Timing, Synchronization & Longitudinal Aspects

H. Damerau

CERN

CAS Course on Beam Injection, Extraction and Transfer

13 March 2017

Outline

1

- Introduction
- General concepts
 - Signals with noise, transmission of RF signals
 - Phase detectors and dividers

• Beam transfer

- Fundamental periodicity
- Transfer between circular lepton accelerators

Transfer between hadron accelerators

- Beam phase loop, bucket numbering
- Transfer process: Synchronization, transfer triggers
- Longitudinal matching
- Summary

Introduction

Introduction

- Two or more people must be synchronized to meet
 - \rightarrow Calendar item: date, time and location
 - → Typical uncertainty: some minutes

• Slightly more precision required to have a meeting with a particle beam

→ Typical uncertainty: some nanoseconds down to femtoseconds

- \rightarrow To be at the right time in the right place
- → Set conditions and generate timings and RF signals with a given time relation with respect to the beam
 → Make beam feel comfortable in its new accelerator

Timescales

Synchronization for beam transfer

• How to get the beam trough the accelerator?

• How to transfer beam from accelerator A to B?

- Beam passes many elements on its way:
 - \rightarrow RF structures \rightarrow Must be in phase
 - \rightarrow Septa, bumper and kicker magnet \rightarrow Trigger
 - → Fast beam instrumentation → **Trigger**
 - → RF systems in source and target accelerator → Correct phase with respect to beam

Particle velocity

Old television set (30 kV):

 \rightarrow Many electron accelerators at 'fixed' frequency

Synchronization needs for particle types

	Lepton accelerators	Hadron accelerators
•	Velocity v ≈ c in high energy accelerators	• Slow, even velocity change relevant to the multi-GeV range
•	Synchrotron radiation damping (mainly circular accelerators)	• Negligible or small damping from synchrotron radiation
•	 Short bunches Storage rings: ~10100 ps Linear free electron lasers: 50200 fs 	 Long bunches Synchrotrons: 11000 ns (depends on RF frequency) Linear accelerators: typically few ns
	→ Fixed frequencies→ High precision	 → Variable (sweeping) frequencies → Moderate precision

Bunch-to-bucket transfer

• Bunch from sending accelerator into the bucket of receiving

Advantages:

- \rightarrow Particles always subject to longitudinal focusing
- → No need for RF capture of de-bunched beam in receiving accelerator
- → No particles at unstable fixed point
- → Time structure of beam preserved during transfer to the next

Noise on signals

Noisy signals

- Degradation of signal quality due to noise
 - Amplitude and/or phase jitter
- What is the difference between a coherent signal and noise?

- → Amplitude of coherent, quasi monochromatic signal (at 200 MHz) is independent of observation bandwidth
- → Incoherent noise power (dominated by spectrum analyzer front-end amplifier/mixer) is proportional to bandwidth
- \rightarrow Thermal noise power $\frac{P}{\Delta f} = k_{\rm B}T = 1.38 \cdot 10^{-23} \text{ J/K} \cdot 296 \text{ K} \simeq -174 \text{ dBm/Hz}$

Analysis of phase noise

• Compare noise power with carrier power as reference

• Noise power density $\mathcal{L}(f) = \frac{\text{Power density}}{\text{Carrier power}} \left[\frac{\text{dBc}}{\text{Hz}} \right] = \frac{1}{2} S_{\phi}(f)$

 \rightarrow Its integral is the phase jitter and using $\Delta t = \frac{\Delta \phi}{2\pi f_c}$

the jitter in time becomes

$$\Delta t_{\rm rms} = \frac{1}{2\pi f_{\rm c}} \sqrt{\int_{f_1}^{f_2} S_{\phi}(f) \, df}$$

Typical phase noise plots

• Measure phase noise of a synthesized lab generator

Total

→ Convenient split to relevant ranges

31.0

Signal transmission

Transmission of reference signals

• Thermal drift of long coaxial cables or optical fibres

- Example: 2 km long RG223 cable with ~10 µs delay
- $\rightarrow \Delta T$ of only 1° C (room temperature) changes delay by ~0.5 ns
- \rightarrow 1.8° at 10 MHz (CERN PS), but 73° at 400 MHz (LHC)
- Optical fibres are typically 10...100 times more stable
- What to do if this is still not sufficient?

