### Particle interactions with matter

A. Lechner (CERN)

#### based on slides by A. Ferrari and F. Cerutti

Calculations based on the FLUKA Monte Carlo code

CAS, Erice, Italy March  $11^{\rm th},\,2017$ 

# Introduction and basic definitions

Atomic interactions (photons, charged particles)

**Nuclear interactions (hadrons)** 

Energy deposition and particle showers

# Introduction and basic definitions

Atomic interactions (photons, charged particles)

**Nuclear interactions (hadrons)** 

Energy deposition and particle showers

Eventually all beam particles and/or their secondary products will interact with surrounding media ...

- Beam disposal on a dump/stopper
- Particle impact on protection or beam manipulation devices
  - Collimators, absorbers, scrapers
    - $\Rightarrow$  halo cleaning
    - $\Rightarrow$  radioprotection
    - $\Rightarrow$  background reduction
    - $\Rightarrow$  machine protection (in case of equipment malfunctions)
  - Stripping foils, crystals to extract the beam
- Beam directed on targets
- Sources of secondary particles:
  - Collisions in interaction points (luminosity)
  - Synchrotron radiation
  - Interactions with residual gas molecules
  - Interactions with macroparticles

o ...





Eventually all beam particles and/or their secondary products will interact with surrounding media ...

- Beam disposal on a dump/stopper
- Particle impact on protection or beam manipulation devices
  - Collimators, absorbers, scrapers
    - $\Rightarrow$  halo cleaning
    - $\Rightarrow$  radioprotection
    - $\Rightarrow$  background reduction
    - $\Rightarrow$  machine protection (in case of equipment malfunctions)
  - Stripping foils, crystals to extract the beam
- Beam directed on targets
- Sources of secondary particles:
  - Collisions in interaction points (luminosity)
  - Synchrotron radiation
  - Interactions with residual gas molecules
  - Interactions with macroparticles

o ...





Eventually all beam particles and/or their secondary products will interact with surrounding media ...

- Beam disposal on a dump/stopper
- Particle impact on protection or beam manipulation devices
  - Collimators, absorbers, scrapers
    - $\Rightarrow$  halo cleaning
    - ⇒ radioprotection
    - ⇒ background reduction
    - $\Rightarrow$  machine protection (in case of equipment malfunctions)
  - o Stripping foils, crystals to extract the beam
- Beam directed on targets
- Sources of secondary particles:
  - Collisions in interaction points (luminosity)
  - Synchrotron radiation
  - Interactions with residual gas molecules
  - Interactions with macroparticles

0 ...





Eventually all beam particles and/or their secondary products will interact with surrounding media ...

- Beam disposal on a dump/stopper
- Particle impact on protection or beam manipulation devices
  - Collimators, absorbers, scrapers
    - $\Rightarrow$  halo cleaning
    - ⇒ radioprotection
    - ⇒ background reduction
    - $\Rightarrow$  machine protection (in case of equipment malfunctions)
  - o Stripping foils, crystals to extract the beam
- Beam directed on targets
- Sources of secondary particles:
  - Collisions in interaction points (luminosity)
  - Synchrotron radiation
  - Interactions with residual gas molecules
  - Interactions with macroparticles

0 ...





Eventually all beam particles and/or their secondary products will interact with surrounding media ...

- Beam disposal on a dump/stopper
- Particle impact on protection or beam manipulation devices
  - Collimators, absorbers, scrapers
    - $\Rightarrow$  halo cleaning
    - ⇒ radioprotection
    - ⇒ background reduction
    - $\Rightarrow$  machine protection (in case of equipment malfunctions)
  - o Stripping foils, crystals to extract the beam
- Beam directed on targets
- Sources of secondary particles:
  - o Collisions in interaction points (luminosity)
  - Synchrotron radiation
  - o Interactions with residual gas molecules
  - o Interactions with macroparticles

o ...





