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Summary of the lecture:
• Introduction
• Linac: Phase stability 
• Synchrotron:

• Synchronous Phase
• Dispersion Effects in Synchrotron
• Stability and Longitudinal Phase Space Motion
• Equations of motion

• Injection Matching
• Hamiltonian of Longitudinal Motion

• Appendices: some derivations and details

More related lectures:
• Injection: Electron Beams – M. Aiba
• Longitudinal Aspects I + II – Heiko Damerau
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The accelerating system will depend upon the evolution of the particle velocity: 
• electrons reach a constant velocity (~speed of light) at relatively low energy
• heavy particles reach a constant velocity only at very high energy

-> we need different types of resonators, optimized for different velocities
-> the revolution frequency will vary, so the RF frequency will be changing 

Particle types and acceleration 

Particle rest mass:
electron 0.511 MeV
proton 938 MeV
239U ~220000 MeV
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gamma factor:
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p = mv = E
c2
βc = β E

c
= βγm0c

Momentum:

E =γm0c
2Total Energy:
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Hence, it is necessary to have an electric field E
(preferably) along the direction of the initial momentum (z),
which changes the momentum p of the particle.

In relativistic dynamics, total energy E and momentum p are linked by

The rate of energy gain per unit length of acceleration (along z) is then:

and the kinetic energy gained from the field along the z path is:

Acceleration + Energy Gain

To accelerate, we need a force in the direction of motion!

dp
dt
= eEz

Newton-Lorentz Force 
on a charged particle:

 


F = d

p
dt

= e

E + v ×


B( ) 2nd term always perpendicular 

to motion => no acceleration

cpEE 222
0

2 += ⇒ dE=vdp 2EdE=2c2pdp⇔ dE = c2mv / E dp = vdp( )

dE
dz

=v dp
dz
=
dp
dt
=eEz

dW =dE=qEz dz W =q Ez dz∫ = qV - V is a potential
- q the charge

May the force
be with you!
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Summary: Relativity + Energy Gain

RF Acceleration

(neglecting transit time factor)

The field will change during the 
passage of the particle through the 
cavity
=> effective energy gain is lower

Newton-Lorentz Force

Relativistics Dynamics

cpEE 222
0

2 += dpvdE=

 
dE
dz

=v dp
dz
=

dp
dt
=eEz

 dE=dW =eEz dz  
W =e Ez dz∫

 Ez = Êz sinω RFt= Êz sinφ t( )

 Êz dz=V̂∫

fsinV̂eW =

 


F = d

p
dt

= e

E + v ×


B( ) 2nd term always perpendicular 

to motion => no acceleration

p = mv = E
c2
βc = β E

c
= βγm0c
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L
vs

RF pw 2=

Synchronism condition

RFsRFs TvL lb==

( )Lg <<

Radio Frequency (RF) acceleration: Alvarez Structure

LINAC 1 (CERN)

g

L1 L2 L3 L4 L5

RF generator

Used for protons, ions (50 – 200 MeV, f ~ 200 MHz)

Electrostatic acceleration limited by insulation possibilities => use RF fields

Note: - Drift tubes become longer for higher velocity

- Acceleration  only for bunched beam (not continuous)
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1. For circular accelerators, the origin of time is taken at the zero crossing of the RF 
voltage with positive slope

Time t= 0 chosen such that: 

1

f1

tRFwf =

E1(t) = E0 sin ωRF t( )

E1 2

f2

tRFwf =

E2 (t) = E0 cos ωRF t( )

2E

2. For linear accelerators, the origin of time is taken at the positive crest of the RF 
voltage

Common Phase Conventions

3. I will stick to convention 1 in the following to avoid confusion
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Let’s consider a succession of accelerating gaps, operating in the 2π mode, 
for which the synchronism condition is fulfilled for a phase FFs .

eVs = eV̂ sinΦs
is the energy gain in one gap for the particle to reach the
next gap with the same RF phase: P1 ,P2, …… are fixed points.

