CAS 3 November 2008

On behalf of the INFN and the LNF staff I WELCOME you all to FRASCATI

quick introduction
 lecturepresenting the LNF....
 conclusions

M.Calvetti INFN-LNF Università di Firenze

COLLIDING BEAMS

FEL

APPLICATIONS

NEW IDEASvery important

Beam – beam effect

Beam – beam force

$$Q_{x,y} = Q_{x,y} + \xi_{x,y}$$

- Large emittance
- Demand on damping time
- Demand on dynamic aperture

EXAMPLE OF BEAM DYNAMICS EXPERIMENT at DAFNE

THE DAFNE CRAB-CROSSING - STUDY OF BEAM-BEAM DYNAMICS

BEAM PROFILES @IP AND NEW PARAMETERS DAΦNE (KLOE run) 10 5 0 $\mathbf{y}(\mu\mathbf{m})$ -20 Beam crossing volume -5 -10 -10 500 $\mathbf{x}(\mu\mathbf{m})$ z (mm) 10 -500 20 Increase crossing angle 12mrad \rightarrow 25 mrad **DA\PhiNE Upgrade** To recover luminosity: Reduce horizontal and vertical sigmas at IP 10 5 Û -20 $\mathbf{y}(\mu \mathbf{m})$ -5 -10 -10 500 $\mathbf{x}(\mu \mathbf{m})$ z (mm) 10 -500 20

Large Piwinski angle $\Phi_{P=}\theta\sigma_z/\sigma_x$ small $\beta_y^* (\beta_y^* \sim \sigma_x/\theta)$ Geometric luminosity gain Very low horizontal tune shift No parasitic collisions short overlap region Geometric luminosity gain low vertical tune shift

Crab waist transformation (realized with two sextupoles $@\pi$ in x and 1.5 π in y from IP)

B = Kx quadrupole

 $B = Kx^2 = (Kx)x$ sextupole

Beam-beam simulations

X-Y Resonance Suppression

Much higher luminosity?

Luminosity limited by collective effetcs?

Positive ion trapping Electron clouds Ring impedence

 $20\mu x 250\mu x 3 cm$ bunch dimensions with 10 ¹⁰ particles

500 H2 molecules at 10⁻¹⁰ tor in the bunch volume

In DAFNE every 60 $\mu s\,$ the bunch crosses an amount of molecules equal to the number of electrons in the bunch

Ring impedence Z

Induced beam Instability $\dots \rightarrow$ active feedbacks

Every accelerator ring has a maximum current !

DAFNE specific luminosity increase

Luminosity vs Current Product

It can be used by any storage ring collider, a stronger focusing is usable but

measurements are still going on.....

The small emittance challenge

Beta function and emittance

Adapded from S. Chattopadhyay, K. Yokoya, Proc. Nanobeam `02

What about Linear Colliders?

Low emittance Strong focusing High currents

.....the same requirements.....

.....every Linear Collider has a dumping ring....to have low emmittance... ...but single pass imply very small beam cross section at the interaction point (30nm)

.....it implies to have a strong beam-beam interaction... beamstrahlung.....

...and on time background.....

CLIC RF power source

LNF and the Future of Fundamental Research

Conclusions by J.Ellis

- CLIC will provide unique physics @ energy frontier
- Beamstrahlung and backgrounds not insurmountable problems
- Can exploit fully high c.o.m. energy
- Added value for light Higgs, heavy Higgs, supersymmetry, extra dimensions, ...
- Whether light or heavy!

....so, what are we going to do.....

Center-of-mass energy	3 TeV		
Peak Luminosity	7-10 ³⁴ cm ⁻² s ⁻¹		
Peak luminosity (in 1% of energy)	2-10 ³⁴ cm ⁻² s ⁻¹		
Repetition rate	50 Hz		
Loaded accelerating gradient	100 MV/m		
Main linac RF frequency	12 GHz		
Overall two-linac length	42 km		
Bunch charge	3.72·10 ⁹		
Bunch separation	0.5 ns		
Beam pulse duration	156 ns		
Beam power/beam	14 MWatts		
Hor./vert. normalized emittance	660 / 20 nm rad		
Hor./vert. IP beam size bef. pinch	40 / ~1 nm		
Total site length	48 km		
Total power consumption	322 MW		

New CLIC main parameters

Cross Sections at CLIC

one year at 10³⁵ cm-2 s-1

Event Rates/Year	3 TeV	5 TeV	
(1000 fb^{-1})	10^3 events	10^3 events	
$e^+e^- ightarrow t \overline{t}$	20	7.3	
$e^+e^- ightarrow b\overline{b}$	11	3.8	
$e^+e^- \rightarrow ZZ$	27	11	
$e^+e^- \rightarrow WW$	490	205	
$e^+e^- \rightarrow hZ/h\nu\nu$ (120 GeV)	1.4/530	0.5/690	
$e^+e^- ightarrow H^+H^-(1 \text{ TeV})$	1.5	0.95	
$e^+e^- ightarrow \tilde{\mu}^+ \tilde{\mu}^- (1 \text{ TeV})$	1.3	1.0	

Very low SM cross sections......

1fb⁻¹ one year at 10³² cm⁻² s⁻¹

TO BUILD CLIC......WE NEED EVIDENCE for NEW PHYSICS

LHC: GOOD NEW

Spectra at Best-Fit Points

IF NEW PHYSICS IS DISCOVERED at LHC than A LINEAR COLLIDER WILL BE BUILT

WE HAVE TO PREPARE THE TECHNOLOGY TO PROPOSE THE APPROPRIATE ACCELERATOR

AT THE RIGHT TIME

YOU ARE WELCOME ON BOARD

Try to be a good student, better than the teacher

For example.....