# Consequences & relevant macroscopic quantities

#### A non-exhaustive list



# The particle zoo

#### Some properties:

• Hadrons:

| <ul> <li>Proton (<i>p</i>)</li> </ul>   | $938\mathrm{MeV/c^2}$  | stable                                                                |                                          |
|-----------------------------------------|------------------------|-----------------------------------------------------------------------|------------------------------------------|
| • Neutron ( <i>n</i> )                  | 940 MeV/c <sup>2</sup> | $\tau$ =886 s                                                         |                                          |
| $\circ$ Charged pions ( $\pi^+,\pi^-$ ) | 140 MeV/c <sup>2</sup> | au=2.6×10 <sup>-8</sup> s<br>( $c	au$ =780 cm)                        | [mainly $\pi  ightarrow \mu  u_{\mu}$ ]  |
| $\circ$ Neutral pions ( $\pi^0$ )       | 135 MeV/c <sup>2</sup> | $\tau = 8.4 \times 10^{-17} \text{ s}$<br>( $c\tau = 25 \text{ nm}$ ) | [mainly $\pi  ightarrow \gamma \gamma$ ] |

 $\circ\,$  Charged and neutral kaons, (anti)hyperons, antiprotons, antineutrons ...

- Photons ( $\gamma$ ), stable, m=0
- Leptons:

 $\begin{array}{ll} \circ \mbox{ Electron, positron } (e^-, e^+) & 511 \mbox{ keV/c}^2 & \mbox{ stable} \\ \circ \mbox{ Muons } (\mu^-, \mu^+) & 106 \mbox{ MeV/c}^2 & \mbox{ $\tau$=2.2 \times 10^{-6} s$ [mainly $\mu \to e \nu_e \nu_\mu$]} \\ & (c \tau = 687 \mbox{ m}) \end{array}$ 

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

#### Cross section per atom/nucleus σ (microscopic cross section) [area]

For a given particle with energy E, on an atom with atomic/mass number Z/A

 $\sigma = \sigma(E, Z, A)$ 

(common unit: 1 barn (b) = 10-24 cm<sup>2</sup>)

• Mean free path  $\lambda$  [length]



= average distance travelled by a particle between two successive collisions

Macroscopic cross section Σ [inverse length]

$$\Sigma = \frac{1}{\lambda} = N\sigma$$

#### • Remark:

• The amount of material traversed by a particle is often expressed as surface density  $\Rightarrow$  length  $\times$  density  $\rho$  [  $cm \times g/cm^3 = g/cm^2$ ]

イロト イポト イヨト イヨト

#### Cross section per atom/nucleus σ (microscopic cross section) [area]

For a given particle with energy E, on an atom with atomic/mass number Z/A

 $\sigma = \sigma(E, Z, A)$  (common unit:

(common unit: 1 barn (b) = 10<sup>-24</sup> cm<sup>2</sup>)

イロト イヨト イヨト イヨト

Mean free path λ [length]



#### = average distance travelled by a particle between two successive collisions

Macroscopic cross section Σ [inverse length]

$$\Sigma = \frac{1}{\lambda} = N\sigma$$

• Remark:

• The amount of material traversed by a particle is often expressed as surface density  $\Rightarrow$  length  $\times$  density  $\rho$  [  $cm \times g/cm^3 = g/cm^2$ ]

#### Cross section per atom/nucleus σ (microscopic cross section) [area]

For a given particle with energy E, on an atom with atomic/mass number Z/A

 $\sigma = \sigma(E, Z, A)$  (common unit: 1 barn (b) = 10<sup>-24</sup> cm<sup>2</sup>)

Mean free path λ [length]



= average distance travelled by a particle between two successive collisions

Macroscopic cross section ∑ [inverse length]

$$\Sigma = \frac{1}{\lambda} = N\sigma$$

#### • Remark:

• The amount of material traversed by a particle is often expressed as surface density  $\Rightarrow$  length  $\times$  density  $\rho$  [  $cm \times a/cm^3 = a/cm^2$ ]

< □ > < □ > < □ > < □ > < □ > < □ >

#### • Cross section per atom/nucleus $\sigma$ (microscopic cross section) [area]

For a given particle with energy E, on an atom with atomic/mass number Z/A

 $\sigma = \sigma(E, Z, A)$  (common unit: 1 barn (b) = 10<sup>-24</sup> cm<sup>2</sup>)

• Mean free path  $\lambda$  [length]



= average distance travelled by a particle between two successive collisions

Macroscopic cross section Σ [inverse length]

$$\Sigma = \frac{1}{\lambda} = N\sigma$$

• Remark:

• The amount of material traversed by a particle is often expressed as surface density  $\Rightarrow$  length  $\times$  density  $\rho$  [  $cm \times g/cm^3 = g/cm^2$ ]