Principle of Phase Stability (Linac)

If an energy increase is transferred into a velocity increase  => 
M1 & N1 will move towards P1 => stable
M2 & N2 will go away from P2 => unstable

(Highly relativistic particles have no significant velocity change)

For a 2π mode, 
the electric field 
is the same in all 
gaps at any given 
time.

energy
gain lateearly
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Circular accelerators

Cyclotron (not covered here)

Synchrotron
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Synchronism condition

1. Constant orbit during acceleration

2. To keep particles on the closed orbit, 
B should increase with time

3. w and wRF increase with energy

RF generatorRF cavity

RF
s

RFs

Th
v
R

ThT

=

=
p2

h integer,
harmonic number:
number of RF cycles
per revolution

Circular accelerators: The Synchrotron

RF frequency can be 
multiple of revolution frequency

𝜔𝜔"# = ℎ𝜔𝜔

B

injection extraction

r

R=C/2π

E Bending 
magnet

bending
radius
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PS (CERN)
Proton Synchrotron © CERN Geneva

Examples of different 
proton and electron 

synchrotrons at CERN

+ LHC (of course!)

LEAR (CERN)
Low Energy Antiproton Ring

© CERN Geneva

© CERN Geneva

EPA (CERN)
Electron Positron Accumulator

Circular accelerators: The Synchrotron
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The Synchrotron – LHC Operation Cycle
The magnetic field (dipole current) is increased during the acceleration.
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Energy ramping by increasing the B field (frequency has to follow v):

  
p = eBρ ⇒

dp

dt
= eρ B ⇒ (Δp)turn = eρ BTr =

2π eρ R B

v

Since:  E
2 = E0

2 + p2c2 ⇒ ΔE = vΔp

• The number of stable synchronous particles is equal to the 
harmonic number h.  They are equally spaced along the circumference.

• Each synchronous particle satisfies the relation p=eBr. 
They have the nominal energy and follow the nominal trajectory.

turn
ΔE( ) =

s
ΔW( ) =2π eρR B = eV̂ sin sφ

Stable phase φs changes during energy ramping! 

RF
s V

BR ˆ2sin
!

rpf = ÷÷
ø

ö
çç
è

æ
=

RF
s V

BR ˆ2arcsin
!

rpf

The Synchrotron – Energy ramping
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During the energy ramping, the RF frequency 
increases to follow the increase of the 
revolution frequency :

Since the RF frequency must follow the variation 
of the B field with the law

E 2 = (m0c
2 )2 + p2c2

Hence: ( using )fRF (t)
h

=
v(t)
2πRs

=
1
2π

ec2

Es (t)
ρ
Rs
B(t) p(t) = eB(t)ρ, E =mc2

fRF (t)
h

=
c

2πRs
B(t)2

(m0c
2 / ecρ)2 +B(t)2

!
"
#

$
%
&

1
2

This asymptotically tends towards when B becomes large 
compared to
which corresponds to  

fr →
c

2πRsm0c
2 / (ecρ)

v→ c

The Synchrotron – Frequency change

𝜔𝜔 =
𝜔𝜔"#

ℎ
= 𝜔𝜔(𝐵𝐵, 𝑅𝑅*)
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Dispersion Effects in a Synchrotron
A particle slightly shifted in momentum will have a 

• dispersion orbit and a different orbit length

• a different velocity.

As a result of both effects the revolution 
frequency changes with a “slip factor η”:

p=particle momentum
R=synchrotron physical radius

fr=revolution frequency

E+dE

E
cavity

Circumference

2pR

η =

d fr
fr

d p
p

⇒

𝛼𝛼- =
𝑑𝑑𝑑𝑑

𝐿𝐿0
𝑑𝑑𝑑𝑑

𝑝𝑝0
Effect from orbit defined by Momentum compaction factor:

Property of the beam optics:
(derivation in Appendix)

Note: you also find η defined with a minus sign!

