

Recapitulation of Electromagnetism

Ursula van Rienen, Johann Heller, Thomas Flisgen

11 Traditio et Innovatio

Overview

- 1. Maxwell's equations
- 2. Electromagnetic fields in different materials material equations
- 3. Electrostatic fields
- 4. Magnetostatic fields
- 5. Electromagnetic waves
- 6. Field attenuation in conductors

Please note:

All illustrations underlying a copyright were removed for the online version of this lecture.

Maxwell's Equations

Maxwell's Equations in their Integral Representation

$$\begin{split} & \oint_{\partial \Omega} \mathbf{D}(\mathbf{r}, t) \cdot d\mathbf{A} = \iiint_{\Omega} \rho(\mathbf{r}, t) dV \\ & \oint_{\partial \Omega} \mathbf{B}(\mathbf{r}, t) \cdot d\mathbf{A} = 0 \\ & \oint_{\partial \Omega} \mathbf{E}(\mathbf{r}, t) \cdot d\mathbf{s} = - \iint_{\Gamma} \frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t) \cdot d\mathbf{A} \\ & \oint_{\partial \Gamma} \mathbf{H}(\mathbf{r}, t) \cdot d\mathbf{s} = \iint_{\Gamma} \left(\frac{\partial}{\partial t} \mathbf{D}(\mathbf{r}, t) + \mathbf{J}(\mathbf{r}, t) \right) \cdot d\mathbf{A} \end{split}$$

Figure: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/James_Clerk_Maxwell_big.jpg/390px-James_Clerk_Maxwell_big.jpg

🖉 Traditio et Innovatio

Gauss' Law (for Electricity) in Integral Form

Electric charges Q or electric charge densities $\rho(\mathbf{r}, t)$ generate electric flux densities $\mathbf{D}(\mathbf{r}, t)$.

$$\oint_{\partial \Omega} \mathbf{D}(\mathbf{r}, t) \cdot d\mathbf{A} = Q = \iiint_{\Omega} \rho(\mathbf{r}, t) dV$$
total electric flux through
Gaussian surface
total electric charge enclosed in
Gaussian surface

Quick Quiz (I/II) – Value of Net Flux through Surface?

 $\mathbf{D}(\mathbf{r},t)\cdot \mathrm{d}\mathbf{A} = ???$ $JJ \\ \partial \mathbf{\Omega}$ total electric flux through Gaussian surface

Quick Quiz (II/II) – Value of Net Flux through Surface?

$$\oint_{\partial \Omega} \mathbf{D}(\mathbf{r}, t) \cdot d\mathbf{A} = \mathbf{0} = \iiint_{\Omega} \underbrace{\rho(\mathbf{r}, t)}_{=\mathbf{0}!} dV$$
total electric flux through Gaussian surface

- Total electric flux through the Gaussian surface equals zero since no charges are contained in the volume!
- Total amount of flux flowing into the Gaussian surface is equal to total amount of flux flowing out of the surface
- Absence of charges in the volume does not mean that the electric displacement fields are zero in the volume

Gauss' Law (for Electricity) – from Integral to Differential Form

Gauss' Law for Magnetism in Integral Form

Magnetic flux densities $\mathbf{B}(\mathbf{r}, t)$ do not have sources, i.e. they are solely curl fields.

 $\mathbf{B}(\mathbf{r},t)\cdot \mathrm{d}\mathbf{A}=0$ $\partial \Omega$ total magnetic flux through Gaussian surface

Gauss' Law for Magnetism – from Integral to Differential Form

Faraday's Law of Induction

Time-dependent magnetic flux densities $\mathbf{B}(\mathbf{r},t)$ generate curled electric field strength $\mathbf{E}(\mathbf{r},t)$.

$$\oint_{\partial \mathbf{\Gamma}} \mathbf{E}(\mathbf{r}, t) \cdot d\mathbf{s} = -\iint_{\mathbf{\Gamma}} \frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t) \cdot d\mathbf{A}$$