Transmission of reference signals

Measured drift of optical fibres over long distance standard optical fibre

- Drift by about 1 ns insufficient for requirements of setup
- → Active compensation of delay

Example: Active drift compensation

 Precise synchronization of proton beam from CERN SPS with plasma wake-field experiment AWAKE

Prototype hardware

→ Expect picosecond precision over several kilometres

D. Barrientos, J. Molendijk

16

Transmission of reference signals

• Total delay composed of coarse (steps of 10 ps) and fine ~30 ps range: $\tau = \tau_{coarse} + \tau_{fine}$

- → Precision difficult to evaluate without 2nd 'reference' link
- → Arrival of two beams in AWAKE experiment stable to better ~100 ps over months

D. Barrientos, J. Molendijk

Overview of transmission methods

H. Schlarb

Phase detection

Frequency and phase

• Two signals at different frequencies ω_1 and ω_2

- \rightarrow Phase difference, $\Delta \phi$, between both signals changes linearly
- \rightarrow **Ambiguity** to distinguish between $\Delta \phi = -\pi, \pi, -3\pi, 3\pi, ...$
- → Saw-tooth in phase means constant frequency difference

How to detect phase differences?

• Example: analogue 4 quadrant multiplier and low pass filter

How to detect phase differences?

• Example: analogue 4 quadrant multiplier and low pass filter

• Signals:

How to detect phase differences?

• Example: analogue 4 quadrant multiplier and low pass filter

Phase discriminator in approximately +/-90° range

Further phase detection techniques

Multitude of different phase discriminators

Туре	Range	Behavior
Analogue 4 quadrant multiplier	π	Sinusoidal: s _{out} ~ cos ø
Exclusive OR gate	π	Linear: $s_{out} \sim \phi - 3\pi/2$, or $s_{out} \sim -\phi + \pi/2$
Sample and hold	π	Sinusoidal: $s_{out} \sim \sin \phi$
Flip-flop phase detector	π	Linear: $s_{out} \sim \phi - \pi$
Tri-state double flip-flop	2π	Linear: $s_{out} \sim \phi$ $V(\phi_{\sigma}, \omega_{\sigma})$ $V(\phi_{R}, \omega_{R})$ $V(\phi_{R}, \omega_{R})$ $V(\phi_{R}$
Balanced optical microwave phase detector (Sagnac loop)	<π	Sinusoidal: $s_{out} \sim \sin \phi$ (clipped)

- Full phase coverage of 2π range excludes ambiguity of $\pm \pi$
- \rightarrow Avoids locking of phase loop with unwanted offset
- Measure phase at high frequencies for precision

R. Garoby

Dividers

Frequency dividers

• Generate signals using frequency division from $f_{\rm RF}$

Works (well, on paper), so what is the problem?
 → Dividers are nothing but counters! Initial value?

Synchronizing multiple dividers

• Generate signals using frequency division from $f_{\rm RF}$

- How to fix?
- Reset from master to slave divider(s) to force initial condition
- \rightarrow Never more than one divider without reset!

Multiple divider with counting offset

• Counter with programmable offset value

- \rightarrow Single counter/divider split in two output branches
- \rightarrow Impossible to lose relative phase of outputs
- \rightarrow More complicated set-up allows also $f_{\rm RF}/m$ and $f_{\rm RF}/n$, etc.

Fundamental periodicity

Example: BESSY II booster and storage ring

- Storage ring circumference 240 m, $f_{\rm RF}$ = 499.6 MHz
- Circumference ratio of Booster and storage ring: 2/5

Example: SLS booster and storage ring

- Storage ring circumference 288 m, $f_{\rm RF}$ = 499.6 MHz
- Circumference ratio of Booster and storage ring: 15/16

→ Fundamental periodicity (super-period) 16 turns of booster corresponding to 15 turns in storage ring

Fundamental periodicity for transfer

• Two accelerators with revolution periods $T_{rev,1}$ and $T_{rev,2}$

$$T_{\text{rev},2} = \frac{m}{n} T_{\text{rev},1} \quad \rightarrow \quad T_{\text{super}} = T_{\text{common}} = T_{\text{fiducial}} = m T_{\text{rev},1} = n T_{\text{rev},2}$$