𝛼𝛼- =
1
𝐿𝐿
3

𝐷𝐷5(𝑠𝑠)
𝜌𝜌(𝑠𝑠)

𝑑𝑑𝑠𝑠8
9
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Dispersion Effects – Revolution Frequency
The two effects of the orbit length and the particle velocity

change the revolution frequency as:

 

p = mv = βγ E0
c

⇒
dp
p
=
dβ
β
+
d 1− β 2( )−

1
2

1− β 2( )−
1
2
= 1− β 2( )−1

γ 2
  

dβ
β

definition of momentum 
compaction factor

𝜂𝜂 =
1
𝛾𝛾<

− 𝛼𝛼- 𝛾𝛾> =
1
𝛼𝛼-

?

p
dp

f
df
r

r ÷
ø
ö

ç
è
æ -= ag 2
1

c

fr =
βc
2πR

⇒
dfr
fr
=
dβ
β
−
dR
R
=
dβ
β
−α

dp
pc

𝜂𝜂 =
1
𝛾𝛾<

−
1
𝛾𝛾><

At transition energy, 𝜂𝜂 = 0,	the velocity change and the path length 
change with momentum compensate each other. So the revolution 
frequency there is independent from the momentum deviation.

Slip 
factor: with or 
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Phase Stability in a Synchrotron 

From the definition of hh it is clear that an increase in momentum gives
- below transition (η > 0) a higher revolution frequency
(increase in velocity dominates) while

- above transition (η < 0) a lower revolution frequency (v » c and longer path)
where the momentum compaction (generally > 0) dominates.

Stable synchr. Particle 
for h < 0

above transition
hh > 0

energy
gain

lateearly

𝜂𝜂 =
1
𝛾𝛾<

− 𝛼𝛼-
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Crossing Transition
At transition, the velocity change and the path length change with 
momentum compensate each other. So the revolution frequency there is 
independent from the momentum deviation.

Crossing transition during acceleration makes the previous stable 
synchronous phase unstable. The RF system needs to make a rapid change 
of the RF phase, a ‘phase jump’.

In the PS: γt is at ~6 GeV
In the SPS: γt= 22.8, injection at γ=27.7 

=> no transition crossing!
In the LHC: γt is at ~55 GeV, also far below injection energy 

Transition crossing not needed in leptons machines, why?

𝛼𝛼-~
1
𝑄𝑄5
< 𝛾𝛾> =

1
𝛼𝛼-

? ~𝑄𝑄5
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f2

ff22 - The particle is decelerated
- decrease in energy - decrease in revolution frequency
- The particle arrives later – tends toward ff00

FF11 - The particle B is accelerated
- Below transition, an energy increase means an increase in revolution frequency
- The particle arrives earlier – tends toward ff00

f1

f0

RFV

tRFwf =

Dynamics: Synchrotron oscillations

Simple case (no accel.): B = const., below transition 

The phase of the synchronous particle must therefore be ff00 = 0.

B

𝛾𝛾 < 𝛾𝛾>
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1st revolution period

V

time

A

B

Synchrotron oscillations

100th revolution period200th revolution period300th revolution period400th revolution period500th revolution period600th revolution period700th revolution period800th revolution period

Particle B is performing Synchrotron Oscillations around synchronous 
particle A.

The amplitude depends on the initial phase and energy.

The oscillation frequency is much slower than in the transverse plane.
It takes a large number of revolutions for one complete oscillation.
Restoring electric force smaller than magnetic force.
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Cavity voltage

Potential well

- 200 - 100 100 200

- 200000

- 100000

100000

200000

@

- 200 - 100 100 200

100000

200000

300000

400000

A

B

The Potential Well 

phase
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DE, Dp/p

f

Emittance: phase space area including 
all the particles 

NB: if the emittance contour correspond to a 
possible orbit in phase space, its shape does not 
change with time (matched beam) 

DE, Dp/p

f

acceleration

deceleration

move 
backward

move 
forward

The particle trajectory in the 
phase space (Dp/p, f) describes 
its longitudinal motion.

reference

Longitudinal phase space

The energy – phase oscillations can be drawn in phase space:
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Dt (or f)

DE higher energy

late arrival

lower energy

early arrival

Particle B performs a synchrotron oscillation around synchronous particle A.