Faraday's Law of Induction – The Minus Sign (I / II)

The polarity of the induced electric field strength is such that it tends to produce a current that creates a magnetic flux to oppose the change in magnetic flux through the area enclosed by the current loop. This is known as Lenz's Law.

$$\oint_{\partial \mathbf{\Gamma}} \mathbf{E}(\mathbf{r}, t) \cdot \mathrm{d}\mathbf{s} = -\iint_{\mathbf{\Gamma}} \frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t) \cdot \mathrm{d}\mathbf{A}$$

Faraday's Law of Induction – The Minus Sign (II / II)

The polarity of the induced electric field strength is such that it tends to produce a current that creates a magnetic flux to oppose the change in magnetic flux through the area enclosed by the current loop. This is known as Lenz's Law.

$$\oint_{\partial \mathbf{\Gamma}} \mathbf{E}(\mathbf{r}, t) \cdot \mathrm{d}\mathbf{s} = -\iint_{\mathbf{\Gamma}} \frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t) \cdot \mathrm{d}\mathbf{A}$$

• The minus sign in the induction law is also required for Maxwell's equation to be energy conserving!

Faraday's Law of Induction – from Integral to Differential Form

Ampère's Law with Maxwell's Extension

Electric currents $\mathbf{J}(\mathbf{r}, t)$ and time-dependent electric displacement currents $\frac{\partial}{\partial t} \mathbf{D}(\mathbf{r}, t)$ generate curled magnetic field strengths $\mathbf{H}(\mathbf{r}, t)$.

$$\oint_{\partial \mathbf{\Gamma}} \mathbf{H}(\mathbf{r}, t) \cdot d\mathbf{s} = \iint_{\mathbf{\Gamma}} \left(\mathbf{J}(\mathbf{r}, t) + \frac{\partial}{\partial t} \mathbf{D}(\mathbf{r}, t) \right) \cdot d\mathbf{A}$$

Ampère's Law with Maxwell's Extension from Integral to Differential Form

$$\oint_{\partial \Gamma} \mathbf{H}(\mathbf{r}, t) \cdot d\mathbf{s} = \iint_{\Gamma} \left(\mathbf{J}(\mathbf{r}, t) + \frac{\partial}{\partial t} \mathbf{D}(\mathbf{r}, t) \right) \cdot d\mathbf{A}$$
for infinitely small areas Γ
$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \mathbf{J}(\mathbf{r}, t) + \frac{\partial}{\partial t} \mathbf{D}(\mathbf{r}, t)$$

Maxwell's Equations in their Differential Representation

$$\nabla \cdot \mathbf{D}(\mathbf{r}, t) = \rho(\mathbf{r}, t)$$
$$\nabla \cdot \mathbf{B}(\mathbf{r}, t) = 0$$
$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t)$$
$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \frac{\partial}{\partial t} \mathbf{D}(\mathbf{r}, t) + \mathbf{J}(\mathbf{r}, t)$$

Figure: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/James_Clerk_Maxwell_big.jpg/390px-James_Clerk_Maxwell_big.jpg

🖉 Traditio et Innovatio

The Divergence Operator

Universitä

Rostock

- The divergence operator $\nabla \cdot \mathbf{F}(x, y, z)$ measures the source strength of the vector field $\mathbf{F}(x, y, z)$ in that point
- In some textbooks the divergence is denoted by $\operatorname{div} \mathbf{F}(x, y, z)$
- The divergence acts on a vector field and gives back a scalar field, i.e. the source strength!
- In Cartesian coordinates, the divergence is defined in terms of:

$$\nabla \cdot \mathbf{F}(x, y, z) = \operatorname{div} \mathbf{F}(x, y, z) = \frac{\partial}{\partial x} F_x(x, y, z) + \frac{\partial}{\partial y} F_y(x, y, z) + \frac{\partial}{\partial z} F_z(x, y, z)$$