- \rightarrow Beam transfer may take place at every period $mT_{rev,1}$ or $nT_{rev,2}$
- → This periodicity is, depending on the accelerator and laboratory, called super-period, common or fiducial period
- → In case of integer ratio of revolution frequencies, beam can be transferred once every turn of the larger accelerator

Sending	Receiving	Ratio	Remark
BESSY booster	BESSY SR	2/5	Fixed frequency
SLS booster	SLS SR	15/16	Fixed frequency
J-PARC RCS	J-PARC MR	2/9	Profit from ratio for bucket selection
PS booster	PS	1/4	
PS	SPS	1/11	
PS	AD	3/1	Particle type and energy change at transfer
SPS	LHC	7/27	$f_{\rm c}$ as low 1.6 kHz

Synchronous triggers

How to generate beam synchronous triggers?

→ Chains of counters to re-synchronize timings

Each step re-synchronizes with respect counter clock

- 'Start engine button' synchronous to nothing
- Complete system of two accelerators periodic with timing #1
- Timing #2 marks, e.g., a delay in number of turns
- Timing #3 counts f_{RF} clocks to fine adjust, e.g., bucket number

Synchronous trigger trees

- Timing counters may use different clocks, as long as the clocks are derived from the same source
- → Reproducible delay between clock #2 and #3
- \rightarrow Tree structures of timings

Circular electron/lepton accelerators

- Simplification for most electron accelerators:
- → Leptons are practically at speed of light
- → Synchrotron radiation damping forces bunches into buckets
- → Beam synchronous timing triggers can be derived by counting RF master clock (or its sub-multiples)
- → Everything is predictable from the beginning

→Let's get frequencies moving
Transfer between hadron accelerators

Synchronous triggers and bucket counting

37

- Circular hadron accelerators: master clock sweeps
- Need again synchronous timings with respect to beam
 → Kicker magnets
 - → Beam instrumentation
- RF manipulations require bunches in certain buckets
 - \rightarrow Beating pattern due to multiple RF harmonics

 \rightarrow Splits behaviour for different buckets

- → Bucket numbering
- Need to know longitudinal beam position for transfer

→ Where (in phase/in time) is the beam?

Phase-locked loop

- Frequency re-generation and multiplication
- Voltage controlled oscillator (VCO) locked in phase to input

- → Fixed phase relationship:
- → Optional divider:

 $\phi_{\text{out}}/n - \phi_{\text{in}} = \text{const.}$ $f_{\text{out}} = n \cdot f_{\text{in}}$

Beam phase loop

→ Phase-locked loop with beam phase as reference for RF system

Benefits of beam phase loop at transfer

- Adapt RF phase to bunch phase before beam blows-up
- \rightarrow Fast compared to timescale of synchrotron frequency, $f_{\rm s}$

- → Even large transients (injection, transition) can be controlled
- → Small longitudinal emittance blow-up

Start counting with injection

- **Start of divider/counter?** •
 - \rightarrow Get it right from injection
 - \rightarrow Use output from divider as reference for incoming beam

 $nous f_{rev}$

Start counting with injection

- Start of divider/counter?
 - \rightarrow Get it right from injection
 - → Use output from divider as reference for incoming beam
 - Before injection:
 - → Distribute delayed revolution frequency to sending accelerator
 - \rightarrow Bunches are injected synchronously with $f_{rev,delayed}$
 - \rightarrow Shifted with respect to $f_{\rm RF}$ and $f_{\rm rev}$

Start counting with injection

Beam phase loop without beam?

 \rightarrow Just replace beam by a simple RF generator!

Synchronization chain for bucket counting

45

- Incoming beam has reproducible phase with respect to RF bucket, synchronous f_{rev} and beam phase emulating generator
- → Straightforward switch to beam signals, already locked in phase

Synchronization chain for bucket counting

46

- Incoming beam has reproducible phase with respect to RF bucket, synchronous f_{rev} and beam phase emulating generator
- \rightarrow Straightforward switch to beam signals, already locked in phase
 - \rightarrow Beam phase with respect to f_{rev} always known

Bucket numbering

Bucket numbering for RF manipulations

→Must inject into the correct bucket numbers

Example: PS injection bucket selection

- Bunches must be placed into the correct buckets numbers
- Harmonic number change only for even number of bunches

→ Bucket number control during both transfers PSB → PS

→ How to handle changing number of bunches?