Plotting this motion in longitudinal phase space gives:

Longitudinal Phase Space Motion
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f1

f0

RFV

tff2

p
pD

f

Phase space picture

Synchrotron oscillations – No acceleration

separatrix

stable region

unstable region
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Synchrotron motion in phase space

The restoring force
is non-linear.
Þ speed of motion

depends on 
position in 
phase-space

(here shown for a 
stationary bucket) 

Heiko
Damerau
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Bucket area: area enclosed
by the separatrix
The area covered by particles is
the longitudinal emittance.

DDE-ff phase space of a stationary bucket
(when there is no acceleration)

Dynamics of a particle
Non-linear, conservative
oscillator ® e.g. pendulum

Particle inside
the separatrix:

Particle at the
unstable fix-point

Particle outside          
the separatrix:

Synchrotron motion in phase space
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Bucket area = longitudinal Acceptance [eVs]
Bunch area = longitudinal beam emittance = 4pp σE σt [eVs]

DE

DDt (or ff)

DE

Dt

Bunch

Bucket

(Stationary) Bunch & Bucket

The bunches of the beam fill usually a part of the bucket area.

Attention: Different definitions are used!
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fs

RFV

tRFwf =

f

p
pD

f

ss fpff -<<

stable region

unstable region
separatrix

The symmetry of the 
case B = const. is lost

Synchrotron oscillations (with acceleration)

2

1

Case with acceleration B increasing

Phase space picture

𝛾𝛾 < 𝛾𝛾>
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RF Acceptance versus Synchronous Phase 

The areas of stable motion 
(closed trajectories) are 
called “BUCKET”. The 
number of circulating 
buckets is equal to “h”.

The phase extension of the 
bucket is maximum for 
ffs =180º (or 0°) which 
means no acceleration.

During acceleration, the 
buckets get smaller, both 
in length and energy 
acceptance.

=> Injection preferably 
without acceleration.
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Synchrotron radiation energy-loss energy dependant:

During one period of synchrotron oscillation:

- when the particle is in the upper half-plane, it loses more energy per turn, 
its energy gradually reduces

- when the particle is in the lower half-plane, it loses less energy per turn, 
but receives U0 on the average, so its energy deviation gradually reduces

The phase space trajectory spirals towards the origin (limited by quantum 
excitations)

=> The synchrotron motion is damped toward an equilibrium bunch length and 
energy spread.

More details in tomorrow’s  lecture
on ‘Injection Electron Beams’

Longitudinal Motion with Synchrotron Radiation 

U0 =
4
3
π

re
m0c

2( )3
E4

ρ

  U > U0

  U < U0

ΔE

f

   
st = a

Ws

se
E
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Longitudinal Dynamics in Synchrotrons

Now we will look more quantitatively at the  “synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled variables, 
the energy gained by the particle and the RF phase experienced by the 
same particle. 
Since there is a well defined synchronous particle which has always the 
same phase ffs, and the nominal energy Es, it is sufficient to follow other 
particles with respect to that particle.
So let’s introduce the following reduced variables:

revolution frequency :             Dfr = fr – frs

particle RF phase     :              DDff = ff - ffs

particle momentum   :              Dp = p - ps

particle energy         :              DE = E – Es

azimuth angle            :            DDqq = qq - qqs
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Equations of Longitudinal Motion

( )s
rs

VeE
dt
d ffwp sinsinˆ2 -=÷

ø
ö

ç
è
æ D( ) fhw

f
hww

!
rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE -=D-=D

deriving and combining

( ) 0sinsin2
ˆ =-+úû

ù
êë
é

s
rs

ss Ve
dt
d

h
pR

dt
d ffp

f
hw

This second order equation is non linear. Moreover the parameters 
within the bracket are in general slowly varying with time.

