogeneous dipole field

Dispersion:    trajectories for Dispersion:    trajectories for ΔΔp / p ≠ 0 p / p ≠ 0 
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Dispersion: Example: homogeneous dipole field
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contribution due to Dispersion ≈ beam size

Dispersion must vanish at the collision point !
Calculate D, D´
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Example: Drift
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Example: Dispersion, calculated by an optics code for a real machine

p
psDxD

Δ= )(

* D(s) is created by the dipole magnets  D(s) is created by the dipole magnets 
… and afterwards focused by the quadrupole fields

D(s) ≈ 1 … 2 m
s

Mini Beta Section, 
no dipoles !!!



Dispersion is visible

HERA Standard Orbit

dedicated energy change of the stored beam
HERA Dispersion Orbit

Δ

gy g
closed orbit is moved to a  
dispersions trajectory

p
p*)s(DxD

Δ=

Attention: at the Interaction Points 
we require D=D´= 0 



17.) Momentum Compaction Factor: 17.) Momentum Compaction Factor: ααpp
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 The lengthening of the orbit for off momentum 
particles is given by the dispersion function 

and the bending radius.
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18.) Quadrupole Errors   18.) Quadrupole Errors   
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⎞⎛⎞⎛ xxgo back to Lecture I page 1

Quadrupole Errors
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go back to Lecture I, page 1

single particle trajectory

Solution of equation of motion
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Definition: phase advance 
of the particle oscillation 
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per revolution in units of 2π
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Matrix in Twiss Form

Transfer Matrix from point „0“ in the 
lattice to point „s“: 
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Quadrupole Error in the Lattice
optic perturbation described by thin lens quadrupole
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sincos)cos( 0ψβψψψ kdsΔ+=Δ+

Quadrupole error Tune Shift

ψψψ Δ+= 0

remember the old fashioned trigonometric stuff and assume that the error is small !!!

2
cos)cos( 00 ψψψ +=Δ+ψψψ Δ+0

remember the old fashioned trigonometric stuff and assume that the error is small !!!

2
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and referring to Q instead of ψ: ! the tune shift is proportional to the β-function

2
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! the tune sh ft s proport ona to the β funct on
at the quadrupole

!!  field quality, power supply tolerances etc are 
much tighter at places where β is large

!!! i i b t d β 1900
∫
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s
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β !!!    mini beta quads: β ≈ 1900 m 

arc quads: β ≈ 80 m 

!!!! β is a measure for the sensitivity of the beam



a quadrupol error leads to a shift of the tune:
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Example: measurement of β in a storage ring:
tune spectrum
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Quadrupole error: Quadrupole error: Beta Beat Beta Beat 

( )dsQKss
ls

πψψβββ 22cos)()(
1

0 Δ=Δ ∫
+

( proof: see appendix )

( )dsQKs
Q

s ss
s

πψψβ
π

β 22cos)(
2sin2

)( 01
1

10 −−Δ=Δ ∫

( proof: see appendix )

β



19.) Chromaticity: 19.) Chromaticity: 
A Quadrupole Error for A Quadrupole Error for ∆∆p/p p/p ≠≠ 00

Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p
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particle having ...particle having ...  
to high energy
to low energy
ideal energy
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Chromaticity: Chromaticity: Q'Q'
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… which acts like a quadrupole error in the machine and leads to a tune spread:
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Where is the Problem ?



Tunes and Resonances 

avoid resonance conditions:

m Qx+n Qy+l Qs = integer

… for example: 1 Qx=1



… and now again about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q' is a number indicating the size of the tune spot in the working diagram, 
Q' is always created if the beam is focussed 

it is determined by the focusing strength k of all quadrupoles

k = quadrupole strength

∫−= dssskQ )()(
4
1' β
π

k = quadrupole strength
β = betafunction indicates the beam size … and even more the sensitivity of  

the beam to external fields

Example: HERA

HERA-p:      Q' = -70 … -80 
Some particles get very close to 
resonances and are lost 

Δ p/p = 0.5 *10-3

ΔQ = 0.257 … 0.337 in other words: the tune is not a point
it is a pancake



Tune signal for a nearlyTune signal for a nearly 
uncompensated cromaticity
( Q' ≈ 20 ) 

Ideal situation: cromaticity well corrected,
( Q' ≈ 1 )



Tune and Resonances

m*Qx+n*Qy+l*Qs = integer

Qy =1.5 HERA e Tune diagram up to 3rd order

Qy =1.3
… and  up to 7th order

Qy =1.0

Homework for the operateurs: 
find a nice place for the tune 
where against all probability 

Qx =1.0 Qx =1.3

Qy 1.0

Qx =1.5
the beam will survive



Correction of Correction of Q'Q': : 

Need: additional quadrupole strength for each momentum deviation Δp/p

1.) sort the particles according to their momentum ( ) ( )D
px s D s

p
Δ=

… using the dispersion function



Correction of  Q':Correction of  Q':