Intermediate summary

- Basic techniques of signal synchronizations
 → Beware of dividers
- Beam transfer between circular lepton accelerators

 → Constant frequency
 → Predictable, independently from beam
 → Fundamental periodicity
- Beam transfer between circular hadron accelerators
 → Beam is reference, keep track

Timing, Synchronization & Longitudinal Aspects II

H. Damerau

CERN

CAS Course on Beam Injection, Extraction and Transfer

13 March 2017

Outline

- Introduction
- General concepts
 - Signals with noise, transmission of RF signals
 - Phase detectors and dividers
- Beam transfer
 - Fundamental periodicity
 - Transfer between circular lepton accelerators

Transfer between hadron accelerators

- Beam phase loop, bucket numbering
- Transfer process: Synchronization, transfer triggers
- Longitudinal matching
- Summary

Synchronization and transfer

Steps of beam transfer synchronization

- Set bending fields in both accelerators the to same magnetic rigidity
 - Synchronize sending or receiving accelerator

→ Ready for transfer

- Start counting clock of fundamental periodicity
- Trigger bump and septum elements
- Start counting *f*_{rev} clock (sending/receiving accelerator)
- Start counting bucket clock
- Fine delay

1.

2.

3.

4.

5.

Ejection and injection kickers triggers

→ Transfer

Match bending field of both accelerator

Same magnetic rigidity pB of sending (1) and receiving (2) accelerators

$$F_Z = F_L \quad \rightarrow \quad \frac{p}{q} = \rho B \qquad \qquad \rho_1 B_1 = \rho_2 B_2$$

→ **No rule without exception:** Particle type change at transfer

- Proton to anti-proton conversion, e.g.,
 120 GeV/c ≠ 8 GeV/c (Fermilab), 26 GeV/c ≠ 3.6 GeV/c (CERN),
- Charge state change at transfer, e.g. LHC ion injector chain Pb54+ in LEIR/PS → Pb82+ (in SPS)

Match RF frequencies

• **RF frequencies of both accelerators must have appropriate** ratio assuming that the beam velocity is unchanged

- \rightarrow Common choice of most circular electron accelerators $f_{\text{RF},1} = f_{\text{RF},2}$
- \rightarrow Harmonic number, *h*, proportional to circumference, $2\pi R$
- → Again no rule without exception: Production of antiprotons in target in transfer line

Distance between bunches

- Distance of bunches (bunch spacing, τ_{bunch}) from source accelerator must match distance of buckets
- Example: $\tau_{\text{bunch}} = 2/f_{\text{RF}}$
- Example: $\tau_{\text{bunch}} = 5/f_{\text{RF}}$

- Common case: $f_{\text{RF},2} = n \cdot f_{\text{RF},1}$
 - $\rightarrow f_{\text{RF,LHC}} = 2 \cdot f_{\text{RF,SPS}} \text{ and } f_{\text{RF,SPS}} = 5 \cdot f_{\text{RF,PS}}$
- → Several exceptional cases:
 - → No bunch distance with single bunch → more flexibility
 - → Adjust bunch spacing using multiple RF systems

Exception: double-harmonic RF at transfer

58

- Was used at CERN PSB-to-PS to transfer 2 bunches at once
- Circumference ratio $C_{PS}/C_{PSB} = 4$
- \rightarrow Ratio virtually moved to 2/7: use $h_{\rm RF} = 2 + 1$

Steps of beam transfer synchronization

• Synchronize sending or receiving accelerator

→ Ready for transfer

- Start counting clock of fundamental periodicity
 - Trigger bump and septum elements
 - Start counting *f*_{rev} clock (sending/receiving accelerator)
 - Start counting bucket clock
 - Fine delay

2.

3.

4.

5.