We will simplify in the following…

In these reduced variables, the equations of motion are (see Appendix):
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Small Amplitude Oscillations

( ) 0sinsincos
2

=-W+ s
s

s ffff!!

(for small DDff)

 
φ + Ωs

2Δφ = 0

ss

srs
s pR

Veh
p

fhw
2

cosˆ
2=Wwith

Let’s assume constant parameters Rs, ps, wws and hh:

( ) fffffff D@-D+=- ssss cossinsinsinsin
Consider now small phase deviations from the reference particle:

and the corresponding linearized motion reduces to a harmonic oscillation:

where WWs is the synchrotron angular frequency. 

The synchrotron tune 𝜈𝜈* is the number of synchrotron oscillations per 
revolution: 

𝜈𝜈* = Ω*/𝜔𝜔H

See Appendix for large amplitude treatment and further details.



CAS Beam Inj., Extr. and Transfer, Erice, March 2017 34

Injection: Effect of a Mismatch
Injected bunch: short length and large energy spread
after 1/4 synchrotron period:  longer bunch with a smaller energy spread.

W W

ff ff

For larger amplitudes, the angular phase space motion is slower 
(1/8 period shown below)    => can lead to filamentation and emittance growth

stationary bucket accelerating bucket 

W.Pirkl

RFV

ϕ

restoring force is
non-linear 

W W

ff ff
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Effect of a Mismatch (2)

Evolution of an injected beam for the first 100 turns.

For a matched transfer, the emittance does not grow (left).

matched beam mismatched beam – bunch length
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Effect of a Mismatch (3)

Evolution of an injected beam for the first 100 turns.

For a mismatched transfer, the emittance increases (right).

matched beam mismatched beam – phase error
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Bunch Rotation

Phase space motion can be used to make short bunches.

Start with a long bunch and extract or recapture when it’s short.

initial beam
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Capture of a Debunched Beam with Fast Turn-On
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Capture of a Debunched Beam with Adiabatic Turn-On
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Potential Energy Function 

( )ff F
dt
d =2
2

( ) ff ¶
¶-= UF

( ) ( ) FdFU s
s

s
00

2
sincoscos -ò +W-=-= f ffffff

The longitudinal motion is produced by a force that can be derived from 
a scalar potential:

The sum of the potential 
energy and kinetic energy is 
constant and by analogy 
represents the total energy 
of a non-dissipative system.
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Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the 1st order 
equations:

The two variables f,W are canonical since these equations of 
motion can be derived from a Hamiltonian H(f,W,t):

W
H

dt
d

¶
¶=f f¶

¶-= H
dt
dW

𝐻𝐻 𝜙𝜙,𝑊𝑊 = −
1
2
ℎ𝜂𝜂𝜔𝜔H*

𝑝𝑝𝑝𝑝
𝑊𝑊< +

𝑒𝑒𝑉𝑉P
2𝜋𝜋

cos 𝜙𝜙 − cos 𝜙𝜙* + 𝜙𝜙 − 𝜙𝜙* sin 𝜙𝜙*

𝑑𝑑𝜙𝜙
𝑑𝑑𝑡𝑡

= −
ℎ𝜂𝜂𝜔𝜔H*

𝑝𝑝𝑝𝑝
𝑊𝑊

𝑑𝑑𝑊𝑊
𝑑𝑑𝑡𝑡

=
𝑒𝑒𝑉𝑉P
2𝜋𝜋

sin 𝜙𝜙 − sin𝜙𝜙*

𝑊𝑊 =
Δ𝐸𝐸
𝜔𝜔H*
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Hamiltonian of Longitudinal Motion

Contours of H (φ,W)

What does it represent?      The total energy of the system!