The Divergence Operator – A 2D Example

scalar field $\nabla \cdot \mathbf{F}(x,y)$ vector field $\mathbf{F}(x, y)$ 1.0 1.0 0.5 0.5 0.0 0.0 -0.5 -0.5 -1.0 -1.0 0.0 -1.0 -0.5 0.0 0.5 1.0 -0.5 0.5 -1.0 1.0

11.0

The Curl Operator

- The curl operator $\nabla \times \mathbf{F}(x, y, z)$ measures the rotation of a vector field $\mathbf{F}(x, y, z)$ in that point
- In some textbooks the curl (or rotation) is denoted by $\operatorname{curl} \mathbf{F}(x, y, z)$
- The curl operator acts on a vector field and gives back a vector field, i.e. the curl strength!
- In Cartesian coordinates, the curl is defined in terms of:

$$\nabla \times \mathbf{F}(x, y, z) = \operatorname{curl} \mathbf{F}(x, y, z) = \left| \begin{pmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x(x, y, z) & F_y(x, y, z) & F_z(x, y, z) \end{pmatrix} \right|$$

$$= \left| \begin{pmatrix} \frac{\partial}{\partial y} F_z(x, y, z) - \frac{\partial}{\partial z} F_y(x, y, z) \\ \frac{\partial}{\partial z} F_x(x, y, z) - \frac{\partial}{\partial x} F_z(x, y, z) \\ \frac{\partial}{\partial x} F_y(x, y, z) - \frac{\partial}{\partial y} F_x(x, y, z) \end{pmatrix} \right|$$

The Curl Operator – A 3D Example

vector field $\mathbf{F}(x, y, z)$ vector field $\nabla \times \mathbf{F}(x, y, z)$ 0 -1 -1 -1 -1 0 1

Universität Rostock Traditio et Innovatio

Electromagnetic Fields in Materials

Electric Fields in Matter

- Materials can be polarized by applied electric fields $\mathbf{E}(\mathbf{r})$
- The polarization $\mathbf{P}(\mathbf{r})$ is in fact a displacement $\mathbf{D}(\mathbf{r})$ of electric charges
- Permittivity of free space: $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{As/Vm}$ Relative permittivity: $\varepsilon_r = 1 \dots 10^5$

$$\begin{aligned} \mathbf{D}(\mathbf{r}) &= \varepsilon_0 \mathbf{E}(\mathbf{r}) + \mathbf{P}(\mathbf{r}) \\ \mathbf{D}(\mathbf{r}) &= \varepsilon_0 \varepsilon_r \mathbf{E}(\mathbf{r}) \end{aligned}$$

Magnetic Fields in Matter

- Materials can be magnetized by applied magnetic fields $\mathbf{B}(\mathbf{r})$
- The magnetization $M(\mathbf{r})$ is in fact a change of the orientation of magnetic dipoles •
- Permeability of free space: $\mu_0 = 4\pi \cdot 10^{-7} \text{Vs/Am}$ Relative permeability: $\mu_r = 0 \dots 10^3$

$$\begin{aligned} \mathbf{B}(\mathbf{r}) &= \mu_0 \mathbf{H}(\mathbf{r}) + \mathbf{M}(\mathbf{r}) \\ \mathbf{B}(\mathbf{r}) &= \mu_0 \mu_r \mathbf{H}(\mathbf{r}) \end{aligned}$$

Some Remarks in Material Modelling

Often it is not sufficient to consider the material parameters as constants, because matter can be

• inhomogeneous

$$\varepsilon_r = \varepsilon_r(\mathbf{r})$$
 $\mu_r = \mu_r(\mathbf{r})$

• dispersive, so that the material parameters are complex-valued and frequency-dependent:

$$\varepsilon_r = \underline{\varepsilon}_r(j\omega) \qquad \qquad \mu_r = \underline{\mu}_r(j\omega)$$