Ejection and injection kickers triggers

→ Transfer

Before synchronization

- Even with magnetic rigidity matched: revolution frequencies not at theoretical ratio due to imperfections
- → Bunches and buckets slip in phase

But: important question left unanswered!

Who is the boss?

- Transfer beam to a downstream machine: Bunch-to-bucket
- 1. Protons between synchrotrons \rightarrow Synchronize accelerators

2. Move relative phase of RF together with beam between both machines to hit the empty buckets

Choice of master for transfer synchronization⁶²

- Sending accelerator is master of transfer
 - \rightarrow Receiving accelerator adapts to incoming beam
 - → Common choice when receiving accelerator has no beam before transfer
 - → Interesting for only single beam transfer, e.g., protons from PS → AD for antiproton production
- Receiving accelerator is master of transfer
 - \rightarrow Sending accelerator adapts to incoming beam
 - → Common choice when receiving accelerator has already beam before transfer (multiple injections)
 - → Most common at CERN, e.g., proton injector chain PSB → PS → SPS → LHC

Before synchronization

• Simple test case of circumference ratio 2: $C_2 = 2C_1$

Source accelerator is master at transfer

Target accelerator is master at transfer

Before synchronization

• Simple test case of circumference ratio 2: $C_2 = 2C_1$

\rightarrow Synchronize both accelerator to force: $f_{rev,1} = 2f_{rev,2}$

Simple synchronization process

- Move beam to off-momentum (*B* const.): $\frac{df}{f} = \frac{\gamma_{tr}^2 \gamma^2}{\gamma^2 \gamma_{tr}^2} \frac{dp}{p}$ 1.
 - → Well defined frequency difference between accelerators
- Measure azimuth error, when beam at correct azimuth 2.
 - → Close synchronization loop
 - \rightarrow Moves beam to ref. momentum

Example: Synchronization of SPS to LHC

→ LHC is master for beam transfer from SPS

- → Coarse and fine re-phasing to perfectly align bunches with respect to target buckets (400 MHz, 2.5 ns) in LHC
- → Complete synchronization process takes about 500 ms

Example: Fast cogging of booster at FNAL

- Rapid cycling synchrotron from 400 MeV to 8 GeV
- Total cycle length is only 25 ms → How to synchronize fast?

- 1. Measure beam phase early in the cycle and predict azimuth at flat-top
- 2. Apply radial/frequency bumps already during acceleration

67

After synchronization

• Simple test case of circumference ratio 2: $C_2 = 2C_1$

Source or target accelerator is master at transfer

- \rightarrow Revolution frequencies coupled: $f_{rev,1} = 2f_{rev,2}$
- \rightarrow Transfer can be triggered every turn of the target accelerator

Example: Ejection bucket numbering in PS⁶⁹

- Azimuthal position of 1st bunch ambiguous after RF manipulations
- → Number of buckets and bunches changes during acceleration
- But: Synchronous $f_{rev,PS}$ signal with reproducible phase to beam
- → 'Re-numbering' of buckets by shifting reference from SPS

 \rightarrow Shift of external reference $f_{rev,PS}$ adjustable in SPS bucket units \rightarrow Synchronize external and beam synchronous $f_{rev,PS}$

Example: Ejection synchronization chain

70

 \rightarrow Multiple 'batches' are transferred from PS to 11 times larger SPS

Steps of beam transfer synchronization

• Synchronize sending or receiving accelerator

→ Ready for transfer

- Start counting clock of fundamental periodicity
- Trigger bump and septum elements
- Start counting f_{rev} clock (sending/receiving accelerator)
- Start counting bucket clock
- Fine delay

2.

Ejection and injection kickers triggers

→ Transfer
Synchronous triggers

- \rightarrow Cascade of trigger counters for fast transfer elements
- Very similar to transfer with lepton synchrotrons

Steps of beam transfer synchronization

- Set bending fields in both accelerators to the same magnetic rigidity
- Synchronize sending or receiving accelerator

→ Ready for transfer

- Start counting clock of fundamental periodicity
- Trigger bump and septum elements
- Start counting *f*_{rev} clock (sending/receiving accelerator)
- Start counting bucket clock
- Fine delay

3.

4.

5.