2.) apply a magnetic field that rises quadratically with x (sextupole field)

linear rising 
gradient“:
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corrected chromaticity:
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sextupole magnet in a storage ring
l d l t th d l l… placed close to the quadrupole lens

lquadrupole magnet sextupole magnet
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N
● ● ● ● ●● ● ● ● ●



2020.) Insertions.) Insertions
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InsertionsInsertions

... the most complicated one: the drift space

Question to the audience: what will happen to the beam parameters 
α, β, γ if we sstop focusing for a while …?
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1
' ' 0 1

C S s
M

C S
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2
0 0 0

0 0

( ) 2
( )
s s s
s s

β β α γ
α α γ

= − +
= −' ' 0 1C S⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ 0 0

0

( )
( )
s s
s

α α γ
γ γ=



ββ--Function in a Drift:Function in a Drift:

let‘s assume we are at a symmetry point in the center of a driftlet s assume we are at a symmetry point in the center of a drift.

2
0 0 0( ) 2s s sβ β α γ= − +

as
2
0

0 0
0 0

1 10, αα γ
β β

+= → = =

and we get for the β function in the neighborhood of the symmetry point

! ! !! ! !
2

( ) ssβ β= +

Nota bene: 

! ! !! ! !0
0

( )sβ β
β

= +

1.) this is very bad !!!
2.) this is a direct consequence of the

conservation of phase space density
( in our words: ε = const) and **

s s

β(... in our words: ε = const) … and 
there is no way out.

3.) Thank you, Mr. Liouville !!!

β0



... clearly there is another problem !!!... clearly there is another problem !!!

Example: Luminosity optics at LHC: β* = 55 cm

But: ... unfortunately ... in general 
high energy detectors that are 
installed in that drift spaces p y p β

for smallest βmax we have to limit the overall length  
and keep the distance “s” as small as possible.

are a little bit bigger than a few centimeters ...



Example of a long Drift:Example of a long Drift: The MiniThe Mini--ββ Insertion:Insertion:

Luminosity: given by the total stored beam currents and the beam size at the y g y
collision point (IP)

**
21

24
1

yxbrev

II
nfe

L
σσπ

=
yxbrevf

β

How to create a mini β insertion:

* symmetric drift space (length adequate for the experiment)
β* make the beat values as small as possible 

* ... where is the limit ???

εβσ =



Mini-β Insertions: some guide lines

* calculate the periodic solution in the arc

* introduce the drift space needed for the insertion device (detector ...)

* put a quadrupole doublet (triplet ?) as close as possible

* introduce additional quadrupole lenses to match the beam parameters to introduce additional quadrupole lenses to match the beam  parameters to 
the values at the beginning of the arc structure 

b i i d & h d h i di l i D Dα β ′
parameters to be optimised & matched to the periodic solution: , ,

, ,
x x x x

y y x y

D D
Q Q

α β
α β

8 individually 
powered quad 
magnets are 
needed to matchneeded to match  
the insertion 
( ... at least)
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… and now back to the Chromaticity
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β
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question: main contribution to Q' in a lattice … ?                                      

mini beta insertions



ResumeResume´́::

quadrupole error: tune shift π
β
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Dispersion: Solution of the inhomogenious equation of motionDispersion: Solution of the inhomogenious equation of motion
Appendix I:
Dispersion: Solution of the inhomogenious equation of motionDispersion: Solution of the inhomogenious equation of motion
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and as it is independent 
of the variable „s“ 
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qed 



Quadrupole Error and Beta FunctionQuadrupole Error and Beta Function

Appendix II:

a change of quadrupole strength in a synchrotron leads to tune sift:

Quadrupole Error and Beta FunctionQuadrupole Error and Beta Function
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y = -6.7863x + 0.3883
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k*L

tune spectrum ... 

tune shift as a function of a gradient change

But we should expect an error in the β-function as well …
… shouldn´t  we ???



Quadrupole Errors and Beta Function

l ll l l ll “

split the ring into 2 parts, described by two matrices

a quadrupole error will not only influence the oscillation frequency … „tune“ 
… but also the amplitude … „beta function“
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the beta function is usually obtained via the matrix element „m12“, which is in 
Twiss form for the undistorted case

Qm πβ 2sin012 =

*

and including the error: 

kdsabababm Δ−+= 121222121211
*
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Qm πβ 2sin012 =

kdsbaQm Δ−= 12120
*
12 2sin)1( πβ

As M* is still a matrix for one complete turn we still can express the element m12 
in twiss form:in twiss form:

)(2sin*)()2( 0
*
12 dQQdm ++= πββ

Equalising (1) and (2) and assuming a small errorEqualising (1) and (2) and assuming a small error
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i i d d
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ignoring second order terms

remember: tune shift dQ due to quadrupole error:
(index „1“ refers to location of the error) π
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solve for dβ
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express the matrix elements a12, b12 in Twiss form
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Nota bene: ! the beta beat is proportional to the strength of the 
error ∆kerror ∆k

!! and to the β function at the place of the error ,

!!! and to the β function at the observation point!!! and to the β function at the observation point, 
(… remember orbit distortion !!!)

!!!! there is a resonance denominator