• anisotropic (directional dependent), so that the material parameters become tensors

$$\varepsilon_{r} = \begin{pmatrix} \varepsilon_{xx,r} & \varepsilon_{xy,r} & \varepsilon_{xz,r} \\ \varepsilon_{yx,r} & \varepsilon_{yy,r} & \varepsilon_{yz,r} \\ \varepsilon_{zx,r} & \varepsilon_{zy,r} & \varepsilon_{zz,r} \end{pmatrix} \qquad \qquad \mu_{r} = \begin{pmatrix} \mu_{xx,r} & \mu_{xy,r} & \mu_{xz,r} \\ \mu_{yx,r} & \mu_{yy,r} & \mu_{yz,r} \\ \mu_{zx,r} & \mu_{zy,r} & \mu_{zz,r} \end{pmatrix}$$

• non-linear (and can have a hysteresis in addition), so that the material parameters are functions on the field strength itself

$$\varepsilon_r = \varepsilon_r(\mathbf{E}) \qquad \qquad \mu_r = \mu_r(\mathbf{H})$$

Electrostatics

Electrostatics – Maxwell Simplifications

$$\nabla \times \mathbf{E}(\mathbf{r}) = -\underbrace{\frac{\partial}{\partial t} \mathbf{B}(\mathbf{r})}_{\mathbf{0}}$$
$$\nabla \cdot \mathbf{D}(\mathbf{r}) = \rho(\mathbf{r})$$

The electric field is curl-free

Gauss' law of electricity: The divergence of the electric flux density is equal to the charge density

Due to the electric field being curl-free it can be expressed as negative gradient of an arbitrary scalar potential

$$\mathbf{E}(\mathbf{r}) = -\nabla\phi(\mathbf{r})$$

With this approach, we can ensure that Faraday's law of induction holds for the static electric field:

$$abla imes \mathbf{E}(\mathbf{r}) = -\nabla \times \nabla \phi(\mathbf{r}) = \mathbf{0}$$

Electrostatics – Derivation of Poisson's equation

Starting with Gauss' law of electricity

 $\nabla\cdot\mathbf{D}(\mathbf{r})=\rho(\mathbf{r})$

we employ the material equation for electric fields and assume that the permittivity $\varepsilon = \varepsilon_0 \varepsilon_r$ is homogeneous:

$$abla \cdot {f E}({f r}) = rac{
ho({f r})}{arepsilon}$$

Next, we express the electric field in terms of the gradient of an arbitrary scalar potential

$$\mathbf{E}(\mathbf{r}) = -\nabla\phi(\mathbf{r})$$

Combining both equations delivers the so-called Poisson equation (or potential equation)

$$\Delta\phi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\varepsilon}$$

Electrostatics – Poisson's equation

In its simplest case, Poisson's equation $\Delta \phi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\varepsilon}$ describes the electric potential of a point charge:

Electrostatics – A simple example: Capacitor

A capacitor is free of charges between its plates:

 $\Delta\phi(\mathbf{r}) = 0$

Assuming that the potential does only depend on one spatial direction, the Laplace-operator can be simplified to

$$\Delta \phi(\mathbf{r}) = \frac{\partial^2}{\partial x^2} \phi(\mathbf{r})$$

Traditio et Innovatio

Magnetostatics

Magnetostatics – Maxwell Simplifications

$$\nabla \times \mathbf{H}(\mathbf{r}) = \underbrace{\frac{\partial}{\partial t} \mathbf{D}(\mathbf{r}, t)}_{\mathbf{0}} + \mathbf{J}(\mathbf{r}, t)$$
$$\nabla \cdot \mathbf{B}(\mathbf{r}) = 0$$

Simplified Ampère's law: The curl of the magnetic field equals the current-density