• Ejection and injection kickers triggers

→ Transfer

Example: Turn count control at extraction

74

- J-PARC rapid cycling synchrotron and main ring ratio: 4.5
- → Transfer possible once every two turns of main ring
- → Transfer of 4 times two bunches

→ Beam synchronous timing can also be used to control target azimuth (bucket number) of transferred beam

Energy matching

Energy matching of incoming beam

- Ideal beam circulates with the expected revolution frequency $(\Delta f = \mathbf{o})$ on the central orbit $(\Delta R = \mathbf{o}) \rightarrow \Delta p = \mathbf{o}$
- **Real beam** behaviour is calculated using

Variables	Equations
B, p, R	$\frac{dp}{p} = \gamma_{\rm tr}^2 \frac{dR}{R} + \frac{dB}{B}$
f,p,R	$\frac{dp}{p} = \gamma^2 \frac{df}{f} + \gamma^2 \frac{dR}{R}$
B,f,p	$\frac{dB}{B} = \gamma_{\rm tr}^2 \frac{df}{f} + \frac{\gamma^2 - \gamma_{\rm tr}^2}{\gamma^2} \frac{dp}{p}$
B,f,R	$\frac{dB}{B} = \gamma^2 \frac{df}{f} + (\gamma^2 - \gamma_{\rm tr}^2) \frac{dR}{R}$

Energy matching of incoming beam

- Ideal beam circulates with the expected revolution frequency $(\Delta f = \mathbf{o})$ on the central orbit $(\Delta R = \mathbf{o}) \rightarrow \Delta p = \mathbf{o}$
- **Real beam** behaviour is calculated using

 \rightarrow Example: at fixed magnetic field ($\Delta B = o$), revolution frequency and radial position are directly linked

Energy matching without RF

• Observe de-bunching (no RF) with periodic trigger at $n \cdot f_{rev}$ with the expected f_{rev} ?

 \rightarrow Does the beam circulate

at the central orbit?

Changing *B* alone insufficient, since *f*_{rev} and *R* linked (const. *p*)
 → Change two parameters to fix the others, e.g., *B* and *p* or *B* and *f* → All parameters are constrained

Longitudinal matching equations

Recap of longitudinal beam dynamics (1)

For a single harmonic RF system

$$H\left(\phi,\frac{\Delta E}{\omega_{\rm rev}}\right) = -\frac{1}{2}\frac{h\eta\omega_{\rm rev}}{pR}\left(\frac{\Delta E}{\omega_{\rm rev}}\right)^2 + \frac{qV}{2\pi}\left[\cos\phi - \cos\phi_0 + (\phi - \phi_0)\sin\phi_0\right]$$

with $\phi = \phi_0 + \Delta \phi$ it becomes $H\left(\Delta\phi, \frac{\Delta E}{\omega_{\text{rev}}}\right) = -\frac{1}{2} \frac{h\eta\omega_{\text{rev}}}{pR} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right)^2 + \frac{qV}{2\pi} \left[\cos(\phi_0 + \Delta\phi) - \cos\phi_0 + \Delta\phi\sin\phi_0\right]$ using $\cos(\phi_0 + \Delta\phi) = \cos\phi_0 \cos\Delta\phi - \sin\phi_0 \sin\Delta\phi$ $\simeq \cos\phi_0 \left(1 - \frac{1}{2}\Delta\phi^2\right) - \sin\phi_0\Delta\phi$

The Hamiltonian simplifies to

$$H\left(\Delta\phi, \frac{\Delta E}{\omega_{\rm rev}}\right) \simeq -\frac{1}{2} \frac{h\eta\omega_{\rm rev}}{pR} \left(\frac{\Delta E}{\omega_{\rm rev}}\right)^2 - \frac{1}{2} \frac{qV}{2\pi} \Delta\phi^2 \cos\phi_0$$

 $\eta = \frac{1}{\gamma^2} - \frac{1}{\gamma_{\star}^2}$

Recap of longitudinal beam dynamics (2)

81

$$H\left(\Delta\phi,\frac{\Delta E}{\omega_{\rm rev}}\right) \simeq -\frac{1}{2}\frac{h\eta\omega_{\rm rev}}{pR} \left(\frac{\Delta E}{\omega_{\rm rev}}\right)^2 - \frac{1}{2}\frac{qV}{2\pi}\Delta\phi^2\cos\phi_0$$