< □ > < □ > < □ > < □ > < □ > < □ >

### Interaction probability

Assume that particles are normally incident on a homogeneous material and that they are subject to a process with a mean free path  $\lambda$  between collisions:

• Path length distribution

Note: 
$$\int_0^\infty p(l')dl' = 1$$
  $p(l)dl = \frac{1}{\lambda}exp(-\frac{l}{\lambda})dl$ 



p(I)dI = probability that a particle has an interaction between I and I + dI

Cumulative interaction probability

 ${f P}(I)$  = probability that a particle interacts before reaching a path length I

• In case of a thin target (thickness  $d\ll\lambda$ )

$$m{P}_{target} = m{P}(m{d}) pprox rac{m{d}}{\lambda}$$
 ,

### Interaction probability

Assume that particles are normally incident on a homogeneous material and that they are subject to a process with a mean free path  $\lambda$  between collisions:

• Path length distribution

Note: 
$$\int_0^\infty p(l')dl' = 1$$
  $p(l)dl = \frac{1}{\lambda}exp(-\frac{l}{\lambda})dl$ 

p(I)dI = probability that a particle has an interaction between I and I + dI

Cumulative interaction probability

$$P(\lambda) = 63.2\%$$

$$P(\lambda) = 63.2\%$$

$$P(\lambda) = 86.5\%$$

$$P(\lambda) = 95.0\%$$

$$P(\lambda) = 98.2\%$$

$$P(\lambda) = \int_{0}^{1} p(\lambda') d\lambda' = 1 - exp\left(-\frac{1}{\lambda}\right)$$

$$Survival probability:$$

$$P_{s}(\lambda) = 1 - P(\lambda)$$

$$= exp(-1/\lambda)$$

P(I) = probability that a particle interacts before reaching a path length I

• In case of a thin target (thickness  $d\ll\lambda$ )

$$m{P}_{target} = m{P}(m{d}) pprox rac{m{d}}{\lambda}$$

### Interaction probability

Assume that particles are normally incident on a homogeneous material and that they are subject to a process with a mean free path  $\lambda$  between collisions:

• Path length distribution

Note: 
$$\int_{0}^{\infty} p(l') dl' = 1$$
  $p(l) dl = \frac{1}{\lambda} exp(-\frac{l}{\lambda}) dl$ 



Cumulative interaction probability

$$P(\lambda) = 63.2\%$$

$$P(\lambda) = 63.2\%$$

$$P(\lambda) = 86.5\%$$

$$P(\lambda) = 95.0\%$$

$$P(\lambda) = 98.2\%$$

$$P(\lambda) = \int_{0}^{1} p(\lambda') d\lambda' = 1 - exp\left(-\frac{1}{\lambda}\right)$$

$$Survival probability:$$

$$P_{s}(\lambda) = 1 - P(\lambda)$$

$$= exp(-1/\lambda)$$

P(I) = probability that a particle interacts before reaching a path length I

• In case of a thin target (thickness  $d \ll \lambda$ )

$$m{P}_{target} = m{P}(m{d}) pprox rac{m{d}}{\lambda}$$

# Interaction probability: example

- Example: beam loss during SPS-to-LHC transfer (protons@450 GeV)
  - Assume that 288 bunches with 1.3×10<sup>11</sup> protons/bunch are intercepted by a collimator during SPS-to-LHC transfer (288 ·1.3×10<sup>11</sup> = 3.74×10<sup>13</sup> protons).
  - How many protons will have an inelastic nuclear collision in the collimator?



#### **Answer:**

Inelastic p-C cross section (@450GeV):

 $\sigma = \sim 245 \, {
m mb}$ 

• Mean free path (=inelastic scattering length):



• Number of interacting protons (out of  $3.74 \times 10^{13}$ ):

$$N_{i} = \left[1 - exp\left(-\frac{\underbrace{Length^{*}}}{\underbrace{44 \text{ cm}}{\lambda}}\right)\right] \cdot 3.74 \times 10^{13} = 3.5 \times 10^{13} \text{ p}$$

\* For simplicity, we assume that the path of protons in the collimator is straight, i.e. no elastic scattering.