Chris Warsop

Surface of H (φ,W )

Contours of constant H are particle trajectories in phase space! 
(H is conserved)

Hamiltonian Mechanics can help us understand some fairly
complicated dynamics (multiple harmonics, bunch splitting, …)
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Summary

• Synchrotron oscillations in the longitudinal phase space (E, f)

• Particles perform oscillations around synchronous phase
• synchronous phase depending on acceleration
• below or above transition

• Bucket is the region in phase space for stable oscillations

• Bucket size is the largest without acceleration 

• to avoid filamentation and emittance increase it is important to

• match the shape of the bunch to the bucket and 

• inject with the correct phase and energy
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Appendix: Momentum Compaction Factor

q

xr

0s
s

p
dpp +

dq
x

ds0 = ρdθ
ds = ρ + x( )dθ

The elementary path difference 
from the two orbits is:

dl
ds0

=
ds − ds0
ds0

=
x
ρ
=
Dx

ρ
dp
p

leading to the total change in the circumference:

dL = dl
C
∫ =

x
ρ∫ ds0 =

Dx

ρ
dp
p
ds0∫

With ρ=∞ in 
straight sections 
we get:

< >m means that 
the average is 
considered over 
the bending 
magnet only

definition of dispersion Dx

𝛼𝛼- =
𝑝𝑝
𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝛼𝛼- =
1
𝐿𝐿
3

𝐷𝐷5(𝑠𝑠)
𝜌𝜌(𝑠𝑠)

𝑑𝑑𝑠𝑠8
9

𝛼𝛼- =
𝐷𝐷5 Z

𝑅𝑅
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Appendix: First Energy-Phase Equation

fRF = h fr ⇒ Δφ = −hΔθ with θ = ω r dt∫

For a given particle with respect to the reference one:

( ) ( ) dt
d

hdt
d

hdt
d

r
ffqw 11 -=D-=D=D

Since:

one gets:
( ) fhw
f

hww
!

rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE -=D-=D

and
2E = 0

2E + 2p 2c

ΔE = vsΔp = ω rsRsΔp

particle ahead arrives earlier
=> smaller RF phase

qs

Dq

R

v

𝜂𝜂 =
𝑝𝑝*
𝜔𝜔H*

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 *
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Appendix: Second Energy-Phase Equation

The rate of energy gained by a particle is:
p
wf 2sinˆ rVedt

dE=

The rate of relative energy gain with respect to the reference 
particle is then:

 
2πΔ

E
ω r

$

%
&

'

(
) = eV̂ (sinφ − sinφs )

leads to the second energy-phase equation:

2π d
dt

ΔE
ω rs

$

%&
'

()
= eV̂ sinφ − sinφ s( )

 
Δ ETr( ) ≅ EΔTr + TrsΔ E = ΔE Tr + TrsΔ E =

d
dt

TrsΔE( )

Expanding the left-hand side to first order:
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Stability is obtained when WWs is real and so WWs
2 positive: 

Ωs
2 =

e V̂RFηhω s

2π Rs ps
cosφs ⇒ Ωs

2 > 0 ⇔ ηcosφs > 0

Appendix: Stability condition for ϕs

f
2
p

p
2
3p

VRF
cos (ffs)

acceleration deceleration

0>h 0>h0<h 0<h
Stable in the region if

𝛾𝛾 < 𝛾𝛾tr 𝛾𝛾 < 𝛾𝛾tr𝛾𝛾 > 𝛾𝛾tr 𝛾𝛾 > 𝛾𝛾tr
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Appendix: Stationary Bucket - Separatrix

This is the case sinffs=0 (no acceleration) which means ffs=0 or pp . The 
equation of the separatrix for ffs= pp (above transition) becomes:

W=W+ 22
2

cos2 ss ff!
2sin22
22

2
ff

W= s

!