Gauss' law of magnetism: The magnetic flux density is divergence-free

The magnetic flux density is divergence-free so that it can be expressed as curl of an arbitrary vector-potential

$$\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r})$$

With this approach, we can ensure that Gauss' law for magnetism holds:

$$\nabla\cdot \mathbf{B}(\mathbf{r}) = \nabla\cdot (\nabla\times \mathbf{A}(\mathbf{r})) = 0$$

Magnetostatics – Derivation of Poisson's equation

Starting with Ampère's law

$$\nabla\times \mathbf{H}(\mathbf{r}) = \mathbf{J}(\mathbf{r})$$

we employ the material equation for magnetic fields and assume that the permeability $\mu = \mu_0 \mu_r$ is homogeneous:

 $\nabla \times \mathbf{B}(\mathbf{r}) = \mu \mathbf{J}(\mathbf{r})$

Next, we express the magnetic flux density in terms of the gradient of a vector potential

 $\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r})$

Combining both equations delivers Poisson's equation for the magnetic vector potential

$$abla imes
abla imes \mathbf{A}(\mathbf{r}) = -\Delta \mathbf{A}(\mathbf{r}) +
abla \left(
abla \cdot \mathbf{A}(\mathbf{r}) \right) = \mu \mathbf{J}(\mathbf{r})$$

Magnetostatics – Electromagnet

A possible application is the computation of magnetic fields in an electromagnet

Traditio et Innovatio

Electromagnetic waves exist with different properties - such as waves in free space

e-field (f=5) [pw] (peak)

3D Maximum [V/m]: 1.002

Abs |

5

1

Outside

Component:

Orientation:

Frequency:

Phase:

Electromagnetic waves with different properties exist - such as guided waves

Electromagnetic waves with different properties exist - such as standing waves

11.03.2017 Faculty U. van Recapit

Wave Equation arising from Maxwell's Equations

All electromagnetic waves in homogeneous media satisfy Maxwell's equation, in particular, the wave equation that we will derive here:

$$\nabla \times \mathbf{E}(\mathbf{r},t) = -\frac{\partial}{\partial t} \mathbf{B}(\mathbf{r},t) \quad |\nabla \times$$
$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r},t) = \nabla \times \left(-\frac{\partial}{\partial t} \mathbf{B}(\mathbf{r},t)\right)$$
$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r},t) = -\frac{\partial}{\partial t} \left(\nabla \times \mathbf{B}(\mathbf{r},t)\right)$$
$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r},t) = -\frac{\partial}{\partial t} \left(\nabla \times \mu \mathbf{H}(\mathbf{r},t)\right)$$
$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r},t) = -\mu \frac{\partial}{\partial t} \nabla \times \mathbf{H}(\mathbf{r},t)$$
$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r},t) = -\mu \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \mathbf{D}(\mathbf{r},t) + \mathbf{J}(\mathbf{r},t)\right)$$
$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r},t) = -\mu \frac{\partial^2}{\partial t^2} \mathbf{D}(\mathbf{r},t) - \mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r},t)$$

Wave Equation arising from Maxwell's Equations

All electromagnetic waves in homogeneous media satisfy Maxwell's equation, in particular, the wave equation – here we continue its derivation:

$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r},t) = -\mu \frac{\partial^2}{\partial t^2} \mathbf{D}(\mathbf{r},t) - \mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r},t)$$

$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r}, t) = -\varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) - \mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r}, t)$$

$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r}, t) + \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = -\mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r}, t) \qquad \text{Curl-Curl Equation}$$

$$\nabla \Big(\underbrace{\nabla \cdot \mathbf{E}(\mathbf{r},t)}_{\frac{\rho(\mathbf{r},t)}{\varepsilon}}\Big) - \Delta \mathbf{E}(\mathbf{r},t) + \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r},t) = -\mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r},t) \quad |\text{if } \rho(\mathbf{r},t) = 0$$

$$\Delta \mathbf{E}(\mathbf{r},t) - \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r},t) = \mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r},t)$$

Wave Equation (with excitation)

11.