# Introduction and basic definitions

# Atomic interactions (photons, charged particles)

**Nuclear interactions (hadrons)** 

Energy deposition and particle showers

• □ ▶ • □ ▶ • □ ▶ •

### Photon interactions: basics

- Photons can be produced in a variety of processes, e.g.:
  - Bremsstrahlung
  - o Gamma-deexcitation after nuclear reactions
  - o Radiative neutron capture

- Electron-positron annihilation
- Particle decay (e.g.  $\pi^0$ 's from nuclear reactions)
- o ...
- Relevant processes for photon scattering and absorption:



# Photon interactions: cross sections

 $\sigma_{p.e.} = \text{Photo-electric effect}$  $\sigma_{\textit{Rayleigh}} = \text{Coherent scattering}$  $\sigma_{\textit{Compton}} = \text{Incoherent scattering}$   $\kappa_{nuc}$ = Pair production in field of nucleus

 $\kappa_e$ = Pair production in field of electron

 $\sigma_{g.d.r}$ = Giant Dipole Resonance

#### Carbon:



Figures from: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

Lead:

### Photon interactions: absorption length





Figure from: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

### Charged particle interactions: basics

- Coulomb interactions with electrons and nuclei
  - Excitation or ionisation of atoms (energetic electrons: δ-rays)
  - Dominate<sup>†</sup> energy loss up to energies where radiative losses become important
    - $\Rightarrow$  up to a few **10 MeV** for  $e^{+/-}$
    - ⇒ up to a few **100 GeV** for  $\mu^{+/-}$ (up to even higher *E* for ch. hadrons<sup>††</sup>)
    - = electronic energy loss  $\Rightarrow$  heating

Except for low-energy heavy projectiles where NIEL can be higher.

†† But: high-energy hadrons are subject to nuclear interactions.

- Dominate the angular deflections of charged particles
- Energy loss ≪ electronic one, except for low-energy heavy projectiles (ions keV/u)

- = non-ionizing energy loss (NIEL)
- $\Rightarrow$  displacement damage

#### Radiative processes

For e<sup>+/-</sup> above a few 10 MeV: energy loss dominated by Bremsstrahlung processes
 For μ<sup>+/-</sup> above a few 100 GeV: Bremsstrahlung, e<sup>-</sup>/e<sup>+</sup> pair production, photo-nuclear

# Heavy charged particles $(M \gg m_e)$ : example muon stopping



Figure from: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

### Electrons: electronic and radiative stopping

For electrons  $\rightarrow$  radiative losses already important at much lower energies



Source: http://physics.nist.gov/PhysRefData/Star/Text/intro.html

Critical energy E<sub>c</sub>:



X<sub>0</sub> is the radiation length, which will be introduced later.

A. Lechner (CAS, Erice, Italy)

# Electrons: critical energy Ec



Figure from: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

A. Lechner (CAS, Erice, Italy)

# Radiation length $X_0$

- Radiation length X<sub>0</sub>
  - Is a characteristic length for both bremsstrahlung and pair production:

High energy electrons: 
$$-\frac{dE}{dz}\Big|_{rad} = \frac{E}{X_0}$$

$$\langle E(z) \rangle = E_0 \cdot \exp\left(-\frac{z}{\chi_0}\right)$$

 $X_0$  = average distance needed to reduce the energy of a high-energy electron by a factor of 1/e

*i.e.*  $\langle E(X_0) \rangle = 36.8\% E_0$ 

- Material dependency
  - Common approximation (Dahl):

$$X_0 
ho \left[ g/cm^2 
ight] = rac{716.4g/cm^2 A}{Z(Z+1) \ln(287/\sqrt{Z})}$$

 $\rho$  = density, Z = atomic number, A = mass number

High energy photons:  $\sigma_{pp} \approx \frac{7}{9} \frac{M}{\rho N_A X_0}$  $\langle I(z) \rangle = I_0 \cdot \exp\left(-\frac{7}{9} \frac{z}{X_0}\right)$ 

 $X_0 = 7/9$  of the mean free path for pair production by a high-energy photon

*i.e.*  $\langle I(X_0) \rangle = 45.9\% I_0$ 

| Material | Ζ  | Density                 | <b>X</b> 0 |
|----------|----|-------------------------|------------|
| Graphite | 6  | 2.21 g/cm <sup>3</sup>  | 19.32 cm   |
| Al       | 13 | 2.699 g/cm <sup>3</sup> | 8.90 cm    |
| Fe       | 26 | 7.874 g/cm <sup>3</sup> | 1.76 cm    |
| Cu       | 29 | 8.96 g/cm <sup>3</sup>  | 1.44 cm    |
| W        | 74 | 19.30 g/cm <sup>3</sup> | 0.35 cm    |
| Pb       | 82 | 11.35 g/cm <sup>3</sup> | 0.56 cm    |