- In the centre of the bucket, particles move on elliptical trajectories in $\Delta \phi \Delta E$ phase space
- Hamiltonian is constant on these trajectories

→ Aspect ratio of the elliptical trajectories must be identical in sending and receiving accelerator

Physical aspect ratio of bucket trajectories (1)⁸²

- Compare two particles on the same trajectory
 - 1. No phase deviation 2. No energy deviation

 $\rightarrow \Delta \phi$ depends on frequency \rightarrow use physical duration $\Delta \tau$ instead

$$\Delta \phi = 2\pi f_{\rm RF} \Delta \tau = h \omega_{\rm rev} \Delta \tau$$

 \rightarrow Also replacing $pR = \frac{E\beta^2}{\omega_{rev}}$

Physical aspect ratio of bucket trajectories $(2)^{8_3}$

\rightarrow Hamiltonian equal for both extreme particles, hence

$$-\frac{1}{2}\frac{h\eta\omega_{\rm rev}^2}{E\beta^2}\left(\frac{\Delta E}{\omega_{\rm rev}}\right)^2 = -\frac{1}{2}\frac{qV}{2\pi}h^2\omega_{\rm rev}^2\Delta\tau^2\cos\phi_0$$

which can be simplified to

$$\left(\frac{\Delta E}{\Delta \tau}\right)^2 = \frac{qV}{2\pi} E\beta^2 h\omega_{\rm rev}^2 \frac{\cos\phi_0}{\eta}$$

 \rightarrow This aspect ratio $\Delta E/\Delta \tau$ must remain unchanged at transfer

Matched bunch-to-bucket transfer

 $\rightarrow \text{Equating} \quad \left(\frac{\Delta E}{\Delta \tau}\right)^2 = \frac{qV}{2\pi} E\beta^2 h \omega_{\text{rev}}^2 \frac{\cos \phi_0}{\eta} \quad \text{for sending (1) and}$ receiving (2) accelerator gives a general matching condition

$$q_1 V_1 E_1 \beta_1^2 h_1 \omega_{\text{rev},1}^2 \frac{\cos \phi_{0,1}}{\eta_1} = q_2 V_2 E_2 \beta_2^2 h_2 \omega_{\text{rev},2}^2 \frac{\cos \phi_{0,2}}{\eta_2}$$

→ For most cases (fixed energy and no particle type change) $q_1 = q_2$ $\beta_1 = \beta_2$ $E_1 = E_2$ $\cos \phi_{0,1} = \cos \phi_{0,2} = 1$

It simplifies to the voltage ratio between RF systems:

$$\frac{V_1}{V_2} = \left(\frac{R_1}{R_2}\right)^2 \left|\frac{\eta_1}{\eta_2}\right| \frac{h_2}{h_1}$$

Simple matched transfer example

- Transfer between to accelerators with $f_{\rm RF,2} = f_{\rm RF,1}/2$
- \rightarrow Phase space aspect ratio:

$$\Delta E = \beta \omega_{\rm rev} \sqrt{\frac{qV}{2\pi} Eh \left| \frac{\cos \phi_0}{\eta} \right|} \cdot \Delta \tau$$

Simple matched transfer example

- Transfer between to accelerators with $f_{\rm RF,2} = f_{\rm RF,1}/2$
- → Phase space aspect ratio:

$$\Delta E = \beta \omega_{\rm rev} \sqrt{\frac{qV}{2\pi} Eh \left| \frac{\cos \phi_0}{\eta} \right|} \cdot \Delta \tau$$

 \rightarrow Obvious case of matched bunch-to-bucket transfer

Longitudinal matching

Longitudinal matching at injection

• Long. emittance is only preserved for correct RF voltage

→ Bunch is fine, longitudinal emittance remains constant

ϕ [rad] \rightarrow **Dilution of bunch results**

→ Dilution of bunch results in increase of long. emittance

Longitudinal matching

Longitudinal mismatch

→ Bunch is fine, longitudinal emittance remains constant → Dilution of bunch results in increase of long. emittance

Matching of phase and energy

• What is the difference?