Replacing the phase derivative by the (canonical) variable W:

W=
ΔE

rfω
=− sp sR

hη rfω
ϕ

and introducing the expression 
for WWs leads to the following 
equation for the separatrix:

W =±
C
πhc

−eV̂ sE
2π hη

sinφ
2
= ±Wbk sin

φ
2with C=2ppRs

W

ff
0  pp 2pp

Wbk
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Stationary Bucket (2)

Setting ff=pp in the previous equation gives the height of the bucket:

The area of the bucket is:

bkA = 8Wbk = 8
C
πhc

−eV̂ sE
2π hη

ò= p f2
02 dWAbk

Since: ò =p ff2
0 42sin d

one gets:

bkW =
C
πhc

−eV̂ sE
2π hη

8
AW bk

bk=

This results in the maximum energy acceptance:

ΔEmax =ωrfWbk = βs 2 −eV̂RFEs

πηh



CAS Beam Inj., Extr. and Transfer, Erice, March 2017 52

Appendix: Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the 
second order differential equation is non-linear:

( ) 0sinsincos
2

=-W+ s
s

s ffff!! (WWs as previously defined)

Multiplying by   and integrating gives an invariant of the motion:f!

( ) Is
s

s =+W- ffff
f sincoscos2

22!

which for small amplitudes reduces to:

 

φ 2

2
+ Ωs

2 Δφ( )2

2
= $I (the variable is Df, and fs is constant)

Similar equations exist for the second variable : DEµdf/dt
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Large Amplitude Oscillations (2)

( ) ( ) ( )( )sss
s

s
s

s

s ffpfpfffff
f sincoscossincoscos2

222
-+-W-=+W-

!

( ) ( ) ssssmm ffpfpfff sincossincos -+-=+

Second value fm where the separatrix crosses the horizontal axis:

Equation of the separatrix:

When f reaches p-fs the force goes 
to zero and beyond it becomes non 
restoring.
Hence p-fs is an extreme amplitude 
for a stable motion which in the

phase space(            ) is shown as

closed trajectories.  

φ
Ωs

,Δφ
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Energy Acceptance
From the equation of motion it is seen that    reaches an extreme
when          , hence corresponding to            .
Introducing this value into the equation of the separatrix gives:   

f!
0=f!! sff =

 
φmax
2 = 2Ωs

2 2 + 2φs − π( ) tanφs{ }
That translates into an acceptance in energy:

This “RF acceptance” depends strongly on fs and plays an important role for 
the capture at injection, and the stored beam lifetime.

It’s largest for fs=0 and fs=π (no acceleration, depending on h).

Need a higher RF voltage for higher acceptance.

 max

ΔE
sE

"
#$

%
&'

=β −
eV̂

πhη sE
G sφ( )

G sφ( )= 2cos sφ + 2 sφ −π( )sin sφ$% &'
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Bunch Matching into a Stationary Bucket 

A particle trajectory inside the separatrix is described by the equation:

W

ff0  pp 2pp

Wbk

Wb

pp

ffm 2pp-ffm

( ) Is
s

s =+W- ffff
f sincoscos2

22! ffs=  pp Is =W+ ff cos2
2

2!

fff
mss coscos2

22
2

W=W+
!

( )fff coscos2 -W±= ms
!

W = ±Wbk
2cos mϕ
2
− 2cos

ϕ
2

The points where the trajectory 
crosses the axis are symmetric with 
respect to ffs=  pp

cos(φ) = 2cos2 φ
2
−1

φ̂
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Bunch Matching into a Stationary Bucket (2)

Setting ff == pp in the previous formula allows to calculate the bunch height:

2cos8
fmbk

b
AW =bW = bkW cos mφ

2
= bkW sin φ̂

2
or:

b

ΔE
sE

"
#$

%
&'
=

RF

ΔE
sE

"
#$

%
&'
cos mφ

2
=

RF

ΔE
sE

"
#$

%
&'
sin

φ̂
2

This formula shows that for a given bunch energy spread the proper 
matching of a shorter bunch (ffm close to pp,   small)
will require a bigger RF acceptance, hence a higher voltage

φ̂

W = bkA
16

φ̂ 2− 2
Δφ( )

2
16W

bkA φ̂

"

#$
%

&'
+

2
Δφ

φ̂

"

#$
%

&'
=1

bA =
π
16 bkA φ̂ 2

For small oscillation amplitudes the equation of the ellipse reduces to:

Ellipse area is called longitudinal emittance