Source: pdg.lbl.gov/AtomicNuclearProperties/

# Multiple scattering

#### Coulomb interactions with nuclei

- $\Rightarrow$  Particles scatter more when their energy decreases
- $\Rightarrow$  Lighter particles scatter more if they have the same  $\beta c$  as heavier particles
- Well described by multiple scattering theory of Moliere ⇒



#### Proton fluence map (1/cm<sup>2</sup>/proton)

Introduction and basic definitions

Atomic interactions (photons, charged particles)

**Nuclear interactions (hadrons)** 

Energy deposition and particle showers

• □ ▶ • □ ▶ • □ ▶ •

# Hadron-nucleus interactions: cross-section & mean free path

# Elastic + non-elastic interactions: in the latter new particles are produced and/or the internal structure of the target/projectile are changed

⇒ Microscopic cross section for non-elastic had-nucleus collisions scales as

$$\sigma \propto {\it A}^{2/3}$$

(geometrical cross section)

⇒ Mean free path of non-elastic nuclear interactions scales as:

$$\lambda_{l}
ho \propto A^{1/3}$$

#### Also called inel. scattering length

| Mat | Ζ  | Density                | <b>X</b> 0 | $\lambda_l$ |
|-----|----|------------------------|------------|-------------|
| С   | 6  | 2.2 g/cm <sup>3</sup>  | 21.4 cm    | 37.3 cm     |
| Al  | 13 | 2.7 g/cm <sup>3</sup>  | 8.90 cm    | 35.4 cm     |
| Fe  | 26 | 7.8 g/cm <sup>3</sup>  | 1.76 cm    | 15.1 cm     |
| Cu  | 29 | 8.96 g/cm <sup>3</sup> | 1.44 cm    | 13.9 cm     |
| W   | 74 | 19.3 g/cm <sup>3</sup> | 0.35 cm    | 8.9 cm      |
| Pb  | 82 | 11.4 g/cm <sup>3</sup> | 0.56 cm    | 15.7 cm     |

Source: FLUKA,  $\lambda_1$  for 7 TeV protons

Nucleon-nucleon cross sections:



A. Lechner (CAS, Erice, Italy)

# Hadron-nucleus interactions: basics (simplified picture!)

#### Fast stage (10<sup>-22</sup> s)

Hadron interacts with nucleons: particle production possible (mainly  $\pi$ )



ightarrow residuals can be radioactive

A. Lechner (CAS, Erice, Italy)

March 11<sup>th</sup>, 2017 22/37

• □ ▶ • • • • • • • • •

### Residual nuclei production: example of fission/evaporation

1 A GeV <sup>208</sup>Pb + p reactions Nucl. Phys. A 686 (2001) 481-524



23/37

# Neutrons: low-energy cross sections (< 20 MeV)

- Only "stable" neutral hadron → very penetrating
- Mainly slow down (mainly in elastic coll.  $\rightarrow$  recoil) until they thermalize and are captured



Figure from: ENDF/B-VII.1, http://www.nndc.bnl.gov/exfor/endf00.jsp

# Introduction and basic definitions

Atomic interactions (photons, charged particles)

**Nuclear interactions (hadrons)** 

# Energy deposition and particle showers

• □ ▶ • □ ▶ • □ ▶ •

# Energy deposition: general remarks

#### • Energy deposition in a material

- Mediated by Coulomb interactions of charged particles put in motion by atomic and nuclear processes
- Energy loss  $\neq$  energy deposition → energy can be transported away by secondaries
- Longitudinal energy deposition profiles shown in the following:
  - o It is assumed that a pencil beam impacts on a laterally infinite material block
  - Longitudinal profiles are expressed as:

$$\varepsilon(z) = \frac{\Delta E}{\Delta z} \frac{1}{E_0}(z)$$

- $\Delta E$  = energy deposited in layer
- $\Delta z$  = layer thickness
- z = depth inside target

$$E_0$$
 = beam energy



### Example: Protons at 160 MeV (LINAC4 at CERN)





 $\Rightarrow$  at higher energies (GeV) showers dominate the energy deposition profile