Eigenmodes – Solutions of the Homogeneous Wave Equations

Eigenmodes are solutions of the wave equation for the non-excited, loss free and charge-free case:

$$\Delta \mathbf{E}(\mathbf{r}, t) - \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = \mathbf{0}$$

$$\Delta \mathbf{E}(\mathbf{r}) \cos(\omega t - \varphi) + \varepsilon \mu \omega^2 \mathbf{E}(\mathbf{r}) \cos(\omega t - \varphi) = \mathbf{0}$$

$$\Delta \mathbf{E}(\mathbf{r}) + \underbrace{\varepsilon \mu \omega^2}_{k^2} \mathbf{E}(\mathbf{r}) = \mathbf{0}$$

The partial differential equation comes with either of these boundary conditions:

Electric Field of some Eigenmodes in a Resonator

Field Attenuation in Conductors

Influence on Conducting Matter on Waves (I / II)

In conducting matter, Ohmic electric current densities will flow. They are proportional to the electric field strength with the conductivity σ as constant:

 $\mathbf{J}(\mathbf{r},t)=\sigma\mathbf{E}(\mathbf{r},t)$

Replacing the electric current density in the wave equation with the upper relation gives

$$\Delta \mathbf{E}(\mathbf{r},t) - \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r},t) = \mu \sigma \frac{\partial}{\partial t} \mathbf{E}(\mathbf{r},t)$$

Transforming this equation into frequency domain delivers

$$\Delta \underline{\mathbf{E}}(\mathbf{r}) + \varepsilon \mu \omega^2 \underline{\mathbf{E}}(\mathbf{r}) = j \omega \mu \sigma \underline{\mathbf{E}}(\mathbf{r})$$

Now, consider a plane wave propagation in +z – direction:

 $\underline{\mathbf{E}}(\mathbf{r}) = \mathbf{e}_x E_0 \mathrm{e}^{-j\underline{k}z}$

Plugging this into the frequency-domain representation of the wave equation gives

 $\underline{k}^2 = \varepsilon \mu \omega^2 - j \omega \mu \sigma$

Influence on Conducting Matter on Waves (II / II)

The wave number is complex valued

 $\underline{k} = k' - jk''$

with the following real and imaginary parts

$$k' = \frac{\mu\sigma\omega}{2\sqrt{-\frac{1}{2}\varepsilon\mu\omega^2 + \frac{1}{2}\sqrt{\mu^2\sigma^2\omega^2 + \varepsilon^2\mu^2\omega^4}}}$$
$$k'' = \sqrt{-\frac{1}{2}\varepsilon\mu\omega^2 + \frac{1}{2}\sqrt{\mu^2\sigma^2\omega^2 + \varepsilon^2\mu^2\omega^4}}$$

The real part describes the propagation of the wave while the imaginary part describes the exponential decay of the field strengt in the conductor

$$\underline{\mathbf{E}}(\mathbf{r}) = \mathbf{e}_x E_0 \mathrm{e}^{-j\underline{k}z} = \mathbf{e}_x E_0 \mathrm{e}^{-jk'z} \mathrm{e}^{-k''z}$$

The distance which is required for the fields to drop by a factor of e^{-1} is called penetration depth

$$\delta = \frac{1}{k''} = \frac{\sqrt{2}}{\sqrt{-\varepsilon\mu\omega^2 + \sqrt{\mu^2\omega^2\left(\sigma^2 + \varepsilon^2\omega^2\right)}}} \approx \sqrt{\frac{2}{\mu\omega\sigma}}$$

Exponential Decay of Amplitudes in Conductors

What we have done

- 1. Maxwell's equations
- 2. Electromagnetic fields in different materials material equations
- 3. Electrostatic fields
- 4. Magnetostatic fields
- 5. Electromagnetic waves
- 6. Field attenuation in conductors