1) Do not forget the applications

CNAO:Centro Nazionale Adroterapia Oncologica SPARC : Free Electron Laser

2) Very important: use YOUR fantasy and creativity

Plasma Wave Field Acceleration

The "FLAME" project at LNF: 300 TW, 0.8 m, 20 ft laser pulse

MEDICAL APPLICATION

The CNAO High technology

Synchrotron hall today

The INFN-LNF in Pavia

Cancer therapy

ECR Ion Sources for CNAO

Ions	Current (requested) [µA]	Current (available) [µA]	After improvements by INFN-LNS [µA]	Emittance (requested) π mm.mrad	Emittance (new extractor) π mm.mrad	Stability [99,8%]
C ⁴⁺	200	200	250	0.75	0.56	36 h
H_2^+	1000	1000		0.75	0.42	2 h
$\mathrm{H_{3}^{+}}$	700	600	1000	0.75	0.67	8 h
He+	500	500		0.75	0.60	2 h

NEW INSTRUMENTS

Emittance for flat top and gaussian pulse shape

charge	0.74 nC		
pulse length (FWHM)	8.7 ps		
rise time	2.6 ps		
rms spot size	0.31 mm		
RF phase (ϕ - ϕ _{max})	-8°		

Direct Measurement of the Double Emittance Minimum in the Beam Dynamics of the Sparc High-Brightness Photoinjector

M. Ferrario,¹ D. Alesini,¹ A. Bacci,³ M. Bellaveglia,¹ R. Boni,¹ M. Boscolo,¹ M. Castellano,¹ L. Catani,² E. Chiadroni,¹ S. Cialdi,³ A. Cianchi,² A. Clozza,¹ L. Cultrera,¹ G. Di Pirro,¹ A. Drago,¹ A. Esposito,¹ L. Ficcadenti,⁵ D. Filippetto,¹ V. Fusco,¹ A. Gallo,¹ G. Gatti,¹ A. Ghigo,¹ L. Giannessi,⁴ C. Ligi,¹ M. Mattioli,⁷ M. Migliorati,⁵ A. Mostacci,⁵ P. Musumeci,⁶ E. Pace,¹ L. Palumbo,⁵ L. Pellegrino,¹ M. Petrarca,⁷ M. Quattromini,⁴ R. Ricci,¹ C. Ronsivalle,⁴ J. Rosenzweig,⁶ A. R. Rossi,³ C. Sanelli,¹ L. Serafini,³ M. Serio,¹ F. Sgamma,¹ B. Spataro,¹ F. Tazzioli,¹ S. Tomassini,¹ C. Vaccarezza,¹ M. Vescovi,¹ and C. Vicario¹

Electron gun

S-Band LINAC

150 MeV

Velocity bunching scheme

Preliminary results in "velocity bunching" regime

A new Project : X-FEL SPARX

Very intense X-ray bursts for medical science, material science, biology ...ecc ..it is like having a better microscope in space and time....

but also accelerator R&D

2008-2013

X rays Free Electron Laser

SASE RADIATION

A new project for the LNF:

A X-FEL in the Tor Vergata Campus

The future will profit from your fantasy and creativity

For example: Plasma Wake Field Acceleration

Wakefield Laser-Plasma Acceleration (WLPA) of externally injected electron bunches

Acceleration of electron bunches injected in laser excited longitudinal electron plasma waves requires synchronization at the level of the period of the electron plasma wave.

Stability required <100 fs

INFN

Accelerated electrons

Driving beam : laser or beam

How does it work ?

1979 Tajima & Dawson Paper

Plasma Weak-Filed Acceleration

Time evolution of electron energy gain

THE "FLAME" LAB at LNF

FIRST EXPERIMENTS @ CNR-INFN PISA

La diffusione Thomson della radiazione laser mostra il canale di bassa densità in cui gli elettroni sono accelerati . Sullo schermo LANEX è visulalizzato lo spot degli elettroni accelerati.

PLASMONX: first electron spectra

Electrons bunch up to about 15 MeV.

At SLAC:

- ~50GeV/m acceleration in one meter of plasma at SLAC, with electrons as the driving beam
- * High efficiency of energy transfer (1/3)
- Is a linear collider possible?

LHC is a formidable machine

Stored energy in the beam: 300 MJ (Tevatron is 1 MJ)

Stored energy in the guide field:

10.6 GJ (Tevatron is 0.3 MJ) $\,$

So....why not to try?

est, or the set of the

Plasma WF LC, Luminosity & Efficiency

 TeV collider call for P_{beam} ~10 MW of continuous power, small emittances and nanometer beams at IP

Mechanism to transfer energy to waves in plasma

Wall-plug

• An efficient approach to transfer several tens of MW of continuous power to plasma is to use drive beam

beam power ~ 20MW

A concept for Plasma Wake Field Acceleration 1TeV CM Linear Collider

10 M

Much less storage energy in the B field

525 insegnanti ai LNF NEL 2007

VISITE AI LNF giornata europea della ricerca scientifica 4000 persone nei LNF

LNF WORK IN PROGRESS:

- 1) TEST OF THE CRAB-WAIST METHOD
- 2) INCREASE OF THE DAFNE LUMINOSITY
- 3) RUN OF THE SIDDHARTA EXPERIMENT
- 4) RUNNING-IN OF KLOE, FALL 2009
- 5) SPARC LASERING
- 6) FLAME LASER COMMISSIONING
- 7) BEGINNING OF EXPERIMENTS WITH HIGH INTENSITY LASERS
- 8) COMMISSIONING OF CLIC-CTF3 AT CERN
- 9) COMMISSIONING OF THE CNAO SYNCROTRON
- **10) RUN OF OUR PART OF THE LHC EXPERIMENTS**

I WISH YOU A PROFITABLE AND NICE WEEK HERE IN FRASCATI