A. Lechner (CAS, Erice, Italy)

### EM showers: basics

- Relevant processes:
  - High-energy e<sup>-</sup>/e<sup>+</sup> lose energy mainly through bremsstrahlung
    - ⇒ above 10 MeV in heavy materials
    - ⇒ above 100 MeV in light materials
  - For photons at such energies, dominant interaction is pair production
- Cascade development:
  - At high energy (> GeV), these processes lead to particle multiplication
    - = electromagnetic (EM) shower
  - Energy/particle decreases from generation to generation
  - Multiplication stops when the energy of  $e^-/e^+$  falls below  $\sim E_c$ 
    - $\Rightarrow$  below  $E_c$  they dissipate energy mainly through ionization/excitation
    - ⇒ shower maximum = location where number of particles is maximum
    - $\Rightarrow$  characteristic length  $\rightarrow$   $X_0$

## EM showers: longitudinal profile (Heitler model)

- Qualitative features can be derived from Heitler's model, which assumes:
  - $\circ$  interactions (bremsstrahlung, pair production) take always place after a distance  $X_0$
  - o at each interaction the energy is equally split between the two outgoing particles



• Particle multiplication vs depth (expressed as  $t = z/X_0$ ):



# EM showers: longitudinal profile (Heitler model cont'd)

- Location of shower maximum predicted by model:
  - Assume shower (i.e. multiplication) stops when energy/particle =  $E_c$ :

$$\left. \mathbf{E}_{av}(t) \right|_{t=t_{max}} = rac{\mathbf{E}_0}{\mathbf{2}^{t_{max}}} = \mathbf{E}_c$$

t<sub>max</sub> = # of X<sub>0</sub> required to reach shower maximum

Depth of shower maximum increases logarithmically with energy

$$t_{max} \propto ln \Big(rac{E_0}{E_c}\Big)$$

 $\Rightarrow$  since EM showers scale with X<sub>0</sub>, they are shorter the higher the atomic number and the material density (X<sub>0</sub>  $\propto A/(Z^2\rho)$ )

- Note:
  - Although it correctly predicts the logarithmic dependence, the model has many limitations (e.g. electron/photon ratios not correctly predicted)

イロト イポト イモト イモト

# EM showers: longitudinal profile (Monte Carlo simulation)



# EM showers: longitudinal profile (Monte Carlo simulation)



#### **Red arrows:**

$$t_{max} = \frac{z_{max}}{X_0} = log\left(\frac{E_0}{E_c}\right) - 0.5$$

Higher-Z materials: multiplication down to lower energies (lower  $E_c$ )

# EM showers: transverse profile (Monte Carlo simulation)

*r-z* energy deposition map (normalized to peak value) Transverse profile of shower core around longitudinal peak:

Roughly energy-independent



Well described by Moliere radius:

$$R_M = rac{E_s^\dagger}{E_c} X_0 = rac{21 \; MeV}{E_c} X_0$$

<sup>†</sup>  $E_{\rm S}=\sqrt{4\pi/lpha}m_{\rm e}c^2$ , where lpha is the fine structure constant

= average lateral deflection of electrons with  $E=E_c$  after traversing one  $X_0$ (90% of energy deposition within ~1  $R_M$ )

• • • • • • • • • • • •

### Hadronic showers: basics



# Hadronic showers: longitudinal profile (Monte Carlo sim.)

Longitudinal energy deposition profiles





- Depth of shower maximum:
  - Like for EM showers, scales roughly with *log(E*<sub>0</sub>)
- Relative EM shower contribution to energy deposition:
  - The higher *E*<sub>0</sub>, the more interactions needed to go below a few GeV
  - $\circ\,$  Since at each interaction  ${\sim}1/3$  of energy goes into  $\pi^0$ 's, relative EM shower contribution increases with increasing  $E_0$

# Hadronic showers: transverse profile (Monte Carlo sim.)

# *r-z* energy deposition map (normalized to peak value)



#### Transverse shower profile:

- The transverse momentum of hadrons produced in nuclear collisions is more or less invariant with energy (average 300-400 MeV/c)
- Shower opening angle becomes narrower with increasing energy

### Challenges ahead: LHC bunch vs FCC bunch



Figures: Energy density in 3 m-long Graphite (1.83 g/cm<sup>3</sup>) for one nominal proton bunch (σ=400μm), comparing HL-LHC (top) and FCC (bottom).

### Thank you very much for your attention!