- \rightarrow -45° phase error at injection
- → Can be easily corrected by bucket phase

- \rightarrow Equivalent energy error
- → Phase does not help: requires beam energy change

Example: mismatch at injection to PS

• Deliberate longitudinal mismatch at injection for blow-up

→ Intentional mismatch contributes to controlled longitudinal blow-up **Bunch length evolution**

No problem with electron accelerators

- Synchrotron radiation damping matches bunches by itself
- Phase and energy oscillations decay

92

- Basic techniques of signal synchronizations
 → Beware of dividers
- Beam transfer between circular lepton accelerators
 → Constant frequency
- Beam transfer between circular hadron accelerators
 → Variable frequency
 → Moving target
- Follow the beam

 \rightarrow No need to measure \rightarrow keep track \rightarrow Matching between accelerators

A big Thank You

to all colleagues providing support, material and feedback

Masamitsu Aiba, Maria-Elena Angoletta, Kalantari Babak, Diego Barrientos, Philippe Baudrenghien, Chandra Bhat, Thomas Bohl, Craig Drennan, Roland Garoby, Christopher Gough, Steven Hancock, Stephan Hunziker, Andreas Jankowiak, Boris Keil, Karim Lihem, J. Molendijk, Holger Schlarb, Fumihiko Tamura, Frank Tecker, Daniel Valuch and many more...

Thank you very much for your attention!

References

- R. Garoby, Timing Aspects of Bunch Transfer Between Circular Machines, State of the Art in the PS Complex, CERN PS/RF/Note 84-6, 1984, <u>https://cds.cern.ch/record/2255149/files/Garoby_PS-RF-Note84-6.pdf</u>
- R. Garoby, Low level RF building blocks, CAS course, 1991, http://cds.cern.ch/record/225609
- A. Gallo, Timing and Synchronization, CAS course, 2015, <u>http://cas.web.cern.ch/cas/Poland2015/Lectures/Presentations/99Thursday08/</u> <u>Gallo.pdf</u>
- H. Schlarb, Timing and Synchronization, CAS course, 2013, https://cas.web.cern.ch/cas/Norway-2013/Lectures/Schlarb.pptx
- F. Loehl, Timing and Synchronization, CAS course 2011, http://cas.web.cern.ch/cas/Greece-2011/Lectures/Loehl.pdf
- C. Bovet et al., A selection of formulae and data useful for the design of A.G. synchrontrons, CERN-MPS-SI-INT-DL-70-4, 1970, <u>http://cds.cern.ch/record/104153/files/cm-p00047617.pdf</u>
- S. Hancock et al., A Straightforward Procedure to achieve Energy Matching Between PSB and PS, CERN-AB-Note-2008-042, 2008, <u>http://cds.cern.ch/record/1125475/files/AB-Note-2008-042%20MD.pdf</u>
- S.Hancock, Energy Matching Between LEIR and PS, CERN-ACC-NOTE-2015-0019, <u>http://cds.cern.ch/record/2038693/files/CERN%20ACC%202015%20019.pdf</u>

Normalized Hamiltonian representation

97

• For a single harmonic RF system $H(\phi, \dot{\phi}) = \frac{1}{2}\dot{\phi}^2 + \frac{\omega_s^2}{\cos\phi_0} \left[\cos\phi_0 - \cos\phi + (\phi - \phi_0)\sin\phi_0\right]$

with $\phi = \phi_0 + \Delta \phi$ it becomes

$$H(\Delta\phi,\dot{\phi}) = \frac{1}{2}\dot{\phi}^2 + \frac{\omega_s^2}{\cos\phi_0} \left[\cos\phi_0 - \cos(\phi_0 + \Delta\phi) - \Delta\phi\sin\phi_0\right]$$

using
$$\cos(\phi_0 + \Delta \phi) = \cos \phi_0 \cos \Delta \phi - \sin \phi_0 \sin \Delta \phi$$

 $\simeq \cos \phi_0 \left(1 - \frac{1}{2}\Delta \phi^2\right) - \sin \phi_0 \Delta \phi$

this simplifies to $H(\Delta\phi,\dot{\phi})\simeq \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}\omega_s^2\Delta\phi^2$